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Rezumat

Pentru domeniul deschiderilor mici (L<35.00m) la podurile feroviare noi se
recomanda si se utilizeaza suprastructurile cu grinzi metalice Inglobate 1n beton, cu care se pot
asigura exigentele de rezistenta si mai ales de rigiditate, indiferent de viteza de circulatie.

Tn toate prescriptiile de proiectare existente pand in prezent pentru structurile de
poduri cu grinzi metalice inglobate in beton, si, chiar 1n literatura tehnicd de specialitate,
existd putine informatii si date referitoare la influenta oblicitatii rezemarii i a curburii axei
caii in conceptia si calculul acestor tipuri de structuri.

In prescriptiile de proiectare calculul este unul simplificat, realizat pe o singurd grinda
longitudinald izolatd din tablier, daca se indeplinesc anumite conditii legate de geometria
structurii (oblicitate, curburd). Daca aceste conditii nu sunt indeplinite se recomanda analiza
cu programe de element finit.

Articolul 1si propune sd studieze situatiile in care nu sunt Indeplinite conditiile
prescriptiilor de proiectare.

Cuvinte cheie: otel, beton, curburi, oblicitate.
Abstract

For new railway bridges with small spans (L < 35.00 m) superstructures with steel
beams embedded in concrete are recommended and used, which can ensure the requirements
of strength and especially stiffness, regardless of velocity.

In all the design prescriptions used so far for superstructures with steel beams
embedded in concrete, and even in the technical literature, there is little information and data
on the influence of the support line obliquity and the track axis curvature in the design and
calculation of these types of structures.

In the design code, if certain conditions related to the geometry of the superstructure
are met (obliquity, curvature) the calculation is a simplified one, made on a single isolated
longitudinal beam of the deck; otherwise, if the conditions are not met, finite element program
analysis is recommended.
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The article aims to study the situations in which the requirements of the design
prescriptions are not met.

Keywords: steel, concrete, curvature, obliquity.

1. PRESENTATION OF BRIDGE STRUCTURES ANALYZED [4]

Three simple supported bridges with steel beams embedded in concrete,
with L=10m, L=20m and L=30m spans, were chosen for the study. For these,
the support line obliquity (40°, 50° and 60°) and the track axis curvature (100m
... 1500m) were varied.

The Design Tables for Filler Beam Railway Bridges [4], published by the
International Union of Railways, has been the guideline for the constructive
solutions of the three analyzed bridges. For the bridge with L=10m span and a B
track category, at a maximum speed of 160Km/h, the constructive solution
consists of six steel beams HEA400 in cross-section, as shown in Figure 1. For
the bridge with L=20m span the constructive solution consists of six HEB800
steel beams (see Figure 2) and for the bridge with L=30m span the constructive
solution consists of six HLB1100 steel beams (see Figure 3).

In all three cases a deck width of 4m was obtained.
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Figure 1. Constructive solutions for bridge with L=10m span
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Figure 2. Constructive solutions for bridge with L=20m span
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Figure 3. Constructive solutions for bridge with L=30m span
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2. PRESENTATION OF THE CALCULATION MODELS [4]

Structures were analyzed with the Lusas FEA software, using 3D type
“Stress” finite elements to model them.

To be able to observe the influence of support line obliquity and track axis
curvature, bridges were first analyzed without support line obliquity and in
alignment.

Figure 4. 3D view of the calculation models for bridges with 10m, 20m and
30m spans without support line obliquity

e Bridge with L=10m span
The calculation model contains 23200 “3D” finite elements type "Stress"
HX8M and 28674 nodes, resulting 86022 degrees of freedom, as shown in
Figure 5.

Figure 5. Plane view of the calculation models for bridge with 10m span and
40°, 50° and 60° support line obliquity
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Figure 6. The cross-section of the bridge with L=10m span
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e Bridge with L=20m span

The calculation model contains 47880 “3D” finite elements type "Stress"
HX8M and 57387 nodes, resulting 172161 degrees of freedom (see Figure 7).

Figure 7. Plane view of the calculation models for bridge with 20m span and
40°, 50° and 60° support line obliquity
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Figure 8. The cross-section of the bridge with L=20m span
e Bridge with L=30m span

The calculation model contains 51600 “3D” finite elements type "Stress"
HX8M and 60903 nodes, resulting 182709 degrees of freedom (see Figure 9).

Figure 9. Plane view of the calculation models for bridge with 30m span and
40°, 50° and 60° support line obliquity
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Figure 10. The cross-section of the bridge with L=30m span

The calculation models were analyzed under the effect of permanent loads

and the LM71 convoy.

3. SUMMARY PRESENTATION OF THE RESULTS OBTAINED USING

THE LUSAS FEA SOFTWARE

From the analysis the following sizes proposed to be compared were

extracted:

- Maximum deflection of the deck from permanent loads and LM71;
- Bending moments from permanent loads and LM71 in the midspan on

each isolated longitudinal composed beam from the deck.
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Figure 11. Maximum deflection variation depending on deck support line

obliquity and bridge span for R=700m

Article No.6, Romanian Journal of Transport Infrastructure, Vol.7, 2018, No.2

82



Simultaneous influence of the track axis curvature and the support line obliquity at railway bridge

ROMANIAN JOURNAL
OF TRANSPORT INFRASTRUCTURE

Stanescu Razvan Marian, Stan Oana Mihaela

superstructures with steel beams embedded in concrete

Table 1. Maximum deflection of the deck (AzZmax)

. ) AZmax

L Obliquity Radius Permanent loads LM71
R=100m -3.01 -3.30

40° R=700m -3.05 -3.54

=2 R=1500m -3.04 -3.38
S R=100m -4.43 -4.90
S 50¢ R=700m -4.52 -5.12
5 R=1500m -4.49 -4.96
E‘ R=100m -5.95 -6.58
60° R=700m -6.10 -6.78
R=1500m -6.05 -6.63

without obliquity and curvature -9.07 -10.43
R=100m -12.11 -8.57

40° R=700m -12.34 -8.69

=2 R=1500m -12.27 -8.47
s R=100m -17.03 -11.68
S 50¢ R=700m -17.41 -11.71
g R=1500m -17.29 -11.53
E R=100m -21.73 -14.63
60° R=700m -22.23 -14.66
R=1500m -22.08 -14.51

without obliquity and curvature -30.77 -20.87
R=100m -32.18 -16.85

40° R=700m -32.79 -16.75

=2 R=1500m -32.61 -16.50
S R=100m -43.34 -22.20
S 50° R=700m -44.20 -21.94
g R=1500m -43.94 -21.76
E R=100m -53.85 -27.12
60° R=700m -54.95 -26.94
R=1500m -54.62 -26.78
without obliquity and curvature -74.02 -37.40
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Table 2. Bending moments from permanent loads on each isolated
longitudinal beam from the deck (KNm)

L | obiiquity Radius Bending moments from permanent loads (KNm)
Beam 1{Beam 2|Beam 3Beam 4/Beam 5Beam 4

R=100m | 107.5| 116.2 | 1105 | 111.7 | 119.9 | 113.1

40 R=700m | 111.7 | 1204 | 114.2 | 1151 | 123.2 | 116
R=1500m | 110.4 | 119.1 | 113.1 | 114.1 | 122.2 | 115.1

Without curve| 102.6 | 111.1 [ 106.1 | 107.7 | 116.1 | 114.3

= R=100m | 188.3|182.3 | 189.2 | 184.2 | 185.2 | 193.7
< e R=700m | 195.5|189.1 | 195.7 | 190 | 190.6 | 199.1
= R=1500m | 193.3 | 187 | 193.7 | 188.2 | 188.9 | 197.5
= Without curve| 179.7 | 174.4 | 1815 | 177.3 | 178.8 | 187.4
S R=100m 241 | 247 | 244.9 | 245.4 | 249.3 | 244.3
N s R=700m | 250.2 | 256.1 | 253.4 | 253.4 | 256.9 | 251.4
60 R=1500m | 247.4 | 253.3 | 250.8 | 251 | 254.6 | 249.2
Without curve| 230.2 | 236.3 | 234.9 | 236.1 | 240.5 | 236
W'thOUtC?ﬁ:Z”'W and | 3047 | 3543 | 350.4 | 352.4 | 354.3 | 324.7
R=100m | 900.8 | 961.7 | 953.7 | 954.3 | 963.9 | 905.1

406 R=700m | 924.7 | 987 |978.2 | 978.1 | 987.3 | 926.8
R=1500m | 917.4 | 979.3 | 970.7 | 970.9 | 980.2 | 920.2

Without curve| 872.6 | 932.1 | 924.8 | 926.2 | 936.5 | 879.7

= R=100m | 1164 | 1241 | 1221 | 1222 | 1244 | 1175
= 506 R=700m | 1195 | 1273 | 1252 | 1252 | 1275 | 1203
2 R=1500m | 1185 | 1263 | 1243 | 1243 | 1265 | 1194
S Without curve| 1128 | 1203 | 1184 | 1186 | 1208 | 1141
ﬁ R=100m | 1382 | 1548 | 1484 | 1485 | 1551 | 1390
_ 606 R=700m | 1419 | 1589 | 1522 | 1523 | 1590 | 1424
R=1500m | 1408 | 1576 | 1511 | 1511 | 1578 | 1414

Without curve|] 1340 | 1501 | 1439 | 1441 | 1506 | 1350
W'thOUtC?fr’tZu'w and | 1912 | 2004 | 2001 | 2001 | 2004 | 1012
R=100m | 2924 | 3045 | 3045 | 3047 | 3052 | 2950

s R=700m | 2987 | 3111 | 3110 | 3111 | 3116 | 3012

40 R=1500m | 2968 | 3091 | 3090 | 3091 | 3096 | 2993
Without curve| 2849 | 2968 | 2968 | 2971 | 2977 | 2878

o2 R=100m | 3529 | 4160 | 3691 | 3876 | 4179 | 3431
IS £ R=700m | 3605 | 4250 | 3770 | 3958 | 4267 | 3503
2 R=1500m | 3582 | 4223 | 3746 | 3933 | 4240 | 3481
£ Without curve| 3439 | 4055 | 3598 | 3780 | 4076 | 3347
§ R=100m | 4182 | 4540 | 4547 | 4537 | 4554 | 4206
_ s R=700m | 4273 | 4638 | 4644 | 4633 | 4650 | 4294
60 R=1500m | 4245 | 4608 | 4615 | 4604 | 4621 | 4267
Without curve| 4076 | 4425 | 4433 | 4423 | 4441 | 4102
W"hOUtC?fr’:‘g“'ty and | o457 | 5024 | 5021 | 5921 | 5924 | 5457
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Table 3. Bending moments from LM71 on each isolated longitudinal beam
from the deck (KNm)

curve

L | obiiquity Radius Bending moments from LM71 (KNm)
Beam 1{Beam 2| Beam 3Beam 4|Beam 5Beam 4
R=100m | 130.2 | 131.3 | 120.3 | 11655 | 120.2 | 110.3
e R=700m | 131.8 | 1335 | 119.6 | 115.1 | 117 | 106.4
R=1500m | 129.9 | 132.7 | 120 | 116.5 | 119.8 | 109.9
Without curve] 125.3 | 129.7 | 121.3 | 121.6 | 129.6 | 127.1
o R=100m | 222 | 204.6 | 206.2 | 193.0 | 189 | 193.2
= R=700m | 225.1 | 207.8 | 206 | 192.3 | 185.3 | 188
S R=1500m | 222.1 | 206.4 | 206.1 | 193.0 | 188.4 | 192.4
£ Without curve] 203.9 | 212.7 | 207.3 | 207.1 | 210.1 | 200.3
S R=100m | 280.3 | 276.6 | 267 | 260.0 | 258.2 | 248.3
i 5 R=700m | 283.9 | 280.4 | 267.5 | 259.3 | 254.2 | 242.9
60 R=1500m | 280.5 | 278.9 | 267.5 | 260.0 | 257.5 | 247.4
Without curve] 272.2 | 286.9 | 281 | 280.5 | 282.9 | 267.2
Without obliquity and ) 205 5 | 415 | 300.9 | 307.9 | 397.1 | 362.2

curve

R=100m | 663.1 | 694.8 | 673.3 | 658.0 | 653.1 | 605.3
e R=700m | 6614 | 692.2 | 672.6 | 658.6 | 652.6 | 605.1
R=1500m | 656.4 | 689.6 | 673.2 | 661.7 | 658.4 | 612.3
Without curve] 654.8 | 696 | 692.1 | 687.8 | 688.3 | 643.9
o R=100m | 835.6 | 8785 | 847.4 | 833.1 | 835.7 | 7812
< £ R=700m | 832.6 | 871.8 | 845.9 | 831.6 | 833.8 | 779.6
= R=1500m | 827.5 | 870.1 | 846.6 | 834.6 | 839.6 | 786.0
£ Without curve| 829.7 | 884.8 | 879.3 | 875.8 | 876.4 | 819.4
S R=100m | 976 | 1078 | 1018 | 1003 | 1035 | 919
LY R=700m | 973.9 | 1075 | 1016 | 1002 | 1034 | 918
R=1500m | 968.6 | 1071 | 1016 | 1005 | 1040 | 9251
Without curve] 995.5 | 1061 | 1056 | 1054 | 1054 ] 985.5
W'thOUtC?Jtr’tgu'w and | 1550 | 1467 | 1455 | 1447 | 1445 | 1316
R=100m | 1593 | 1639 | 1614 | 1590 | 1571 | 1505
e R=700m | 1579 | 1628 | 1606 | 1589 | 1575 | 1509
R=1500m | 1571 | 1620 | 1606 | 1594 | 1584 | 1520
Without curve] 1569 | 1704 | 1700 | 1696 [ 1696 | 1561
o R=100m | 1879 | 2204 | 1926 | 1993 | 2123 | 1731
< £ R=700m | 1865 | 2186 | 1919 | 1993 | 2128 | 1738
= R=1500m | 1858 | 2180 | 1920 | 1998 | 2138 | 1748
£ Without curve] 1919 | 2085 | 2083 | 2079 | 2079 | 1914
8 R=100m | 2200 | 2378 | 2348 | 2316 | 2302 | 2114
Y R=700m | 2185 | 2356 | 2340 | 2313 | 2304 | 2117
R=1500m | 2178 | 2348 | 2342 | 2317 | 2313 | 2127
Without curve| 2246 | 2438 | 2439 | 2434 | 2435 | 2241
Without obliquity and  f ooe | 3005 | 3086 | 3074 | 3067 | 2819
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Figure 12. Variation of bending moments from permanent loads in the midspan
section for bridge with L=10m span
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Figure 13. Variation of bending moments from LM71 in the midspan section
for bridge with L=10m span
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Figure 14. Variation of bending moments from permanent loads in the midspan

section for bridge with L=20m span
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Figure 15. Variation of bending moments from LM71 in the midspan section

for bridge with L=20m span
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Figure 16. Variation of bending moments from permanent loads in the midspan

section for bridge with L=30m span
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Figure 17. Variation of bending moments from LM71 in the midspan section

for bridge with L=30m span
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4. CONCLUSIONS

Regarding the maximum deflections of the deck (AZmax), their values

are much lower as compared to those from the situation of bridges without
support line obliquity (see Figure 11).

Their values, depending on the support line obliquity, are between 32,8%
and 73,5% of those obtained for bridges without support line obliquity. This is
normal as with the increase of the support line obliquity the deck becomes more
rigid in the longitudinal direction. From the analysis of Table 1, it is observed
that the maximum deflection increases with increasing the opening and the
support line obliquity.

Regardless of opening and support line obliquity, maximum deflection
values occur for a radius of R=700m, for which the values of centrifugal force
are maximum.

It can be noted that, regardless of support line obliquity, the maximum
bending moment at small openings occurs for the radius R=700m, for which the
centrifugal force is maximum. With the increase of the opening, the maximum
value of the bending moment occurs for the radius R=100m, because,
geometrically, the external forces are moving away from the axis of the deck.

The fact that the track axis is curved on the bridges with support line
obliquity does not significantly change the values of the bending moments. An
increase in the maximum bending moment of about 5% is recorded in the case
of the bridge with 10m opening, 3% in the case of the bridge with 20m opening
and 2% in the case of the bridge with 30m opening, as seen/shown in Figure 18.

6.0%
5.0%
5.0%
4.0%
3.0%
3.0%
2.0%

2.0%
0.0%

L=10m L=20m =30m

opening opening opening

Figure 18. The increase of maximum bending moment due to track axis
curvature presence on bridges with support line obliquity
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The overall conclusion is that the support line obliquity dictates the

behavior of the analyzed structures, the presence of the curve does not
significantly influence the results that were compared. In the case of bridges
with support line obliquity there is a great deal of stress in the support zones on
the short diagonal of the deck. So, great care must be taken in the design of the
supports and of the end zones on the short diagonal of the deck.
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