Innovative Therapies in Type 2 Diabetes: The Dream of the Future

Open access

1. Mihai BM, Lăcătușu CM, Grigorescu ED, Botnariu EG. Pathophysiology of type 2 diabetes: the long journey into present. Rom J Diabetes Nutr Metab Dis 22: 225-230, 2015.

2. Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagon-like peptide-1- based therapies. Am J Med 124 [Suppl. 1]: S35-S53, 2011.

3. Paul SK, Klein K, Maggs D, Best JH. The association of the treatment with glucagon-like peptide-1 receptor agonist exenatide or insulin with cardiovascular outcomes in patients with type 2 diabetes: a retrospective observational study. Cardiovasc Diabetol 14: 10, 2015.

4. DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr 27: 100-112, 2014.

5. St. Onge LE, Miller AS. Albiglutide: a new GLP-1 analog for the treatment of type 2 diabetes. Expert Opin Biol Ther 10: 801-806, 2010.

6. Trujillo JM, Nuffer W. Albiglutide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Ann Pharmacother 48: 1494-1501, 2014.

7. Wysham C, Blevins T, Arakaki R et al. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care 37: 2159-2167, 2014.

8. Thompson AM, Trujillo JM. Dulaglutide: the newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother 49: 351-359, 2015.

9. Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. An overview of novel GLP-1 receptor agonists for type II diabetes. Expert Opin Investig Drugs 2015 [Epub ahead of print] DOI: 10.1517/13543784.2016.1123249.

10. Nauck MA, Petrie JR, Sesti G et al. The onceweekly human GLP-1 analogue semaglutide provides significant reductions in HbA1c and body weight in patients with type 2 diabetes. Diabetologia 55 [Suppl. 1]: S7, 2012. (abstract)

11. Lau J, Bloch P, Schäffer L et al. Discovery of the once weekly glucagon like peptide 1 (GLP-1) analog semaglutide. J Med Chem 58: 7370-7380, 2015.

12. *** Novo Nordisk to initiate phase 3a development of oral semaglutide, a once-daily oral GLP-1 analogue. Accessed at:

13. Henry RR, Rosenstock J, Logan D, Alessi T, Luskey K, Baron MA. Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complications 28: 393-398, 2014.

14. Henry RR, Rosenstock J, Logan DK, Alessi TR, Luskey K, Baron MA. Randomized trial of continuous subcutaneous delivery of exenatide by ITCA 650 versus twice-daily exenatide injections in metformintreated type 2 diabetes. Diabetes Care 36: 2559-2565, 2013.

15. Chen XW, He ZX, Zhou ZW et al. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 42: 999-1024, 2015.

16. Sheu WH, Gantz I, Chen M et al. Safety and efficacy of Omarigliptin (MK-3102), a novel once-weekly DPP-4 inhibitor for the treatment of patients with type 2 diabetes. Diabetes Care 38: 2106-2114, 2015.

17. Biftu T, Sinha-Roy R, Chen P et al. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem 57: 3205-3212, 2014.

18. Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence. Diabetes Metab 40 [Suppl. 1]: S4- S11, 2014.

19. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373: 2117-2128, 2015.

20. Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care 38: 2344-2353, 2015.

21. Powell DR, Smith M, Greer J et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 345: 250-259, 2013.

22. Powell DR, DaCosta CM, Smith M et al. Effect of LX4211 on glucose homeostasis and body composition in preclinical models. J Pharmacol Exp Ther 350: 232-242, 2014.

23. Kanwal A, Banerjee SK. SGLT inhibitors: a novel target for diabetes. Pharm Pat Anal 2: 77-91, 2013.

24. Nagasumi K, Esaki R, Iwachidow K et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58: 1067-1076, 2009.

25. Ulven T, Christiansen E. Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annu Rev Nutr 35: 239-263, 2015.

26. Watterson KR, Hudson BD, Ulven T, Milligan G. Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol 5: 137, 2014.

27. DeFronzo RA, Buse JB, Kim T, Skare S, Baron A, Fineman M. Dissociation between metformin plasma exposure and its glucose-lowering effect: a novel gutmediated mechanism of action. Diabetes 62 [Suppl. 1]: A 281, 2013. (abstract)

28. Colca JR, Tanis SP, McDonald WG, Kletzien RF. Insulin sensitizers in 2013: new insights for the development of novel therapeutic agents to treat metabolic diseases. Expert Opin Investig Drugs 23: 1-7, 2014.

29. Colca JR, McDonald WG, Kletzien RF. Mitochondrial target of thiazolidinediones. Diabetes Obes Metab 16: 1048-1054, 2014.

30. Colca JR, VanderLugt JT, Adams WJ et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther 93: 352-359, 2013.

31. Jeoung NH. Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab J 39: 188-197, 2015.

32. Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 32: 459-517, 2012.

33. Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 14: 675-690, 2015.

34. Gaich G, Chien J, Fu H, Kharitonenkov A, Moller D. Effects of an FGF21 analog in patients with type 2 diabetes. Diabetes 62 [Suppl. 1]: A28, 2013. (abstract)

35. Zhang J, Li Y. Fibroblast Growth Factor 21 analogs for treating metabolic disorders. Front Endocrinol 6: 168, 2015.

36. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293: E1118-1128, 2007.

37. Mihai AD, Schröder M. Glucose starvation and hypoxia, but not the saturated fatty acid palmitic acid or cholesterol, activate the unfolded protein response in 3T3- F442A and 3T3-L1 adipocytes. Adipocyte 4: 188-202, 2015.

38. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links: the Claude Bernard Lecture 2009. Diabetologia 53: 1270-1287, 2010.

39. Sorensen H, Brand CL, Neschen S et al. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes 55: 2843-2848, 2006.

40. Wang MY, Yan H, Shi Z et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc Natl Acad Sci USA 112: 2503-2508, 2015.

41. Lotfy M, Kalasz H, Szalai G, Singh J, Adeghate E. Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus. Open Med Chem J 8: 28-35, 2014.

42. Filipski KJ, Pfefferkorn JA. A patent review of glucokinase activators and disruptors of the glucokinaseglucokinase regulatory protein interaction: 2011-2014. Expert Opin Ther Pat 24: 875-891, 2014.

43. Hale C, Lloyd DJ, Pellacani A, Véniant MM. Molecular targeting of the GK-GKRP pathway in diabetes. Expert Opin Ther Targets 19: 129-139, 2015.

44. Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem 14: 585-602, 2014.

45. Harriman G, Greenwood J, Bhat S, Kapeller R, Harwood JH. Acetyl-CoA carboxylase inhibition by NDI-630 inhibits fatty acid synthesis stimulates fatty acid oxidation, reduces body weight, improvise insulin sensitivity, and modulates dyslipidemia in rats. Diabetes 62 [Suppl. 1]: A161, 2013. (abstract)

46. Glund S, Schoelch C, Thomas L et al. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. Diabetologia 55: 2044-2053, 2012.

47. Griffith DA, Kung DW, Esler WP et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J Med Chem 57: 10512-10526, 2014.

48. Rochester CD, Akiyode O. Novel and emerging diabetes mellitus drug therapies for the type 2 diabetes patient. World J Diabetes 5: 305-315, 2014.

Romanian Journal of Diabetes Nutrition and Metabolic Diseases

The Journal of Romanian Society of Diabetes Nutrition and Metabolic Diseases

Journal Information

CiteScore 2017: 0.11

SCImago Journal Rank (SJR) 2017: 0.122
Source Normalized Impact per Paper (SNIP) 2017: 0.077


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 162 5
PDF Downloads 76 76 3