Pathogenesis of Type 1 Diabetes Mellitus: A Brief Overview

Open access

Pathogenesis of Type 1 Diabetes Mellitus: A Brief Overview

Before the discovery of insulin, type 1 diabetes mellitus (DM) was a disease with acute evolution, leading to death shortly after diagnosis. During the first years of insulin therapy, the medical world was optimistic, even enthusiastic, considering that the therapeutic solution for the malady was found. Unfortunately this was only an illusion, because the patients started to develop chronic complications that shortened their lifespan and impaired their quality of life. In other words, insulin therapy transformed type 1 DM into a chronic disease. The prevention or the delay of the onset of hyperglycemia emerged as a new solution for the patients and, consequently, the understanding of the pathogenesis of the disease (a prerequisite for developing efficient preventive methods) became a priority for all the diabetologists involved in research. Almost 40 years have passed since the autoimmune theory regarding the pathogenesis of type 1 DM was imagined but, despite the tremendous research performed in this field since then, the prevention could not be obtained. The aim of this paper is to present the most important theoretic notions regarding the mechanisms that underlie the development of type 1 DM, in the way they are understood today.

Karlsen AE, Sparre T, Nielsen K, Nerup J, Pociot F. Proteome analysis - a novel approach to understand the pathogenesis of type 1 diabetes mellitus. Dis Markers 17: 205-216, 2001.

Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB, Eisenbarth GS. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318: 698-702, 1999.

Karavanaki K, Tsoka E, Liacopoulou M, Karayianni C, Petrou V, Pippidou E, Brisimitzi M, Mavrikiou M, Kakleas K, Dacou-Voutetakis C. Psychological stress as a factor potentially contributing to the pathogenesis of type 1 diabetes mellitus. J Endocrinol Invest 31: 406-415, 2008.

Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49: 708-711, 2000.

Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE, Couper JJ, Tait BD, Colman PG, Harrison LC. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49: 1319-1324, 2000.

Hober D, Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6: 279-289, 2010.

Naserke HE, Bonifacio E, Ziegler AG. Prevalence, characteristics and diabetes risk associated with transient maternally acquired islet antibodies and persistent islet antibodies in offspring of parents with type 1 diabetes. J Clin Endocrinol Metab 86: 4826-4833, 2001.

Pietropaolo M, Eisenbarth GS. Autoantibodies in human diabetes. Curr Dir Autoimmun 4: 252-282, 2001.

Andersson C, Larsson K, Vaziri-Sani F, Lynch K, Carlsson A, Cedervall E, Jönsson B, Neiderud J, Månsson M, Nilsson A, Lernmark A, Elding Larsson H, Ivarsson SA. The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity 44: 394-405, 2011.

Seidel DK, Geiss HC, Donner MG, Ritter MM, Schwandt P, Koll RA, Standl E, Ziegler AG. Course of islet autoantibody titers during Ig-immunoadsorption in a patient with newly diagnosed type 1 diabetes. J Autoimmun 11: 273-277, 1998.

Greeley SA, Katsumata M, Yu L, Eisenbarth GS, Moore DJ, Goodarzi H, Barker CF, Naji A, Noorchashm H. Elimination of maternally-transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat Med 8: 399-402, 2002.

Rulli M, Simell O. Avidity of islet cell autoantibodies in non-diabetic children and children with insulin-dependent diabetes. Autoimmunity 31: 187-193, 1999.

Bach J-F. Insulin dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews 15: 516-542, 1994.

Homann D, Holz A, Bot A, Coon B, Wolfe T, Petersen J, Dyrberg TP, Grusby MJ, von Herrath MG. Autoreactive CD4+ lymphocytes protect from autoimmune diabetes via bystander suppression using the IL-4/STAT6 pathway. Immunity 11: 463-472, 1999.

Reijonen H, Daniels TL, Lernmark A, Nepom GT. GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65. Diabetes 49: 1621-1626, 2000.

Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 188: 1493-1501, 1998.

Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109: 131-140, 2002.

Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert JM, Leite-De-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach JF, Herbelin A. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 7: 1057-1062, 2001.

Pugliese A, Brown D, Garza D, Murchison D, Zeller M, Redondo M, Diez J, Eisenbarth GS, Patel DD, Ricordi C. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest 107: 555-564, 2001.

von Herrath MG, Coon B, Lewicki H, Mazarguil H, Gairin JE, Oldstone MB. In vivo treatment with a MHC class I-restricted blocking peptide can prevent virus-induced autoimmune diabetes. J Immunol 161: 5087-5096, 1998.

Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91: 123-127, 1994.

Coon B, An L-L, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest 104: 189-194, 1999.

Thomas HE, Parker JL, Schreiber RD, Kay TWH. IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 102: 1249-1257, 1998.

Seewaldt S, Thomas HE, Ejrnaes M, Christen U, Wolfe T, Rodrigo E, Coon B, Michelsen B, Kay TWH, von Herrath MG. Virus-induced autoimmune diabetes. Most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) CTL. Diabetes 49: 1801-1809, 2000.

Tisch R, Wang B, Serreze DV. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitipe dependent. J Immunol 163: 1178-1187, 1999.

Franke B, Galloway TS, Wilkin TJ. Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies. Diabetes Metab Res Rev 21: 395-415, 2005.

Graves PM, Eisenbarth GS. Pathogenesis, prediction and trials for the prevention of insulin-dependent (type 1) diabetes mellitus. Adv Drug Deliv Rev 35: 143-156, 1999.

Zhang L, Eisenbarth GS. Prediction and prevention of type 1 diabetes mellitus. J Diabetes 3: 48-57, 2011.

Romanian Journal of Diabetes Nutrition and Metabolic Diseases

The Journal of Romanian Society of Diabetes Nutrition and Metabolic Diseases

Journal Information

CiteScore 2018: 0.19

SCImago Journal Rank (SJR) 2018: 0.128
Source Normalized Impact per Paper (SNIP) 2018: 0.229


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 478 27
PDF Downloads 328 252 16