

The Carrico index is the parameter that guides the requirement of oxygen in the postoperative period in patients undergoing head and neck surgery under general anaesthesia: a cross-sectional study

Parnandi Bhaskar Rao¹, Manaswini Mangaraj², Preetam Mahajan³, Swagata Tripathy¹, Neha Singh¹, Thenmozhi Mani⁴, Sukdev Nayak¹

¹ Department of Anaesthesiology and Critical Care, AIIMS, Patrapada, Bhubaneswar- 751019, Odisha, India

² Department of Biochemistry, AIIMS, Patrapada, Bhubaneswar- 751019, Odisha, India

³ Department of Community & Family medicine, AIIMS, Patrapada, Bhubaneswar-751019, Odisha, India

⁴ Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India

Abstract

Background & aims: Altered lung function and consequent decrease in oxygenation has been linked to the duration of anaesthesia. This necessitates oxygen monitoring and supplementation in the perioperative period. But, evidence is lacking regarding the parameter that guides best the oxygen supplementation in the postoperative period and the parameter that correlates best with the duration of anaesthesia.

Methods: Adult patients scheduled for head & neck surgery under general anaesthesia were recruited. Two radial arterial blood samples one at pre-induction and the other at one hour after extubation were obtained. Primary outcome measures were partial pressure of oxygen (PaO₂), saturation (SpO₂), arterial oxygen content (CaO₂) and Carrico index (PaO₂/FiO₂) and their relation with duration of anaesthesia.

Results: Data from 112 patients showed a hypoxaemia incidence of 11.6%. We observed a drop in the mean CaO₂ and haemoglobin concentration but a rise in the mean PaO₂ at recovery. The mean PaO₂/FiO₂ deteriorated by 225.65 \pm 72.46 (95% CI 367.66, 83.64, p = 0.000) at recovery and there was a significant correlation (r = 0.2, p = 0.03) between duration of anaesthesia and decrease in PaO₂/FiO₂ at recovery with a regression coefficient of 0.27 (95% CI 0.02, 0.50).

Conclusions: The Carrico index was proven to be the best parameter which needs to be monitored perioperatively to detect the alteration in the gaseous exchange in patients undergoing general anaesthesia for head and neck surgery. There is a positive correlation between the decrease in the Carrico index and the duration of anaesthesia especially when it is prolonged beyond 150 minutes.

Keywords: duration, anaesthesia, hypoxaemia, Carrico index, head and neck, surgery

Received: 11 December 2017 / Accepted: 29 March 2018	Rom J Anaesth Intensive Care 2018; 25: 49-54	
	is reported for intraoperative or postoperative period	
	[1-5]. Hence, it is a common practice to supplement	
Introduction	oxygen during the postoperative period to all patients subjected to general anaesthesia. Being non-invasive,	
Hypoxaemia after general anaesthesia is a common	pulse oximetry is usually used to monitor oxygenation	
henomenon especially among patients undergoing	in the perioperative period. However, it has its own	

limitations [6]. Duration of both surgery and anaesthesia has been studied extensively as a potential risk factor of postoperative pulmonary complications albeit offering inconclusive results [4, 7-9]. This could be attributed to the non-availability of a standard parameter that could accurately capture the association between the

Hypoxaemia after general anaesthesia is a common phenomenon especially among patients undergoing thoraco-abdominal surgeries. Reported incidence ranges from 6.8% to 30% depending upon whether it

Address for correspondence: Dr. Parnandi Bhaskar Rao Department of Anaesthesiology AIIMS, Bhubaneswar 751019, Odisha, India

E-mail: masterbasu23@rediffmail.com

changes in oxygenation with the changing duration of either surgery or anaesthesia.

Hence, the present study was undertaken in patients undergoing head and neck surgery under general anaesthesia with an objective to find the oxygenation parameter that could best guide oxygen requirements and supplementation during the recovery period in addition to reflecting the anaesthesia duration related pulmonary alterations. This should help us to avoid the issues related to oxygen excess and save the valuable but limited resources such as oxygen from being misutilized.

Methods

We carried out a hospital based cross-sectional study in the operation theater of our institute located in India. Ethical approval for this study was provided by the institute Ethics Committee, All India Institute of Medical Sciences, Bhubaneswar, India. All patients aged 18 to 60 years with no comorbid illness (American Society of Anesthesiologists physical status class I) posted for head & neck surgeries under general endotracheal anaesthesia between July 2015 to June 2016 were recruited in the study after obtaining written informed consent. The study was registered in the Indian national registry (http://ctri.nic.in/Clinicaltrials/ showallp.php?mid1=14371&EncHid=&userName=CTRI/ 2017/03/008126. Patients with uncontrolled coagulopathies, vascular diseases, known cardiovascular or respiratory disease and patients on mechanical ventilation prior to surgery, those undergoing thoracic, abdominal and laparoscopic surgeries were all excluded from the study. Two radial arterial blood samples for blood gas analysis (ABG) were obtained from each patient under local lignocaine injection. A first sample was taken in the pre-induction area in the supine position and breathing room air (baseline). Standard fasting guidelines were followed. Premedication with alprazolam and ranitidine was given. Heart rate (HR), blood pressure (BP), electrocardiography (ECG) and peripheral oxygen saturation (SpO₂) were recorded at baseline and throughout the perioperative period.

In the theatre, after pre-oxygenation for 5 minutes with $100\% O_2$, all patients received a uniform balanced anaesthesia technique comprising of morphine (0.1 mg/kg), midazolam (0.05 mg/kg), and propofol 1-2 mg/kg. Once the adequacy of ventilation was checked, vecuronium bromide (0.1 mg/kg) was given and tracheal intubation performed with an appropriate sized tube 8.5 in males or 7.5 in females. They were put on mechanical ventilation with the following settings: volume control mode, FiO₂ 0.5, oxygen in air combination, 8 ml/kg of tidal volume, respiratory rate of 12 to start with and titrated to maintain end tidal CO₂ of 30-35

mmHg, I:E of 1:2, positive end expiratory pressure of 5 cmH₂O, maximum pressure limit of 30 cmH₂O. Isoflurane was added to the gases at 1-1.5 minimum alveolar concentration and repeat doses of vecuronium were administered for maintenance. Measures to maintain normal intra-operative vitals were taken along with the infusion of the prescribed amount of intra-venous fluids.

At the end of surgery, residual muscle paralysis was reversed with a combination of intravenous neostigmine (50 mcg/kg) and glycopyrrolate (0.2 mg/each mg of neostigmine). After one hour of extubation, a repeat sample of arterial blood was drawn under local anaesthesia from all patients. They received 40% O₂ via venturi mask in the recovery period. All ABG blood samples were analysed immediately utilizing a NOVA ABG analyzer machine and data were collected. Arterial samples and other relevant data were collected by two investigators (PBR, ST).

The duration of anaesthesia was defined as the time gap from anaesthesia induction to endotracheal extubation. Hypoxaemia was defined as $\text{SpO}_2 < 94\%$.

Statistical analysis

All parametric data such as age, haemoglobin, SpO₂, partial pressure of oxygen (PaO₂), Carrico index (PaO_{2}/FiO_{2}) and arterial blood oxygen content (CaO_{2}) are expressed as mean \pm SD and the nonparametric data as median (interquartile range). Independent Ttest and paired T-test were used for measuring the central tendency and comparisons between means of parametric data respectively. The Mann-Whitney and Wilcoxon signed rank test were used for nonparametric data comparison. Scatter plot analysis was done for all the studied oxygenation parameters with the duration of anaesthesia followed by the correlation and linear regression analysis for the significant correlation obtained. All tests were two-sided, and the level of significance was set at $p = \le 0.05$. For all analyses, the SPSS for windows version 16.00 was used.

Results

Overall 120 patients were eligible for the study. Of these, we had to exclude 8 patients during data analysis as post op samples were missing for comparison. Study findings of 112 patients have been reported in this paper. Patient characteristics and the studied oxygenation parameters are depicted (Table 1). Incidence of post-operative hypoxaemia was 11.6% and 43% of cases had a below normal Carrico index at recovery (PaO₂/ FiO₂ < 300).

We observed a rise in the mean PaO₂, but a drop in the mean CaO₂ by $[0.74 \pm 2.13 (95\% \text{ CI } 0.34, 1.14, \text{ p} = 0.000)]$ and mean haemoglobin concentration by $[0.69 \pm 1.53 (95\% \text{ CI } 0.40, 0.98, \text{ p} = 0.000)]$ at recovery as

Table 1. Demographics and other studied variables

Variables	Baseline	Recovery	p value*	
Age (years) (mean \pm SD)	45.17 ± 10.87			
Male: Female ratio	13:10			
Respiratory Rate (mean \pm SD)	18.16 ± 1.40	17.58 ± 1.69	0.070	
HR Median (IQR)	77.00 (70.25, 83.00)	76.5 (72.25, 81)	0.656	
Blood Pressure, mmHg (mean \pm SD)	96.80 ± 9.75	95.42 ± 7.28	0.126	
Temp in °C (mean \pm SD)	37.01 ± 2.21	37.26 ± 0.47	0.587	
% SpO ₂ (mean \pm SD)	96.48 ± 2.54	96.91 ± 2.62	0.149	
PaO_2 (mean \pm SD)	120.69 ± 75.58	160.11 ± 100.93	0.000	
Haemoglobin (g/dl) (mean \pm SD)	12.99 ± 3.22	12.29 ± 2.50	0.000	
$CaO_2 \text{ vol}\% \text{ (mean} \pm SD)$	17.15 ± 4.16	16.41 ± 3.01	0.000	
PaO_2/FiO_2 (mean \pm SD)	437.19 ± 59.33	211.54 ± 36.94	0.000	
Duration of anaesthesia in minutes (mean \pm SD)	194.36 ±	= 69.46		

n = 112; * p < 0.05 = significant; SD – standard deviation; IQR – interquartile range; HR – heart rate; Temp – temperature; SpO₂ – peripheral oxygen saturation; PaO₂ – partial pressure of oxygen; CaO₂ – arterial oxygen content; FiO₂ – inspired fraction of oxygen

compared to preoperative values. The recovery mean SpO_2 remained close to the baseline value without statistically significant alterations. The mean PaO_2/FiO_2 ratio was observed to be significantly deteriorating at recovery as compared to baseline (p = 0.000). The Bland-Altman plot (Figure 1) showed a mean drop of 225.65 ± 72.46 (95% CI 367.66, 83.64, p = 0.000) in PaO_2/FiO_2 at recovery as compared to the baseline.

A correlation was observed (r = 0.2, p = 0.03) between the duration of anaesthesia and delta PaO_2/FiO_2 (the difference between baseline PaO_2/FiO_2 and recovery PaO_2/FiO_2) with a regression coefficient of 0.27 (95% CI 0.02, 0.50) (Figure 2). Additionally, this study resulted in a significant decrease in the $PaO_2/$

 FiO_2 from preoperative levels as the duration of anaesthesia was prolonged beyond 150 minutes (2.5 hours) (Table 2).

Discussion

This study focuses on the peroperative alteration in different oxygen parameters and their correlation with the duration of anaesthesia in head and neck surgery under general anaesthesia. We did not observe any significant alteration in oxygen saturation but a drop in the mean haemoglobin and CaO_2 in the recovery. To our surprise, we evidenced a significant rise in PaO_2 at recovery rather than a fall. But, there was a sig-

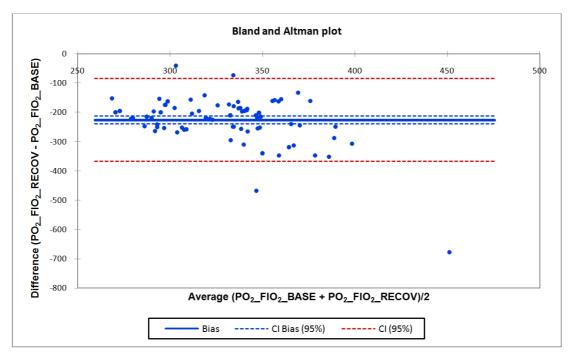
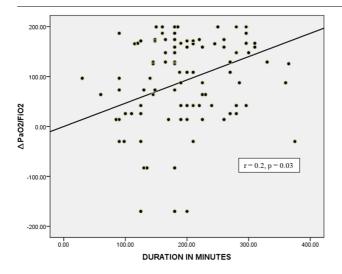



Fig. 1. Bland-Altman plot for average and delta PaO₂/FiO₂ (recovery – baseline)

Fig. 2. This is a scatter plot depicting the correlation between delta PaO_2/FiO_2 i.e. difference between baseline and recovery values and duration of anaesthesia in minutes

nificant drop in PaO_2/FiO_2 at recovery which correlates well with the duration of anaesthesia especially when it is prolonged beyond 150 minutes.

Our findings are consistent with several previous reports. Martin JB et al. reported most of the atelectasis occurs immediately after induction and intubation [9]. We witnessed a similar alteration in lung function reflected by an alteration in oxygenation parameters peroperatively.

Dunham CM et al. studied patients undergoing general anaesthesia for different types of surgery and reported an incidence of 8-25.6% of hypoxaemia which is in concordance with our study results of 11.6%. But, as the O₂ requirement and the supplementation differ at different time points for a patient undergoing surgery, they had to consider different cut off saturation levels (< 94% on room air, < 98% on oxygen, and \geq 5% fall from baseline for postoperative hypoxaemia) to define hypoxaemia [4].

As the FiO₂ at recovery (40%) was twice that of baseline (room air), a similar saturation level at different FiO₂ levels strongly indicates a deterioration in lung function peroperatively. A similar study by Bablekos et al. in patients undergoing laparoscopic versus open cholecystectomy also resulted in no difference in oxygen saturation between the groups [10].

We observed a rise in PaO₂ at recovery but a fall in CaO₂ and PaO₂/FiO₂. This is possible because PaO₂ contributes less to the arterial oxygen content equation than haemoglobin and SpO₂ [11]. There was a mean drop of 0.74 ml% in CaO₂ at recovery from baseline which was statistically significant as well. Bablekos et al. had a similar observation as a reduction of O₂ content from 17.55 \pm 1.90 to 15.69 \pm 1.88 in laparoscopic and from 16.99 \pm 2.37 to 14.62 \pm 2.23 (mean \pm SD) in the open cholecystectomy groups but that was not statistically significant; probably a result of analyzing a limited sample size of 28 participants [10].

In a similar way, a rise in PaO₂ but a fall in PaO₂/ FiO₂ is probably explained by the fact that O₂ supplementation might increase the partial pressures but as the lung function deteriorates, the ratio decreases. Stachr et al. did a randomized trial in thirty-five patients of ovarian cancer undergoing elective laparotomy to establish the impact of different levels of FiO₂ on pulmonary function. They found the median PaO₂/FiO₂ was 69 kPa [53-71] in the 30% FiO₂ group and 60 kPa [47-69] in the 80% FiO₂ group (P = 0.25) immediately after intubation. At the end of anaesthesia, they observed a similar drop in the Carrico index to 58 kPa [40-70] in the 30% and 57 kPa [46-67] in the 80% FiO₂ group (P = 0.10) [12].

Again, as the duration of anaesthesia lengthens, the lung function is expected to deteriorate in direct proportion as evidenced by multiple investigators. Duration of surgery and exposure to anaesthesia for 2.5-4 hours had an increased risk of pulmonary complications and a poor postoperative outcome [13-17].

Anaesthesia duration of \geq 180 minutes has been found to be an independent risk factor (OR 4.3, 95% CI 1.7 to 10.8) in predicting postoperative pulmonary complications [13, 17]. In contrast, a multi-center prospective study in Europe (PERISCOPE), designed to find predictive factors in non-thoracic or nonobstetric surgery for postoperative complications did not result in anaesthesia duration as a risk factor. The number of patients studied were only eleven which probably explains the results [18]. Our study results stand clear of the fact that we are not predicting postoperative pulmonary complications rather that we have observed an immediate drop in the Carrico index in proportion to the duration of anaesthesia (> 150

Table 2. Delta PaO₂/Fio₂ (difference between baseline and recovery) and duration of anaesthesia

Duration in minutes	No. of observations	Delta PaO ₂ /FiO ₂ mmHg (mean ± SD)	p value*
≤ 150 mins > 150 mins	34 78	61.88 ± 90.54 103.16 ± 86.75	0.02

n = 112; * p < 0.05 = significant

minutes) same as that of McAlister FA et al. [14]. The results of our study could establish the PaO_2/FiO_2 as the parameter to be monitored as the duration of surgery and anaesthesia is prolonged and deterioration in lung function is expected.

Being noninvasive in nature, pulse oximetry is a standard of care, but with its own limitations [19]. Additionally, because of the characteristic haemoglobin oxygen dissociation curve, a small reduction in SpO₂ corresponds to much larger reductions in PaO₂ especially at the upper part. Hence, PaO₂ is a better and more sensitive indicator of trivial alterations than saturation itself [20]. But again, solely PaO, does not give the true picture of arterial oxygenation, alteration in lung mechanics and its quantification in patients who are already receiving O₂. Even though, CaO₂ is the parameter which reflects the O₂ content in the arterial blood; it takes into account both the PaO₂ and SpO₂ in addition to haemoglobin and amenable to alterations with and without O₂ supplementation, probably not reflecting the true picture.

Hence, as the present study results depict, the Carrico index may be the better alternative to record the alteration in lung function with general anaesthesia. Being a ratio between PaO₂ and FiO₂, it actually reflects the dynamic changes in partial pressure in proportion to the fraction of O, inspired. Additionally, we found it to be the only parameter correlating well with the duration of anaesthesia exposure as opposed to other parameters. Although, the index may be affected by numerous other factors, our study purpose was only to establish the relation between duration and oxygenation parameters. The study resulted in a significant correlation between changes in PaO₂/FiO₂ and duration of anaesthesia. SpO₂ has been considered as the parameter to decide for supplementation of oxygen in the recovery period in multiple studies. But, there are many factors which affect pulse oximetry; it is insensitive at both the extremes, delays the detection of hypoxaemia and there is no established cut off. Hence, it cannot be the only parameter which necessitates the need of oxygen supplementation in the postoperative period putting patients at a higher risk of hypoxia related damage which is often irreversible. Therefore, there was a need for an indicator which reflects altered respiratory mechanics after general anaesthesia and guides oxygen supplementation in the recovery. This study tried to find the most suitable and best correlating parameter together with the duration of anaesthesia for deciding the necessity of oxygen in the recovery period.

Although, the limitations of this study are the observational study design and limited sample size, some kind of studies should be observational only. Another limitation is not following the changes into the late postoperative period; but this was purposefully excluded from the methodology as postoperative changes have been already studied extensively by many authors.

Conclusions

This study tried to evaluate the old problem with new perspectives and efforts to answer questions such as "is duration really important in relation to postoperative hypoxia" and if yes, "which is the best parameter that correlates best so as to be able to monitor the decision for oxygen supplementation in the recovery room".

The study resulted in the Carrico index being the best parameter which requires monitoring perioperatively to detect the alteration in gaseous exchange in patients undergoing general anaesthesia for head and neck surgery. There is a positive correlation between the decrease in Carrico index and the duration of anaesthesia especially when it is prolonged beyond 150 minutes. A prospective trial with a large sample size to further verify these findings and to address the preventive measures will be of the utmost importance.

Conflict of interest

Nothing to declare

Acknowledgement

Assistance with the article: We would like to thank Mr Suryakanta Acharya, Miss Itishree Pradhan and Mr. Chittaranjan Mohapatra for their assistance with the organization of the study.

References

- Ehrenfeld JM, Funk LM, Van Schalkwyk J, Merry AF, Sandberg WS, Gawande A. <u>The incidence of hypoxaemia during surgery:</u> <u>evidence from two institutions</u>. Can J Anaesth 2010; 57: 888-897. doi: 10.1007/s12630-010-9366-5
- Canet J, Ricos M, Vidal F. Early postoperative arterial oxygen desaturation: determining factors and response to oxygen therapy. Anesth Analg 1989; 69: 207-212. doi: 10.1213/ 00000539-198908000-00012
- Daley MD, Norman PH, Colmenares ME, Sandler AN. Hypoxaemia in adults in the post-anaesthesia care unit. Can J Anaesth 1991; 38: 740-746. doi: 10.1007/BF03008452
- Dunham CM, Hileman BM, Hutchinson AE, Chance EA, Huang GS. <u>Perioperative hypoxemia is common with horizontal</u> positioning during general anesthesia and is associated with major <u>adverse outcomes: a retrospective study of consecutive patients</u>. BMC Anesthesiol 2014; 14: 43. doi: 10.1186/1471-2253-14-43
- Xará D, Santos A, Abelha F. <u>Adverse respiratory events in a post-anesthesia care unit</u>. Arch Bronconeumol 2015; 51: 69-75. doi: 10.1016/j.arbres.2014.04.016
- Qaseem A, Snow V, Fitterman N, Hornbake ER, Lawrence VA, Smetana GW, et al.; Clinical Efficacy Assessment Subcommittee

of the American College of Physicians. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med 2006; 144: 575-580. doi: 10.7326/0003-4819-144-8-200604180-00008

- Smetana GW, Lawrence VA, Cornell JE; American College of Physicians. Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med 2006; 144: 581-595. doi: 10.7326/0003-4819-144-8-200604180-00009
- Nunn JF, Payne JP. <u>Hypoxaemia after general anaesthesia</u>. Lancet 1962; 2: 631-632. doi: 10.1016/S0140-6736(62)92541-2
- Martin JB, Garbee D, Bonanno L. Effectiveness of positive endexpiratory pressure, decreased fraction of inspired oxygen and vital capacity recruitment maneuver in the prevention of pulmonary atelectasis in patients undergoing general anesthesia: a systematic review. JBI Database System Rev Implement Rep 2015; 13: 211-249. doi: 10.11124/jbisrir-2015-1410
- Bablekos GD, Michaelides SA, Analitis A, Lymperi MH, Charalabopoulos KA. Comparative changes in tissue oxygenation between laparoscopic and open cholecystectomy. J Clin Med Res 2015; 7: 232-241. doi: 10.14740/jocmr2086w
- Collins JA, Rudenski A, Gibson J, Howard L, O'Driscoll R. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe (Sheff) 2015; 11: 194-201. doi: 10.1183/20734735.001415
- Staehr AK, Meyhoff CS, Henneberg SW, Christensen PL, Rasmussen LS. Influence of perioperative oxygen fraction on pulmonary function after abdominal surgery: a randomized controlled trial. BMC Res Notes 2012; 5: 383. doi: 10.1186/ 1756-0500-5-383

- 13. Scholes RL, Browning L, Sztendur EM, Denehy L. Duration of anaesthesia, type of surgery, respiratory co-morbidity, predicted VO₂max and smoking predict postoperative pulmonary complications after upper abdominal surgery: an observational study. Aust J Physiother 2009; 55: 191-198. doi: 10.1016/S0004-9514(09)70081-9
- McAlister FA, Bertsch K, Man J, Bradley J, Jacka M. Incidence of and risk factors for pulmonary complications after nonthoracic surgery. Am J Respir Crit Care Med 2005; 171: 514-517. doi: 10.1164/rccm.200408-1069OC
- 15. Toori KU, Khan JS, Nomani AZ, Hussain SW, Hashmi S. A prospective study of factors predicting postoperative pulmonary complications (PPC) in patients undergoing non-cardiothoracic surgery under general anaesthesia in a developing country. Anaesth Pain Intensive Care 2012; 16: 252-256
- Kelkar KV. Post-operative pulmonary complications after noncardiothoracic surgery. Indian J Anaesth 2015; 59: 599-605. doi: 10.4103/0019-5049.165857
- Saraçoglu A, Yavru A, Küçükgöncü S, Tüzüner F, Karadeniz M, Başaran B, et al. Predictive Factors Involved in Development of Postoperative Pulmonary Complications. Turk J Anaesthesiol Reanim 2014; 42: 313-319. doi: 10.5152/TJAR.2014.50133
- Canet J, Hardman J, Sabaté S, Langeron O, Abreu MG, Gallart L, et al. PERISCOPE study: predicting post-operative pulmonary complications in Europe. Eur J Anaesthesiol 2011; 28: 459-461. doi: 10.1097/EJA.0b013e328344be2d
- Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med 2013; 107(6): 789-799. doi: 10.1016/ j.rmed.2013.02.004
- Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India 2017; 34: 47-60. doi: 10.4103/0970-2113.197116