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computational problems of satellite geodesy, there is need of determination of the 
satellite position and velocity also in quasi-inertial frame, which is named in literature 
as ECI – Earth Centered Inertial (Vallado, 2007, Xu, 2008). In (GLONASS ICD, 
2008), integration of the equations of satellite motion in ECI frame is recommended, 
although usage of simplified algorithm realized in ECEF is permitted. Simplified 
approach is acceptable due to short prediction interval (± 15 min). In case of long-
term satellite orbit prediction or in case of application of an analytical prediction 
model, calculations in ECI frame should be executed (Góral & Skorupa, 2012, Hsu et 
al., 2010).  
 
2. The Strict and simplified model of transformation the satellite's state vector 

between frames ECEF and ECI 
 
According to the Resolution B1.7 XXIV of IAU the General Assembly (Manchester 
2000), strict form of transformation of the coordinates between systems ECEF and 
ECI is described by the following equation (Kryński, 2004): 

 
                t t tX Q R W x                                                 (1)                      

 
 In equation (1) W(t) is determined as polar motion matrix, R(t) is considered as 
Earth rotation matrix, and Q(t) means precession-nutation matrix, whereas X and x 
are vectors of coordinates determined in ECI and ECEF respectively. Parameter t is 
expressed by the equation: 

 

 ( )2000 January 01 12  / 36525d ht TT TT= -                               (2) 

 
 In equation (2), TT means Terrestrial Time, expressed in 24 h periods. A more 
detailed description of the transformation algorithm described by equation (1) can be 
found in (Kryński, 2004) and (Xu, 2008). 
 Equation describing velocity transformation from ECEF into ECI frame is obtained 
as result of differentiation of the relation (1), assuming constant matrix W(t) and Q(t) 
(Montenbruck & Gill, 2000): 

 
ሶ܆ ൌ ሻݐሺۿ ∙ ሻݐሺ܀ ∙ ሻݐሺ܅ ∙ ሶܠ ൅ ሻݐሺۿ ∙ ሶ܀ ሺݐሻ ∙ ሻݐሺ܅ ∙  (3)                  ܠ

   
where 

ሶ܀  ሺݐሻ ൌ ௗఏ

ௗ௧
∙ ൥
െ sin ߠ െ cos ߠ 0
cos ߠ െ sin ߠ 0
0 0 0

൩                                (3) 

 
 Value of the derivative of Earth rotation angle  with respect to time is equal to 
angular velocity E of the Earth’s rotation.   

 

 
ௗఏ

ௗ௧
ൌ ߱ா ൌ 7.2921151467 ∙ 10ିହ ୰ୟୢ

ୱ
                           (4) 

  
 Inverse transformation of position and velocity can be realized according to the 
following relations: 
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ܠ ൌ ሻݐ୘ሺ܅ ∙ ሻݐ୘ሺ܀ ∙ ሻݐ୘ሺۿ ∙  (5)                                           ܆
 

ሶܠ ൌ ሻݐ୘ሺ܅ ∙ ሻݐ୘ሺ܀ ∙ ሻݐ୘ሺۿ ∙ ሶ܆ ൅ ሻݐ୘ሺ܅ ∙ ሶ܀ ୘ሺݐሻ ∙ ሻݐ୘ሺۿ ∙  (6)                      ܆
 
 Simplified transformation model is also commonly used for solving problems of the 
prediction of GNSS satellites, assuming that changes of coordinates resulting from 
the precession-nutation motion and the polar motion are neglected in case of short 
prediction intervals (GLONASS ICD, 2008, Seeber, 2003). According to the above 
assumptions, model of coordinate transformation can be described in the following 
simplified form:  
 

܆  ൌ ሻݐሺ܀ ∙   (7)                                                ܠ
 
In result of differentiation of the equation (7) we obtain relation describing 
transformation of the satellite velocity 
  

ሶ܆  ൌ ሻݐሺ܀ ∙ ሶܠ ൅ ሶ܀ ሺݐሻ ∙  (8)                                               ܠ
 
 Approximate inverse transformation of position and velocity can be realized 
according to the following relations:        
                         

ܠ ൌ ሻݐሺ்܀ ∙   (9)                                                        ܆
                     

ሶܠ  ൌ ሻݐ୘ሺ܀ ∙ ሶ܆ ൅ ሶ܀ ୘ሺݐሻ ∙  (10)                                              ܆
 

 Simplified transformation model is convenient for use due to low computational 
complexity. 
  
 
3. Numerical tests 
 
The numerical tests were aimed at the analysis of the satellite`s state vector 
prediction accuracy, in dependence on used algorithm of transformation from ECEF 
into ECI frame. At first, transformations of the position and velocity of the satellite 
GLN 17, given in  broadcast ephemeris from the day 15.01.2015 r., from ECEF into 
ECI frame have been made, using simplified algorithm described by the formulas (7) 
and (8). Then, via prediction, position and velocity of the satellite GLN 17 in 
successive epochs tk+1 = tk + 60m, have been calculated. Coordinate differences  
( ,  ,  b p b p b px x y y z z- - - ) between predicted position (indicator p) and position in 
broadcast ephemeris transformed into ECI frame (indicator b) were calculated in the 
next phase. The differences mentioned above, which were calculated in successive 
46 epochs tk+1, are shown in Fig. 1. Analogical calculations were made with 
application of the accurate transformation described by equations (1) – (4). 
Corresponding deviations of the predicted positions from positions given in broadcast 
ephemeris were expressed in the ECI reference frame (Fig. 2).   
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 Analytical algorithm based on generalized problem of two fixed centres  was 
applied in calculations of position and velocity of GLONASS satellites (Góral & 
Skorupa, 2012). Influence of luni-solar accelerations was taken into consideration 
according to algorithm given in document GLONASS ICD 2008. 

 
4. Summary  
 
Presented in this study simplified transformation algorithm is characterized by low 
computational complexity. Application of this algorithm for transformation of data 
given in GLONASS broadcast ephemeris is well justified as short prediction intervals 
are applied in process of calculation of the GLONASS satellite position and velocity. 
Application of the accurate algorithm can be needed in case of long prediction 
intervals or with respect to high precision requirements of transformed data. The 
numerical tests presented in this study are helpful in assessment of the applicability 
range of simplified transformation formulas in dependence on precision requirements 
of the transformed data, as well as on the size of prediction interval of the satellite 
state vector.  
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