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Abstract 
 
In navigation practice, there are various navigational architecture and 
integration strategies of measuring instruments that affect the choice of the 
Kalman filtering algorithm. The analysis of different methods of Kalman 
filtration and associated smoothers applied in object tracing was made on 
the grounds of simulation tests of algorithms designed and presented in this 
paper. EKF (Extended Kalman Filter) filter based on approximation with 
(jacobians) partial derivations and derivative-free filters like UKF 
(Unscented Kalman Filter) and CDKF (Central Difference Kalman Filter) 
were implemented in comparison. For each method of filtration, appropriate 
smoothers EKS (Extended Kalman Smoother), UKS (Unscented Kalman 
Smoother) and CDKS (Central Difference Kalman Smoother) were 
presented as well. Algorithms performance is discussed on the theoretical 
base and simulation results of two cases are presented. 

 
Keywords: Kalman filtering, smoother, Extended Kalman Filter, derivative-
free filtering, Central Difference Kalman Filter, Unscented Kalman Filter, 
object tracing 

 
1. Introduction 
 
Every modern navigation system used in terrestrial, airborne and underwater moving 
objects is designed to provide information about its position, velocity and acceleration 
as accurately as possible (Kwiecień et al., 2006). Using these data allows one to 
specify the position of the object in a desired coordinate system. One can 
theoretically assume the existence of an independent measuring device along with a 
mechanism that provides the solution of the navigation task on the basis of data 
received. This approach, however, requires the use of a device with high precision 
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and reliability. If the technical implementation of such assumptions appeared to be 
possible, the cost of such project would be very high. 
 This state of affairs requires choosing other ways, such as construction of 
integrated navigation systems, where measuring data that come from several less 
accurate sensors is processed by an assumed computational algorithm. In such 
systems the importance of measuring devices often depends on the accuracy of the 
device and a model that characterizes the distribution of a measurement error. 
 In integrated navigation systems the most common tool for processing the 
measurements is the Kalman filter. In its original form it acts as an optimal algorithm 
for information processing in systems with a linear model of dynamics and 
measurement. The form of the Kalman filter function is adequate to the expectations 
and tasks associated with the construction of integrated navigation systems. 
 Except the Kalman filter and its numerous modifications: EKF (Extended Kalman 
Filter), UKF (Unscented Kalman Filter) and CDKF (Central Difference Kalman Filter) 
which compose the group of Gauss approximation filters, there are alternative forms 
of filtration, such as the PF (Particle Filter) group of filters based on SMC, sequential 
Monte Carlo methods. The first three of the above mentioned methods of filtration 
were used in algorithms and simulation studies presented in this paper. 
 Integrated navigation system can use the following architecture: uncoupled, 
loosely coupled, tightly coupled or deeply coupled (Christian, 2000; Grejner-
Brzezińska et al., 2005; Kaniewski, 2006; Kim et al., 2003; Knight, 1999; Vorbrich, 
2011). 

 
2. Filtering methods and smoothers 
 
2.1.  Extended Kalman filter EKF 
 
The Kalman filter in its classical form (Kalman, 1960), cannot be used in systems 
where the state estimation model or measurement model is nonlinear. The first 
chronologically proposed and implemented adaptation of the Kalman filter for 
nonlinear models was the linearization of the covariance matrix (Rogers, 2007). This 
method is called an Extended Kalman Filter, in short EKF. 
 In the extended version of the Kalman filter, the linearization is performed by 
expanding the nonlinear function in Taylor series. The first word is usually used to 
evolve into series. This solution found many practical applications, mainly because of 
the speed. However, the approximation by using the partial derivatives (jacobians) for 
highly nonlinear models in practice proves to be insufficient (van der Merwe and Wan 
and Julier, 2004). EKF algorithm for nonlinear system in dynamic model can be 
presented in the following form (Särkkä 2006):  
 

 𝒙𝒙𝑘𝑘 = 𝑓𝑓(𝒙𝒙𝑘𝑘−1,𝑘𝑘 − 1) + 𝒒𝒒𝑘𝑘−1 (1)  

 𝒛𝒛𝑘𝑘 = ℎ(𝒙𝒙𝑘𝑘, 𝑘𝑘) + 𝒓𝒓𝑘𝑘 (2)  

where: 
𝑘𝑘 - discrete time moment; 
𝒙𝒙𝑘𝑘, 𝒙𝒙𝑘𝑘−1 - the state vector at time 𝑘𝑘 and 𝑘𝑘 − 1, 𝒙𝒙𝑘𝑘 ∧ 𝒙𝒙𝑘𝑘−1 ∈ ℝ𝑛𝑛 respectively; 
𝒛𝒛𝑘𝑘 - vector of observations, 𝒛𝒛𝑘𝑘 ∈ ℝ𝑝𝑝; 
𝒒𝒒𝑘𝑘−1 - vector of random variable representing the process noise, 𝒒𝒒𝑘𝑘−1 ∼
𝑁𝑁(0,𝑸𝑸𝑘𝑘−1); 
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𝒓𝒓𝑘𝑘 - vector of random variable representing the measurement noise, 𝒓𝒓𝑘𝑘 ∼
𝑁𝑁(0,𝑹𝑹𝑘𝑘). 

 
 The task of the functions 𝑓𝑓 and ℎ, appearing in equations (1) and (2) is description 
of models respectively: the state and observation. The extended version of the 
Kalman filter is directly derived from the classical form that is why the analogy 
between them is so obvious. Before activating the cyclical measuring procedure, the 
initialization of variables should be done. 
 
• Prediction step: at this stage, the prediction of the state vector 𝒙𝒙�𝑘𝑘

⊖ (3) and 
covariance matrix 𝑷𝑷𝑘𝑘

⊖ (4) by using the Jacobians is determined as follows 
(Särkkä, 2006): 

 𝒙𝒙�𝑘𝑘
⊖ = 𝑓𝑓(𝒙𝒙�𝑘𝑘−1,𝑘𝑘 − 1) (3)  

 𝑷𝑷𝑘𝑘
⊖ = 𝑭𝑭𝑘𝑘−1,𝑖𝑖,𝑗𝑗𝑷𝑷𝑘𝑘−1𝑭𝑭𝑘𝑘−1,𝑖𝑖,𝑗𝑗

𝑇𝑇 + 𝑸𝑸𝑘𝑘−1 (4)  

 𝑭𝑭𝑘𝑘−1,𝑖𝑖,𝑗𝑗 = ∇𝑓𝑓 =
𝜕𝜕𝑓𝑓𝑖𝑖

𝜕𝜕𝑥𝑥𝑘𝑘−1,𝑗𝑗
�
𝒙𝒙𝑘𝑘−1 = 𝒙𝒙�𝑘𝑘−1

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑘𝑘−1,1
⋯

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑘𝑘−1,𝑗𝑗

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑖𝑖

𝜕𝜕𝑥𝑥𝑘𝑘−1,1
⋯

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘−1,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 (5)  

 
where: 

𝑭𝑭𝑘𝑘−1,𝑖𝑖,𝑗𝑗 - the Jacobian defined as matrix whose ij-th element is the partial 
derivative of the i-th element of vector nonlinear function 𝑓𝑓 relative to the 𝑗𝑗 
element of the state vector x at the moment 𝑘𝑘 − 1 in closest of 𝒙𝒙𝑘𝑘−1 = 𝒙𝒙�𝑘𝑘−1; 
𝑸𝑸𝑘𝑘−1 – covariance matrix of process noise. 
 

• Correction step: At this stage, we set out with the calculation of innovation 𝒗𝒗𝑘𝑘 
(or observation residue) as a difference between the realization of observation 𝒛𝒛𝑘𝑘 
and prediction of observation ℎ�𝒙𝒙�𝑘𝑘

⊖,𝑘𝑘�. Furthermore, we calculate the innovation 
covariance matrix 𝑺𝑺𝑘𝑘.(Särkkä, 2006) 

 
 𝒗𝒗𝑘𝑘 = 𝒛𝒛𝑘𝑘 − ℎ�𝒙𝒙�𝑘𝑘

⊖,𝑘𝑘� (6)  

 𝑺𝑺𝑘𝑘 = 𝑯𝑯𝑘𝑘,𝑖𝑖,𝑗𝑗𝑷𝑷𝑘𝑘
⊖𝑯𝑯𝑘𝑘,𝑖𝑖,𝑗𝑗

𝑇𝑇 + 𝑹𝑹𝑘𝑘 (7)  

 𝑯𝑯𝑘𝑘,𝑖𝑖,𝑗𝑗 = ∇ℎ =
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗

�
𝒙𝒙𝑘𝑘 = 𝒙𝒙�𝑘𝑘

⊖
=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥𝑘𝑘,1

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗

⋮ ⋱ ⋮
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,1

⋯
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 (8)  

 
where: 

𝑯𝑯𝑘𝑘,𝑖𝑖,𝑗𝑗 - the Jacobian defined as matrix whose ij-th element is the partial 
derivative of the i-th element of vector nonlinear function h relative to the j-th 
element of state vector 𝒙𝒙 at the moment k in the environment of 𝒙𝒙𝑘𝑘 = 𝒙𝒙�𝑘𝑘

⊖; 
𝑹𝑹𝑘𝑘 – covariance matrix of measurement noise. 
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Then the gain matrix 𝑲𝑲𝑘𝑘 is used to update the estimates of the state vector and 
covariance matrix from the first stage of prediction according to the following 
expressions (Särkkä, 2006): 

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘
⊖𝑯𝑯𝑘𝑘

𝑇𝑇(𝑺𝑺𝑘𝑘)−1 (9)  

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘
⊖ + 𝑲𝑲𝑘𝑘𝒗𝒗𝑘𝑘 (10)  

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘
⊖ − 𝑲𝑲𝑘𝑘𝑺𝑺𝑘𝑘𝑲𝑲𝑘𝑘

𝑇𝑇 (11)  

 
2.2. UKF filter 
 
The method of approximation of the model described above allows to achieve 
reliable results, if the nature of the error propagation can be approximated by a linear 
function (jacobians). Otherwise, the ability of the function that approximates a filter 
may be insufficient and, in extreme cases the filter may be divergent. In addition, the 
determination of jacobians may be difficult or impossible. 
 Thus, the presented KF and UKF filters due to their nature, have some 
imperfections, and therefore limited scope of application. An alternative is UKF filter 
so called Unscented Kalman Filter (van der Merwe and Wan 2001; Konatowski et al., 
2004). This is a recursive estimated filter, which reflects the nature of strongly 
nonlinear models well (Särkkä, 2006). Unlike the EKF, the unscented filter is not a 
linear model, but operates on the statistical parameters which are subjected to the 
nonlinear transformations of the state and observation vectors. The functioning of the 
UKF is an unscented transformation (in short UT), which is a method of calculating 
descriptive parameters of the random variable subjected to the nonlinear 
transformation on the assumption that it is more convenient to estimate the 
probability distribution rather than the nonlinear function (van der Merwe and Wan 
2001). To calculate the mean and covariance of the n-dimensional random variable 
for the nonlinear transformation is necessary to determine the weight set of 2𝑛𝑛 + 1 
sigma points {𝒳𝒳𝑖𝑖 ,𝒲𝒲𝑖𝑖} as the set of pairs of information about the value of the i-th 
sigma point and corresponding to its importance (weight). These points are selected 
to have a common base value of the mean 𝒙𝒙� and covariance matrix 𝑷𝑷𝑥𝑥. Assuming 
that the variable 𝒙𝒙 ∈ ℝ𝑛𝑛 x has a Gaussian distribution 𝑁𝑁(𝒙𝒙�,𝑷𝑷𝑥𝑥), its components are 
subjected to the transformation by the nonlinear function 𝒴𝒴𝑖𝑖 = 𝑓𝑓(𝒳𝒳𝑖𝑖). This unscented 
transformation tends to determine the most accurate possible approximation of the 
probability distribution of the variable y. The weighted unscented transformation is 
the basis of the filter UKF and is done in every step of the algorithm, for each step 
separately, i.e. prediction and correction. Therefore, the amount of computation UKF 
filter is much larger than for the EKF algorithm. 
 
2.3. CDKF filter 
 
Regardless of the work carried out on the development of UKF filter, two independent 
groups of scientists have submitted a proposal for a filter based on nonlinear function 
(Ito and Xiong, 2000), which does not require linearization of the model using 
Jacobians, and its work is based on Stirling's polynomial interpolation. This formula 
became the basis for the filter DDF (Divided Difference Filter) presented in and the 
CDF (Central Difference Filter) published in (Ito and Xiong, 2000). Both filters, though 
developed independently, function basically the same, hence it was decided to 

4 
 
 



Malinowski, M., Kwiecień, J.: Study of the effectiveness of different Kalman filtering methods … 
 

harmonize their names as the central difference filter (Central Difference Kalman 
Filter) in short CDKF (van der Merwe and Wan, 2001). 

 
2.4. Smoothing methods 

 
RTS (Rauch-Tung-Striebel) smoothing method (Rauch, 1965), (Nørgaard, 2000), 
(Shin, 2005) for the Kalman filter in brief KS (Kalman Smoother) allows smoothing 
the solution of the state dynamic model described by expression (1). The difference 
between the classical Kalman filter and its smoothing algorithm depends on the fact 
that, the filter run forward and takes into account only the past information, but the 
smoother proceeds backward in time from last epoch. Some inconvenience in 
forward process is the necessity of storing in every epoch predicted state vector and 
covariance matrix. This demand increase the need for amount of storing space. 
 The smoothing computation process of EKS algorithm starts with calculating 
prediction of the state vector 𝒙𝒙�𝑘𝑘+1

⊖  (12) and state covariance matrix 𝑷𝑷𝑘𝑘+1
⊖  (13). 

 

 𝒙𝒙�𝑘𝑘+1
⊖ = 𝑓𝑓(𝒙𝒙�𝑘𝑘,𝒒𝒒𝑘𝑘) (12)  

 𝑷𝑷𝑘𝑘+1
⊖ = 𝑭𝑭𝑘𝑘𝑷𝑷𝑘𝑘𝑭𝑭𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑘𝑘 (13)  

 𝑭𝑭𝑘𝑘,𝑖𝑖,𝑗𝑗 = ∇𝑓𝑓 =
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗

�
𝒙𝒙𝑘𝑘 = 𝒙𝒙�𝑘𝑘

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑘𝑘,1

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,1

⋯
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 (14)  

 
 In next step gain matrix 𝑪𝑪𝑘𝑘 (15) should be calculated, then we indicate smoothed 
estimate of state vector 𝒙𝒙�𝑘𝑘𝑠𝑠  (16) and smoothed state covariance matrix 𝑷𝑷𝑘𝑘𝑠𝑠  (17). 
 

 𝑪𝑪𝑘𝑘 = 𝑷𝑷𝑘𝑘𝑨𝑨𝑘𝑘𝑇𝑇�𝑷𝑷𝑘𝑘+1
⊖ �

−1
 (15)  

 𝒙𝒙�𝑘𝑘𝑠𝑠 = 𝒙𝒙�𝑘𝑘 + 𝑪𝑪𝑘𝑘�𝒙𝒙�𝑘𝑘+1𝑠𝑠 − 𝒙𝒙�𝑘𝑘+1
⊖ � (16)  

 𝑷𝑷𝑘𝑘𝑠𝑠 = 𝑷𝑷𝑘𝑘 + 𝑪𝑪𝑘𝑘�𝑷𝑷𝑘𝑘+1𝑠𝑠 − 𝑷𝑷𝑘𝑘+1
⊖ �𝑪𝑪𝑘𝑘𝑇𝑇 (17)  

 
 The procedure presented above in the form of expressions from (10) to (15) is a 
smoothing algorithm in version corresponding to the Extended Kalman filter. There 
are also adaptation of the RTS algorithm connected with UKF and PF filters (Särkkä, 
2006, 2008; Särkkä  et al., 2007; Shin 2005; Shin et al., 2005). 
 
3. Examples of demonstration projects 
 
For the filtration methods and smoothers described above there were developed 
computer programs based on the original, modular library of estimation algorithms 
BEA (Bayesian Estimation Algorithms). The implementation was migrated from 
Matlab environment and performed in the Object Pascal language because of the 
need to independent computing, versatility and the ease of integration with other 
software and measuring devices. 
 The examples shown below were carried out to verify the correctness and quality 
of work of designed filtration methods in conditions of fitting the state dynamics and 
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observation models to the actual dynamic system. Because of this, in every example 
the task of  generator block was to provide on the input of each of the filters in the 
mode of matching to the actual dynamic system the observation of measuring noise 
parameters r  and the parameters of state of the system dynamics with process noise 
q . To ensure identical conditions of simulation, the covariance matrices of procedural 
errors Q  and of measurement errors R  for the concerned system in all tested filters 
had the same form. At the same time, in each example shown at the beginning of the 
estimation process, in all the analyzed methods of filtration, the same model of initial 
parameters [ ]0E x  and 0P  was adopted. 
 
3.1. Case 1 - The trajectory of a moving object which is observed from two 

positions with the measurement of directions 
 
The demonstration presented in this section relates to the estimation of tracking a 
moving object which is observed from two fixed positions 1s  and 2s  using 
measurement of directions 1

kθ  and 2
kθ  (Fig. 1). 

 

 

Fig.1. The trajectory of a moving object observed from two fixed positions 
 using the two direction measurements 

 
 The state vector of the dynamics of observed object, consisted of its position and 
velocity in a rectangular coordinate system, was formulated as follows: 
 

 [ ] TT x x y y
k k k k k k k k kx x y y p v p v = =   x  (18)  

where: 
kx , ky , x

kp , y
kp  – rectangular coordinates of the object at the time k , 

kx , ky , x
kv ,  y

kv – components of the object velocity at the time .k  
 State dynamic of the target was modeled as Continuous Wiener Process Velocity 
(CWPV) model, which is presented by the following expression: 
 

 
( ) ( ) ( )

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

d t
t t

dt

   
   
   = +
   
   
   

x
x q  (19)  

𝜃𝜃𝑘𝑘1 

𝜃𝜃𝑘𝑘2 

𝑠𝑠2 

𝑠𝑠1 

moving 
object 
 

trajectory of 
a moving 
object 
 

𝑦𝑦 

𝑥𝑥 
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and Gaussian process noise ( )tq  defines the spectral density matrix: 
 

 
0

0c

q
q

 
=  
 

Q  (20)  

 
in which parameter q  describes the size of perturbations of the random variable for 
two velocity components of the observed object, which was determined as 0.1q = . 
Discrete form of a (Taylor series) in continuous model can be written as: 
 

 1 1

1 Δ 0 0
0 1 0 0
0 0 1 Δ
0 0 0 1

k k k

t

t − −

 
 
 = +
 
 
 

x x q  (21)  

 
where the time increment Δ 0.01t s=  was adopted.  
 Gaussian process noise 1k−q  of the expected value [ ]1 0kE − =q  and covariance 
matrix 1k−Q  can be determined using the following expression: 
 

 ( )

3 2

2

1 1 1
3 2

2

1 1Δ Δ 0 0
3 2
1 Δ Δ 0 0
2

1 10 0 Δ Δ
3 2
10 0 Δ Δ
2

T
k k k

t t

t t
E q

t t

t t

− − −

 
 
 
 
  = =   
 
 
 
 
 

Q q q  (22)  

 
Observation model for two positions with coordinates ( ) ( )1 1, 1, 2x ys s = − −  and 

( ) ( )2 2, 1,1 x ys s =  can be written as the following equation: 
 

 ( ) ( )

1

11

2 2

2

arctan

 ,

arctan

k y

k xk
k k k k

k k y

k x

y s
x s

h where h
y s
x s

θ
θ

  −
   −    = ∇ + = =   

 −   
   −  

z x R x  (23)  

 
Assuming no correlation between the measurements of direction, taking the 
measurement error covariance matrix kR  as white noise with expected value 

[ ] 0kE =r , and assuming that the variance is ( )0.05 r radσ = , equation will have the 
following form: 
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2

2

0.0025 00
0 0.00250

r
k

r

σ
σ

   
= =   

  
R  (24)  

 
After calculating partial derivatives, the Jacobi matrix can be written as follows: 
 

 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 1

2 2 2 21 1 1 1

2 2

2 2 2 22 2 2 2

0 0

0 0

k y k x

k x k y k x k y

k

k y k x

k x k y k x k y

y s x s

x s y s x s y s

y s x s

x s y s x s y s

 − − − 
 − + − − + −
 =
 − − − 
 − + − − + − 

H  (25)  

 
where coordinates of positions are: ( ) ( )1 1, 1, 2x ys s = − −  and ( ) ( )2 2, 1,1 x ys s = . 
 To ensure identical conditions of simulation, the covariance matrices of state 
errors 1k−Q  and of measurement errors kR  for the system under consideration in all 
tested filters have the same form. Similarly, at the beginning of the calculation in all 
analyzed filtration methods, the same state vector of Gaussian distribution 

[ ]( )0 0, N E x P  has been adopted with an initial expected value: 

 [ ] [ ]0 0 0.5 0 0 TE =x  (26)  
 
and initial state covariance matrix: 
 

 
( )

( )

2

2

0 2

2

0.1 0 0 0

0 10 / 0 0
0 0 0.1 0

0 0 0 10 /

m

m s
m

m s

 
 
 

=  
 
 
 

P  (27)  

 
 This notation of the matrix of covariance indicates a significant degree of 
confidence to the position, and much uncertainty relative to the velocity of the 
observed target. 
 n the generator block of the system dynamics that was used to determine the 
trajectory of the observed object, an initial state vector was adopted as follows: 
 

 [ ]0 0 0.5 0 0 T=x  (28)  
 

3.2. Case 2 – The trajectory of a moving object observed from two positions 
with using the direction and distance measurement 

 
The second demonstration issue presented in this section concerns the estimation of 
the track of an object from two fixed observation positions using not only the 
measurement of direction as in 5.1, but also of the distance (Fig. 2). 
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Fig. 2. The trajectory of a moving object observed from two fixed positions  

using the measurement of two directions and distances  
  

 
 Therefore, a model of the observation for the two positions with coordinates 
( ) ( )1 1, 1, 2x ys s = − −  and ( ) ( )2 2, 1,1 x ys s =  can be formulated by the expression: 
 

 ( ) ( )
( ) ( )

( ) ( )

1

1

1
2 21 1

1

2 2

2 2

2 22 2

arctan

 ,

arctan

k y

k x

k

k x k yk
k k k k

k k y

k k x

k x k y

y s
x s

x s y sl
h where h

y s
l x s

x s y s

θ

θ

  −
   −  

   
   − + −
   = ∇ + = =
    −
       −    

 
 − + −  

z x R x  (29)  

 
Assuming no correlation between the measurements, the covariance matrix of 
measurement errors kR  will be white noise with expected value [ ] 0kE =r  and 

( )0.05 r radσ = , and it will take the following form: 
 

 

2

2

2

2

0.0025 0 0 00 0 0
0 0.0025 0 00 0 0
0 0 0.0025 00 0 0
0 0 0 0.00250 0 0

r

r
k

r

r

σ
σ

σ
σ

   
   
   = =
   
   
    

R  (30)  

 
Taking partial derivatives from expression (12), the Jacobian matrix can be written 
as: 

𝜃𝜃𝑘𝑘1 

𝜃𝜃𝑘𝑘2 

𝑠𝑠2 

𝑠𝑠1 

moving object 
 

trajectory of  
a moving object 
 

𝑦𝑦 

𝑥𝑥 

𝑙𝑙𝑘𝑘2 

𝑙𝑙𝑘𝑘1 
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2 2 21 1 1 1

11

2 2 2 21 1 1 1

2 2

2 2 2 22 2 2 2

22

2 2 2 22 2 2 2

0 0

0 0

0 0

0 0

k y k x

k x k y k x k y

k yk x

k x k y k x k y

k

k y k x

k x k y k x k y

k yk x

k x k y k x k y

y s x s

x s y s x s y s

y sx s

x s y s x s y s

y s x s

x s y s x s y s

y sx s

x s y s x s y s

 − − −
 − + − − + −

 −−

 − + − − + −
=  − − −
 − + − − + −
 −−
 − + − − + − 

H

















 (31)  

where the position coordinates are: ( ) ( )1 1,  1,  2x ys s = − − ) and ( ) ( )2 2,  1,1 x ys s = . 
 Similarly to the first example 5.1, to ensure identical conditions of simulation, the 
covariance matrices of state errors of 1k−Q and of measurement errors kR  for the 
system under consideration in all tested filters have the same form. At the outset of 
the process of estimation in all the analyzed methods of filtration, the same a priori 
initialization parameters of state vector and covariance matrix were specified. 
 
4. Testing filter credibility methods 
 
In order to verify the correctness and quality of operation of the Kalman filter, 
appropriate tests, simulations and statistical analysis of the innovation process 
should be carried out (Candy 1987). 
 The vector of measuring residuals should be determined while calculating state 
estimates in the Kalman filter. It expresses the difference (residue) between the 
observations obtained from the measurement devices and their predicted values. 
The rest of the measurement as a form of realization of the stochastic process is 
called innovation. In order to build a Kalman filter so as to be optimal, the necessary 
and sufficient condition is normally distributed innovation with zero expected value 
and covariance matrix corresponding to the actual errors of innovation (Andersen 
and Moore 1979, Candy 1987). Analyzing the properties of innovations with the help 
of statistical tests, it can be inferred about the quality of assumed filtering algorithm. 
During the statistical surveys, it is assumed that innovation is an ergodic Gaussian 
process (Andersen and Moore 1979, Candy 1987), i.e. such a stationary process for 
which the statistical parameter values in a set of execution are equal to the values of 
these parameters of its implementation any time. 
 It is convenient to study the statistical properties of the whole vector of innovation 
using a test of credibility. During the test, a scalar standardized evaluation is 
determined on the ground of analysis of innovation vector (measurement residuals) 

kv  and its covariance matrix kS , which is received during the correction stage 
(updating the impact of measurement) of the Kalman filter. The evaluation is made in 
the range (window) of a finite length of time w: 

 ( ) 1

1

ˆ  
i

T
i k k k

k i w

for i wr −

= − +

= ≥∑ v S v  (32)  
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 The calculated value of ρ̂  has a distribution 2
fχ  with f r w= ×  of freedom degrees, 

where r  is the size of the vector of innovation. Statistics ˆiρ  can be estimated with a 
confidence interval ,d gτ τ , defined on the level of significance 0.05α =  for the 

distribution 2
r wχ × . In practice, this test determines the values in a sufficiently long time, 

and checks whether during approximately 95% of the time these values remain within 
the confidence interval, ,d gτ τ , which confirms the proper operation of the Kalman 
filter. Delimitation of the confidence interval for estimator of variance coefficient 2σ  
has the form: 

 
( ) ( )2 2

2 2

ˆ ˆ
, ;d g

d g

n r n rσ σ
τ τ

χ χ
− −

=  (33)  

 
while the following statistics should be determined: 
 

 ( ) ( )2 2 2 21 2 1
2 2 2 2f d f gP Pg α g αχ χ χ χ+ − −

≥ = = ≥ = =  (34)  

 
and the estimator of 2σ̂  should be calculated: 
 

 
2

2 2

1 1

1 1ˆ ˆˆ
n w n w

i i
i in w r n w

σ r r
− −

= =

  
= −  − − −   

∑ ∑  (35)  

 
 In order to compare adjustment of the adopted filtration methods to the estimated 
dynamic system, the criterion of minimizing RMS error (Root Mean Square Error) for 
components (36) or (37) state vector for the entire computing session was used: 
 

 ( ) ( )2

, ,
1

1 ˆ
n

j j k j k
k

RMS
n =

= −∑x x x  (36)  

 ( ) ( )2

, ,
1 1

1 ˆ
p n

j k j k
j k

RMS
n p = =

= −
⋅ ∑∑x x x  (37)  

where: 
j  – number of the component of state vector kx , 
n  – number of discrete computational epoch, 
p  – size of state vector kx . 
 

5. The results of simulation tests 
 

The simulation results of a moving object which is observed from two fixed positions 
s1 and s2 using the measurement of directions 1

kθ  and 2
kθ  for both cases of the 500 

calculation epochs are shown in figures 3 and 4 on the xy-plane trajectories for the 
tested filtration EKF, UKF, CDKF methods along with the actual trajectory of the 
object. The results of calculations are presented in and aggregate form for all tested 
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methods of EKF, UKF, CDKF filtration respectively for case 1 (Fig. 3a) as well as 
case 2 (Fig. 4a). In order to increase the readability of the results for different 
methods, drawings have been enlarged for case 1 (Fig. 3b, 3c, 3d) and case 2 (Fig. 
4b, 4c, 4d). 
 However, the simulation results concerning the comparison of the real distance to 
the moving object from the position 1s  and its estimate are presented in aggregate 
form for all tested methods of EKF, UKF, CDKF filtration and EKS, UKS, CDKS 
smoothers, respectively for case 1 (Fig. 5a) and case 2 (Fig. 6a). In order to increase 
the readability of the results for different methods, drawings have been enlarged for 
case 1 (Fig. 5b, 5c, 5d) and case 2 (Fig. 6b, 6c, 6d). 
 On trajectory of maneuvering an object at turning points one could notice the 
decrease of accuracy estimated position (Fig. 3). The error growth is cause by 
assumed CWPV model, where the scalar amount approximates velocity. That 
situation leads to improper estimation of parameters of a moving object. The impact 
of this phenomenon may be decreased by extending the observation model with 
distance measurement (Fig. 4) or changing state model of dynamic system on 
continuous Wiener process acceleration (CWPA) model. Smoothers compared to the 
corresponding filtration methods in case 1 show higher efficiency of estimating the 
parameters which were omitted in the observation model (Fig. 5b, 5c, 5d). The 
results of estimating the distance for case 2 (Fig. 6) show a definite improvement in 
the sense of minimizing the RMS error both each filtering method and smoothers. 
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b) b) 
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Fig. 3. The real trajectory and its estimates 
from observation points 

 s1, s2 in case 1 for: 
a) all tested filters, b) EKF filter, 

c) UKF filter, d) CDKF filter 

Fig. 4. The real trajectory and its estimates 
from observation points s1, s2 in case 2 for: 

a) all tested filters, b) EKF filter, 
c) UKF filter, d) CDKF filter 
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c) 
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Fig.5. The real distance and estimates of its 
estimates from observation point s1  

in case 1 for: 
a) all tested methods, b) EKF and EKS, c) 
UKF and UKS, d) CDKF filter and CDKS 

smoother 

Fig.6. The real distance, estimates of its 
estimates with measurements from 
observation point s1 in case 2 for: 

a) all tested methods, b) EKF and EKS, 
c) UKF and UKS, d) CDKF and CDKS 
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Fig.7. Test of scalar normalized evaluation 
of innovation in case 1  

for window time w=40 for:  
a) EKF filter, b) UKF filter, c) CDKF filter 

Fig.8. Test of scalar normalized evaluation 
of innovation in case 2  

for window time w=40 for:  
a) EKF filter, b) UKF filter, c) CDKF filter 

  
 The results of ˆiρ  test with time window of 40 epochs of entire innovation vector 
executed for the tested methods of EKF, UKF, CDKF filtration were shown in figures 
7 and 8. In each figure, information about limits of confidence range ,d gτ τ and the 
percentage share of the test outside the accepted confidence range was placed. The 
results presented in figures 7 and 8 proved that the work of designed filtration 
methods in conditions of matching to estimated process is correct. 
 The summary of variance and RMS mean square error for all simulation studies 
for the vector estimation of the vector for the position and velocity is provided 

a) a) 

5.43% 𝜌𝜌�𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑, 𝜏𝜏𝑔𝑔〉 = 〈60.13, 112.18〉 3.70% 𝜌𝜌�𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑, 𝜏𝜏𝑔𝑔〉 = 〈58.28, 108.74〉 
 

𝜌𝜌�𝑖𝑖 𝜌𝜌�𝑖𝑖 

b) 

3.26% 𝜌𝜌�𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑, 𝜏𝜏𝑔𝑔〉 = 〈67.76, 126.42〉 
 

𝜌𝜌�𝑖𝑖 

b) 

5.43% 𝜌𝜌�𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑 , 𝜏𝜏𝑔𝑔〉 = 〈59.72, 111.41〉 

𝜌𝜌�𝑖𝑖 

c) 

3.26% 𝜌𝜌�𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑, 𝜏𝜏𝑔𝑔〉 = 〈69.14, 128.99〉 
 

𝜌𝜌�𝑖𝑖 

c) 

5.00% 𝜌𝜌�𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 〈𝜏𝜏𝑑𝑑 , 𝜏𝜏𝑔𝑔〉 = 〈59.69, 111.36〉 
 

𝜌𝜌�𝑖𝑖 

15 
 
 



Reports on Geodesy and Geoinformatics vol. 97 /2014; pages 1-22 DOI: 10.2478/rgg-2014-0008 
 

respectively in (Table 1, 2). The illustration of these tables are charts presented in 
(Fig. 9, 10). The results presented there for CDKF and CDKS methods, with a slight 
advantage over UKF and UKS, show them the best fit for the modeled state dynamic 
system. Moreover, the results achieved by each method of filtration in case 2 are 
more effective than the corresponding results of filtration methods in case 1 with the 
exception of the velocity vector and its component ky . Furthermore, the results 
achieved by UKS and CDKS smoothers have been better than the corresponding 
UKF and CDKF filtration methods (Fig. 9). 

 
Table 1. Summary of RMS mean square error for position estimation in all simulation tests  

Case Method 
Vector of position Component kx  Component ky  

RMS [m] RMS [m] RMS [m] 

1 EKF 0.072 0.056 0.084 
1 EKS 0.076 0.060 0.089 

2 EKF 0.018 0.018 0.018 
2 EKS 0.032 0.033 0.031 

1 UKF 0.084 0.065 0.099 
1 UKS 0.028 0.023 0.032 

2 UKF 0.016 0.016 0.017 
2 UKS 0.007 0.007 0.007 

1 CDKF 0.078 0.061 0.092 
1 CDKS 0.034 0.025 0.041 

2 CDKF 0.016 0.016 0.017 
2 CDKS 0.007 0.007 0.008 

 

Table 2. Summary for RMS mean square error of estimated velocity in all simulation tests 

Case Method Vector of velocity Component kx  Component ky  
RMS [m/s]  RMS [m/s] RMS [m/s] 

1 EKF 0.496 0.373 0.595 
1 EKS 0.596 0.428 0.726 

2 EKF 0.497 0.357 0.606 
2 EKS 0.497 0.434 0.675 

1 UKF 0.505 0.423 0.576 
1 UKS 0.560 0.413 0.675 

2 UKF 0.546 0.404 0.657 
2 UKS 0.546 0.404 0.657 

1 CDKF 0.502 0.421 0.572 
1 CDKS 0.548 0.399 0.665 

2 CDKF 0.549 0.406 0.662 
2 CDKS 0.564 0.429 0.673 
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Fig.9. RMS mean square error of estimated position 
for all tested algorithms in both cases 

 
 

 
 

Fig.10. RMS mean square error of estimated velocity 
for all tested algorithms in both cases 

  
 The summary of variance and RMS mean square error of all the simulation tests 
for the direction and distance observed from fixed points s1 and s2 is shown in Table 
3. The results presented there for each case of estimating the direction show a slight 
improvement in the sense of minimizing the RMS errors of UKF and CDKF methods 
compared to the EKF method (Fig. 11a, 11b). The improvement achieved for UKS 
and CDKS smoothers has been significant (Fig. 11c, 11d). The opposite of this 
situation are the results achieved by estimating the distance from two fixed positions 
where EKF shows the best performance among the methods of filtration (Fig. 12a, 
12b). The results obtained by the filtration methods in case 2 show a significant 
improvement compared to the corresponding results in case 1 (Fig. 12). The 
correctness of this model confirms the appropriateness of extending the observation 
model for distance measurement which was introduced in case 2. 
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Table 3. Summary of RMS mean square error for estimated direction and distance 

Case Method 

Direction 
from position s1 

Distance 
from position s1 

Direction 
from position s2 

Distance 
from position 

s2 
RMS 
[ ]rad  

RMS 
[ ]m  

RMS 
[ ]rad  

RMS 
[ ]m  

1 EKF 0.014 0.098 0.013 0.099 
1 EKS 0.023 0.099 0.022 0.098 

2 EKF 0.012 0.015 0.012 0.014 
2 EKS 0.020 0.028 0.021 0.028 

1 UKF 0.013 0.116 0.012 0.117 
1 UKS 0.006 0.039 0.006 0.038 

2 UKF 0.010 0.015 0.010 0.014 
2 UKS 0.004 0.007 0.004 0.006 

1 CDKF 0.013 0.108 0.012 0.109 
1 CDKS 0.006 0.046 0.006 0.046 

2 CDKF 0.010 0.014 0.010 0.014 
2 CDKS 0.005 0.007 0.004 0.007 

 

 
 

 The charts presented in (Fig. 11, 12) are illustration of the results in Table 3. 
Adding the distance measurements of tracking an object from fixed points s1 and s2 
to the observation model in case 2 had an influence on increasing the efficiency of 
estimation of trajectory direction for EKF by 10-14% and for CDKF and UKF by 15-
19% (Fig. 11b). 
 
 

 
 

Fig.11. RMS mean square error of estimated direction 
for all tested algorithms in both cases 
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 Modification of the observation model in case 2 involved an increase in the 
efficiency of distance estimation of a tracked object from fixed points  s1 and s2 for 
EKF by ca. 85% and for CDKF and UKF by ca. 87% (Fig. 12a, 12b). The lack of 
measurement of the estimated parameter influences a lesser performance of 
distance estimation in case 1 for CDKF and UKF methods in comparison to EKF (Fig. 
12a). That situation demonstrates a higher sensitivity of CDKF and UKF filters with 
estimation of the parameter which was omitted in measurements (Fig. 12a). In case 1 
UKS and CDKS smoothers compared to the corresponding UKF and CDKF filtration 
methods point to a higher estimation efficiency of distance which was omitted in 
observation model by 67% and 57% respectively (Fig. 12a, 12c). Among the three 
presented smoothers, UKS is characterized by the best performance (Fig. 12c, 12d). 
CDKS and UKS smoothers in case 1 and 2 allowed an increase in estimation 
efficiency compared to the corresponding filtration methods by 55% and 59% 
respectively (Fig. 11, 12).   
 
 

  
Fig.12. RMS mean square error of estimated distance  

for all tested algorithms in both cases 
 
6. Conclusions from the simulation studies 

 
The results of simulations performed for different algorithms allow drawing the 
conclusions. The filtering methods and smoothers implemented in the simulation 
examples work correctly in the conditions of matching to state of a dynamic system. 
The filtration methods used for the dynamics of CWPV models are the optimal 
estimators of the state of a dynamical system, if the actual working conditions 
correspond to the dynamics model. This is confirmed by statistical tests (Fig. 7, 8). 
Formulating the observation model (29) extended in comparison with (23) by 
measuring the distance has a significant impact on increasing the efficiency of 
filtration in the sense of minimizing the RMS error, which is also confirmed by 
comparative analysis of two pairs of drawings (Fig. 3) with (Fig. 4) and (Fig. 5) with 
(Fig. 6).  
 Simulation results of position and velocity estimation using variety filtering and 
smoothing methods have shown that UKF and UKS used as data processing 
algorithm give better accuracy of estimation in system with nonlinear dynamics than 
EKF and EKS. That performance is true but with some exceptions discussed in figure 
9. Nonlinearity in observation model used in simulation is caused by polar 
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transformation of coordinates. Such situation can be found very often in navigation. 
This shows UKF as more suitable for systems with strong nonlinearities than EKF. 
The amount of computations required by the CDKF and UKF is strongly higher than 
EKF, what makes it more demanding for computation units of integrated navigation 
systems. 
 The simulation examples helped to verify the correctness of work of filtration 
methods implemented in the BEA library. In the filtering models of the simulations the 
continuous Wiener process velocity (CWPV) model was used for a dynamic model. It 
would be interesting to apply the continuous Wiener process acceleration (CWPA) 
model instead of CWPV, what could lead to more efficient results in filtering methods. 
In the future work the accuracy of estimation could additionally be improved by using 
Particle Filtering method or filtering approaches with an interacting multiple model 
(IMM) algorithm as well. 
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