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- determination of ship's speed vectors (over ground, through water and relative 
to other ships), 

- position determination (current position relative to the planned trajectory), 
- monitoring positions of relative navigational dangers (target ships, dangerous 

depth contour, isolated dangers, fairways, traffic separation schemes, 
prohibited areas and others), 

- decision making, 
- steering the ship, 
- dynamic alteration of the trajectory. 

The navigator, officer of the watch, or automated navigational systems, have  
a number of navigational problems to be solved at sea, including identification of 
close quarters situation and collision avoiding manoeuvre (Banachowicz & Wołejsza, 
2008a). The problem is most often solved using radiolocation systems (navigational 
radars, ARPA or EPA) (Danish Maritime Administration). Now that the AIS system 
has become fairly common on sea-going ships, the determination of navigational 
parameters can be more precise and automatically exchanged between ships or ship 
and shore when the ship is proceeding in an AIS-covered area.  
 This article presents possible applications of the polar coordinate systems  fixed 
with own ship for calculations of ship encounter parameters and anti-collision 
manoeuvres. Our considerations are illustrated with a simulated navigational 
situation. 
 
2. Encounter parameters calculated in anti-collision systems 
 
Based on radar measurements of target's position (bearings and range) or using AIS 
data (position and speed vector of target ship), we can determine relative positions of 
ships and a collision situation. The latter is defined by approach parameters. These 
parameters are a Closest Point of Approach (CPA) and Time to Closest Point of 
Approach (TCPA). Solving a problem of anti-collision manoeuvre, these parameters 
are calculated from these relations (Banachowicz & Wołejsza, 2008a; Wawruch, 
1994): 

- CPA 

 
w

XwYw

V

VYVX
CPA

)()( 
 , (1) 

 
where:  

X, Y – distances between ships along the axes x and y, 
Vw – relative speed, 
Vw(X), Vw(Y) – components of relative speed, 
 

- TCPA 
 

 
wV

CPAR
TCPA

22 
 , (2) 

 
where R – distance between ships. 
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4. Ship encounter parameters in polar coordinates 
 
By ortho-Cartesian-to-polar coordinates conversion we can solve an anti-collision 
problem with a better insight into the situation. That is because in the polar system 
we use the same type of parameters as measured by radars, i.e. bearing and 
distance. 
The parameters of the relative trajectory in the polar coordinates are described by the 
relations below. Coefficients ܽ and ܾ represent the formulas: 
 

 ܽ ൌ ఘమ∙ୱ୧୬ఝమିఘభ∙ୱ୧୬ఝభ
ఘమ∙ୡ୭ୱఝమିఘభ∙ୡ୭ୱఝభ

, (7)  

 
 ܾ ൌ ଵሺsin߮ଵߩ െ ܽ ∙ cos߮ଵሻ ൌ ଶሺsin߮ଶߩ െ ܽ ∙ cos ߮ଶሻ (8) 
and 

ܾ ൌ ଵߩ ൬sin߮ଵ െ
ଶߩ ∙ sin߮ଶ െ ଵߩ ∙ sin߮ଵ
ଶߩ ∙ cos ߮ଶ െ ଵߩ ∙ cos߮ଵ

∙ cos߮ଵ൰ ൌ 

																																							ൌ ଶߩ ൬sin߮ଶ െ
ଶߩ ∙ sin߮ଶ െ ଵߩ ∙ sin߮ଵ
ଶߩ ∙ cos߮ଶ െ ଵߩ ∙ cos ߮ଵ

∙ cos ߮ଶ൰.																																ሺ9ሻ	

 
Hence the equation of the relative trajectory in the polar coordinates, after 
substituting (7) and (9) into (6) has this form 
 

ߩ  ൌ
ఘభቀୱ୧୬ఝభି

ഐమ∙౩౟౤കమషഐభ∙౩౟౤കభ
ഐమ∙ౙ౥౩കమషഐభ∙ౙ౥౩കభ

∙ୡ୭ୱఝభቁ

ୱ୧୬ఝି
ഐమ∙౩౟౤കమషഐభ∙౩౟౤കభ
ഐమ∙ౙ౥౩കమషഐభ∙ౙ౥౩കభ

∙ୡ୭ୱఝ
.	 (10) 

 
Let us introduce an Euclidean distance between two point on a plane 
 

݀௫௬ ൌ ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ  .ଵሻଶݕ
 

After transformation into polar coordinates, we obtain 
 

݀ఘఝ ൌ ඥሺߩଶ ∙ cos ߮ଶ െ ଵߩ ∙ cos߮ଵሻଶ ൅ ሺߩଶ ∙ sin߮ଶ െ ଵߩ ∙ sin߮ଵሻଶ. 
 
We furtherget 
 
݀ఘఝ

ൌ ටߩଶ
ଶcosଶ߮ଶ െ ଶߩଵߩ2 cos ߮ଵ cos߮ଶ ൅ ଵߩ

ଶcosଶ߮ଵ ൅ ଶߩ
ଶsinଶ߮ଶ െ ଶߩଵߩ2 sin߮ଵ sin߮ଶ ൅ ଵߩ

ଶsinଶ߮ଵ 

 
and after appropriate transformations 
 
݀ఘఝ

ൌ ටߩଶ
ଶሺsinଶ߮ଶ൅cosଶ߮ଶሻ ൅ ଵߩ

ଶሺsinଶ߮ଵ ൅ cosଶ߮ଵሻ െ ଶሺcosߩଵߩ2	 ߮ଵ cos߮ଶ ൅ sin߮ଵ sin߮ଶሻ 

 ݀ఘఝ ൌ ඥߩଶ
ଶ ൅ ଵߩ

ଶ െ ଶߩଵߩ2	 cosሺ߮ଵ െ ߮ଶሻ.	 (11) 
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We have obtained a relative track covered by a target as a function of polar 
coordinates. This is a known the cosine formula, or Carnot's theorem. 
The minimum distance ߩ௠௜௡ and corresponding angle ߮௠௜௡ is calculated as  
a minimum of the relative trajectory in the polar coordinates (6). Let us calculate  
a necessary condition for the existence of an extremum (minimum in this case), that 
is the first derivative of function (6) which we compare to zero. The condition 
 

ߩ݀
݀߮

ൌ െ
ܾሺcos߮ ൅ ܽ ∙ sin߮ሻ
ሺsin߮ െ ܽ ∙ cos߮ሻଶ

ൌ 0 

 
is fulfilled when, and only when 
 
 ܾ ൌ 0  or  cos߮ ൅ ܽ ∙ sin߮ ൌ 0. (12) 
 
In the former case the relative trajectory passes through own ship (origin of the 
coordinate system), which means a collision. Let us then consider the latter case.  
If we divide equation (12) on both sides by cos ߮, after transformations we get 
 

 ߮௠௜௡ ൌ arc	tg ቀെ ଵ

௔
ቁ. (13) 

 
Hence, for ߮௠௜௡ (13) we will obtain a minimum distance 
 

௠௜௡ߩ  ൌ
௕

ୱ୧୬ఝ೘೔೙ି௔∙ୡ୭ୱఝ೘೔೙
	.	 (14) 

 
Eventually, we will get  ܣܲܥ ൌ ܣܲܥ  ௠௜௡   orߩ	 ൌ 0  (for ܾ ൌ 0). 
The relative speed equals 
 

 ఘܸ ൌ
ௗഐക
௧మି௧భ

, (15) 

 
while the time to closest point of approach is expressed by this relation 
 

ܣܲܥܶ  ൌ ଶݐ ൅
ௗഐക೘೔೙

௏ഐ
. (16) 

 
5. An example 
 
Let us assume that: at 10:20 hours the first bearing 1000 on a target was taken at  
a distance of 8 nautical miles, and at 10:40 another bearing 300 and distance  
4 nautical miles were measured (Fig. 4). 
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 Modern ships have better navigational equipment and systems, including collision 
prevention systems. Formal qualifications of personnel are also high. All navigating 
officers have to have at least a secondary general education plus proper professional 
competences, including radar and ARPA operator certificates. Despite all this, 
collisions still occur, and quite frequently. One reason is overconfidence in the 
information received from anti-collision systems or improper interpretation of system 
indications. Consequences of wrong judgment of a collision situation are disastrous 
not only in poor visibility conditions. Post-accident analyses (Banachowicz & 
Wołejsza, 2008a), (Danish Maritime Administration) show that researchers should 
continue to develop measurement and calculation methods, equipment and methods 
of visualization and interpretation of a collision situation. 
The proposed herein method of calculations of a collision situation is equivalent to 
known analytical methods (Wawruch, 1994). Producing the same numerical results, it 
has one essential advantage: it can be visualized. In the relative trajectory displayed 
in the polar coordinates system one can see instantly the minimum of the trajectory 
as a function. A similar idea of display is utilized in aircraft observation radars: air 
traffic control or anti-aircraft artillery. 
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