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Abstract  
 
Prestressed concrete bridges are very sensitive to the increase in long-term 
deflections. Reliable forecasts of deflections of bridge structures during 
construction and durability are crucial for achieving good durability. The 
main results of measurements are the changes of the deflection line of the 
bridge structures, which places special demands on the measurement 
procedure. Results from measurements are very useful for the 
improvement of mathematical prediction methods of behaviour of long span 
prestressed concrete structures. 
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1. Introduction  

 
In the last five years, the deflection line was measured on three bridges (Štroner et 
al., 2012; Vráblík et al., 2009). Long-term deformations are measured at fixed points 
on the structure (above supporting for analysis of their long-term settlement and in 
the intermediate points of the end span and middle span for observing long-term 
deformations of the prestrained concrete structure caused both by rheological signs 
of concrete - creeping and shrinkage, and by other possible effects, e.g. decreases in 
prestress etc.). This measurement is performed for experts in the dynamics of bridge 
structures from Faculty of Civil Engineering in Prague (Křístek & Vráblík, 2007; 
Vodsloň).   
 The results of such measuring are time development of the real shape of the 
structure – comprising both the starting shape and the deflection line – in the 
analysed points. So as to find out an exact shape of the deflection line, a detailed 
focusing of the deformed shape of the supporting structure in large amount of points 
was designed. Possible found „anomalies“ in the course of the deflection line might 
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point to failures of the structure causing enormous long-term increase in deflections 
of this bridge structure. 

 
2. Measured bridges  

 
The first measured bridge was a newly built bridge over the river Labe. It was put into 
operation in December 2009. Contractor of the structure was SMP CZ, part of VINCI 
Group. Designer was PONTEX Ltd. The length of the main span is record for this 
type of structure in Czech Republic. For this reason the measurements of 
deformations of the bridge over the river Labe at Litoměřice has begun immediately 
after the putting bridge into operation.  
 The second bridge was long span prestressed concrete bridge across the river 
Labe in Mělník. As well as other concrete bridges with large spans, this bridge is also 
characterized by permanent increase in deformations in time. Therefore the structure 
has been permanently observed since its putting into operation in September 1994. 
The evaluation of monitoring results clearly shows that even after almost 15 years 
since putting the bridge into operation there is no stabilization of increase in 
deformations.  
 The third bridge was concrete bridge with an inner joint in the middle of the main 
field across the river Želivka at Brzotice. The structure was measured only twice in 
2009 for research of deflection line, at night and on sunny day. 
 
2.1 Bridge structure description  
 
The bridge over the river Labe near Litoměřice is part of the road II/247 – it is a 
connection between the industry area Prosmyky and D8 highway. The superstructure 
is designed as a continuous beam with box girder cross-section. Total length of the 
structure is 584.5 m. It is divided to 7 spans with lengths 43 + 64 + 72 + 90 + 151 + 
102 + 60 m.  
 The width of the bottom deck is 7.5 m; the width of the upper deck is 14.5. The 
main structure span (length 151 m) and neighbor spans (length 90 and 102 m) were 
constructed by balanced cantilevers method. These spans are made by two 
cantilevers with tapered cross section height (varies from 3.5 m in the middle of the 
span to 7.5 m above supports) and changing thick of the bottom slab (varies from 
270 mm to 1200 mm) – see Fig. 1.  
 The left cantilever beam is symmetrical with the length of 150 m. The right 
cantilever beam length is 160 m. Approaching spans are designed as continuous 
beam with constant cross section height 3.5 m and the thick of the bottom slab 270 
mm. 
 Long span prestressed concrete bridge across the river Labe in Mělník (Fig. 2) is 
the main part of the bridging transferring the I/16 communication. It was designed as 
a through girder with span length 72.05 + 146.2 + 72.05 m. With the main span 
length 146.2 m it is still one of the biggest overhung concrete bridge in operation in 
Czech Republic. 
 The bridge over the river Želivka near Brzotice (Fig. 3) is the part of the road II/150 
– connection between the valley of Sázava and D1 highway. The construction of 
bridge is designed as a concrete frame structure with four fields with inner joints in 
the 2nd and 3rd field. Length of bridge is 306 m, width 13 m and pillar are 65 m high.   
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4. Analysis of height measuring accuracy 

With respect to the way of signalization of points for measuring (a range pole with a 
prism held by a lineman) it is possible to estimate standard deviation of point height 
determination (in the local system). All bridge structures were measured in local 
height system, which is determined by stable points of surveying network (setting out 
network). The manufacturer states the standard deviation of the zenith angle 
measured in two positions amounting to 0.3 mgon. According to the standard 
deviation accumulation law the standard deviation of the 2 x targeted zenith angle in 
one position is 0.3 mgon again. For maximum distance of the point from the 
standpoint of 300 m (two standpoints on bridge), the standard deviation of the 
determined height therefore equals 1.4 mm. Standard deviation of connection to 
reference point is 0.5 mm, refraction effect on the estimated value of the connection 
is 1.0 mm (This value is an estimate of the maximum effect on the connection. 
Although the measurement is made at night in relatively stable atmospheric 
conditions, the effect of refraction is negligible, since structure in temperature 
changes more slowly than the atmosphere, also microclimate is not homogenous.). 
 Influence of inaccurate settlement of the spherical level on the target device (range 
pole no verticality) on the determined height is insignificant for level sensitivity 4´ – 6´ 
and prism height 1.5 m. Standard deviation of height can be therefore estimated with 
value of 1.8 mm.   
 The standard deviation calculated from the repeated aiming when measuring 
height attachment was 0.67 mm for maximum distance of 50 m (this value was 
reached during testing of the survey method), which corresponds to the 
accomplished accuracy analysis (Štroner & Hampacher, 2011). Each point was 
measured only once (except for a few control points), because the structure is not 
absolutely stable and repeatable measurement would be meaningless.  
 Effect of refraction was included in the apriori analysis of the accuracy; the 
correction factor for bridge construction could not be reliably determined, because of 
the unstable atmospheric conditions. The estimate of the maximum influence of 
refraction was determined by experimental measurements. 

4.1 Measurement of stages on bridge near Litoměřice 

Measurements on bridge near Litoměřice were carried out in dates specified in the 
Table 1. Average temperatures are also specified for each stage. Measurements 
were always successful with results controls confirming the desired accuracy. 
 Six measurements were determined by the relative heights of all monitored points 
from the reference geodetic connection point. Displacements (structure deformation) 
of each point relative to the base 0th stage are shown on Fig. 7 and Fig. 8. These 
pictures show significant decrease in the main field, which is situated above river. 

Table 1. Measurement stages 

Measurement stages 

Stage Date and time 
Average atmosphere

 temperature (°C) 
Average structure
 temperature (°C) 

0. 29.9.2010 (21:00 - 4:00 , 30.9.2010) 9,0 8,2 

1. 13.5.2011 (21:30 - 2:00 , 14.5.2011) 11,0 13,0 

2. 27.9.2011 (23:00 - 2:00 , 28.9.2011) 15,4 14,9 

3. 4.11.2011 (22:30 - 1:30 , 5.11.2011) 8,5 6,9 

4. 12.4.2012 (23:00 - 2:00 , 13.4.2012) 6,7 4,9 

5. 30.5.2012 (23:30 - 2:00 , 31.5.2012) 12,0 15,2 
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4.2 Measurement of stages on bridge near Mělník 
 

Measurements on bridge near Mělník were carried out in dates specified in the Table 
2. Temperature ranges are also specified for each stage. Measurements were 
always successful with results controls confirming the desired accuracy. 

 
Table 2. Measurement stages 

 
 
 
 
 
 
 
 
 

 Three measurements were determined by the relative heights of all monitored 
points from the reference geodetic connection point. Displacements (structure 
deformation) of 1st stage to the base 0th stage are shown on Fig. 9. There is a 
comparison for study of development of construction in the longer term (3 months). 
On Fig. 10 are compared 2nd and 3rd stages for study of development due to 
temperature changes. Height of deformation (deviation) in figures was magnified a 
hundred times. The deformation in the main field is clearly visible.   
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Measurement stages 

Stage Date and time 
atmosphere 

 temperature (°C)
structure 

 temperature (°C) 

0. 29.3.2008 (22:30 - 4:00 , 30.3.2008) 12,5 – 8,0 13,0 - 8,0 

1. 1.7.2008 (23:30 - 3:25 , 2.7.2008) 22,5 – 16,5 23,5 – 18,5 

2. 2.7.2008 (11:43 - 16:21 , 2.7.2008) 28,0 – 31,4 38,3 – 43,2 
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Fig. 10. Comparison 1st and 2nd stage (night – day) 

 
4.3 Measurement of stages on bridge near Brzotice 

 
Measurements on bridge near Brzotice were carried out in dates specified in the 
Table 3. Temperature ranges are also specified for each stage. Measurements were 
always successful with results controls confirming the desired accuracy. 
 

Table 3. Measurement stages 

 
 
 
 
 
 
 
 

 Two measurements were determined by the relative heights of all monitored points 
from the reference geodetic connection point. Displacements (structure deformation) 
of 1st stage to the base 0th stage are shown on Fig. 11. There is a comparison for 
study of development due to temperature changes. Height of deformation (deviation) 
in figure was magnified a hundred times. Two raised significant places in the picture 
correspond with inner joints of structure.   
  

Measurement stages 

Stage Date and time 
atmosphere 

 temperature (°C)
structure 

 temperature (°C) 

0. 6.5.2009 (22:00 - 23:30) 9,0 8,0 

1. 7.5.2009 (11:00 - 12:30) 22,0 26,0 
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Fig. 11. Comparison 0th and 1st stage (night – day) 

 
5. Conclusions  
 
Systematic measurement of deformation of the structure using a relatively large 
number of monitored points was carried out. The most modern methods of 
engineering geodesy are used and the time sample method was successfully applied 
for changes of temperatures on structure. This ensures the greatest accuracy and 
reliability of the measurements and derived results. So far, this is a very short time 
interval, in which the development of deformations (deflections) is monitored. It is 
very early to conclude about the future development trend of structure deflection. 
However, these results are very important as we get them from the initial 
development of deformation and it will be possible to accurately calibrate the parallel 
computing and carried out a sensitivity analysis of the structural behaviour. This 
systematic measurement will continue with the same intensity and scope. Together 
with other results from future measurements we obtain a very large file that can be 
used for better understanding of the complex behaviour of these structures. This is 
another step towards creating an entirely general methodology for prediction of long-
term behaviour of prestressed concrete structures with large spans, which will be 
used for the safe and reliable design corresponding to the behaviour of real 
structures. 
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