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Abstract 

 
The article presents the use of an evolutionary algorithm for determining 
the shape of the guy rope sag of a steel smokestack. The author excludes 
the analysis of the operation of the rope, and discusses only the problem of 
determining parameters of the function of the adaption of the rope sag 
curve into empirical data, obtained by the geodetic method. The estimation 
of parameters of the curve and the characteristics of the accuracy of its 
adaption into experimental data were carried out by means of an 
evolutionary algorithm with the use of an evolutionary strategy    .  
The correctness of the strategy presented in the paper, as an instrument for 
searching for a global minimum of a criterion function, has been presented 
using as an example the minimisation of a certain two dimensional function 
and the estimation of parameters of an ordinary and orthogonal regression 
function. Previous theoretical analyses have also been used for 
determining parameters of the guy rope sag of a steel smokestack, which is 
measured periodically. In addition approximate values of the pull forces in 
the guy ropes have been calculated.  

 
Keywords: evolutionary algorithms, regression. 

 
1. Introduction 
 
Evolutionary algorithms, also called evolutionary calculation techniques, are besides 
genetic algorithms and evolutionary programming, one of the three directions of 
development of so called simulated evolution, and they are used as methods of 
solving different problems in sciences, mainly optimisation tasks (Arabas, 2001). 
Procedures of an optimization strategy work on the basis of natural evolution and 
have their peculiar genetic material containing information about them, which 
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participates in conveying traits to the next generations. Traits are recorded in genes, 
which are stored in chromosomes, and these are part of genetic material called a 
genotype. The conveyance of traits takes place during the process of recombination, 
i.e. the changing of genes under the influence of genetic operators i.e. crossing and 
mutations. Evolutionary strategies regarded as evolutionary programmes operate in 
the representation of chromosomes with a variable position in the form of real 
numbers (Gwiazda, 2007). One of the evolutionary strategies which can be used is 
the strategy    . This algorithm helps to avoid a final solution in the form of a 
local minimum because it has a specific and large number of   individuals of the 
parent population P. This initial assumption guarantees a high variety of genotypes. 
A very similar strategy and also possible to use is the strategy ),(  . This method is 
different from the strategy     because in it individuals from the previous parent 
population do not move to a new batch and for this reason the population is not 
dominated by individuals with a high value of the adaptation function (Rutkowski, 
2009). 
 
2. Optimization problem and evolutionary algorithms 
 
In subject literature (Goldberg, 2003; Rutkowski, 2009 there are three kinds of 
methods of searching for optimum solutions: analytical methods, survey methods and 
random methods. In analytical methods we search for local minima of a function 
solving systems of non-linear equations or following the negative direction of the 
gradient of an objective function. These methods are local in character, because a 
solution is searched for in the vicinity of a particular point. The application of these 
methods requires knowledge of derivatives of the objective function, which is 
impossible in practical applications when the function is discontinuous. 
 In survey methods it is assumed that the minima of a function are searched for by 
calculating its value in all the points in space, which considerably decreases the 
evaluation of the efficiency of the method because the search space is huge 
(Rutkowski, 2009). In random methods space is searched at random and the best 
solutions are recorded. Hence the conclusion is drawn that the range of application of 
the abovementioned methods is limited.  
 Evolutionary algorithms are a method of solving problems, based on natural 
evolution, which treats random selection merely as an instrument that helps to find 
solutions in a coded space of solutions. They are different from traditional 
optimization methods because of the following components, which influence the 
immunity of the algorithm and the resultant advantage over traditional methods 
(Arabas, 2001):  

- evolutionary algorithms do not directly process parameters of a task, but their 
coded form, 

- evolutionary algorithms carry out searches starting not from a single point but 
from a certain population, 

- evolutionary algorithms use only the basic form of an objective function, 
without the necessity to determine its derivatives or other auxiliary information, 

- evolutionary algorithms use probabilistic and not deterministic selection rules.  
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 Evolutionary algorithms, because of the advantages presented, can also be used 
for solving problems in the area of geodesy. Examples of applications mainly include 
transformations of coordinates (Civicioglu, 2012) and an optimum design of geodetic 
networks (Vajedian & Bagheri, 2010).  

 
3. Evolutionary strategy (   ) 

 
An advantage of the evolutionary strategy     is the minimization of the probability 
of achieving the final solution in the form of a local minimum. We start an algorithm 
by randomly generating an initial parent population P with   members. Then, by 
means of recombination procedures, a population T is created, which contains   
members, and   . In the next step we randomly select   members from the 
population P and place the members selected in the temporary population T. 
Members of the temporary population T are crossed and mutated, as a result a 
population O is created with   members. In the final step the best offspring   are 
selected from both populations OP , which will become a new parent population P. 
A block diagram of the evolutionary strategy     is presented in Fig. 1.  
 

 

Fig. 1. Block diagram of the evolutionary strategy     (Rutkowski, 2009) 

 
 How the evolutionary strategy works is exemplified by the minimization of a 
function (Rutkowski, 2009)   
 

3
2

2
121 ),( xxxxf   (1)

 
the following restrictions are assumed 11 1  x  and 11 2  x . The diagram of the 
function (1) is presented in Fig.2.  
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Fig. 2. Diagram of the two dimensional function (1) 

 
 We will assume the following parameters of the algorithm 4  , and we will 
assume that only a mutation operator will be used. The adaption of members to the 
population will be determined by the adaption function (1), and we will regard as the 
best adapted those, for which the value of the function will be the smallest.  
 In the first step of the algorithm a population P was generated, consisting of 4  

randomly generated members, represented be the two-element vectors T
21 ],[ xxx  

and [σ T
21 ] , (we assume that 121  ) (Table 1).  

 
Table 1. Parent population P 

Number 
of 

individual 

1x  2x  1  2  ),( 21 xxf  

1 0,43 -0,65 1 1 -0,09 
2 -0,62 -0,85 1 1 -0,23 
3 0,32 0,12 1 1 0,10 
4 0,51 0,39 1 1 0,32 

 
 It is easy to notice that in the case of chromosomes 1 and 2 the value of the 
adaption function is the smallest. Another step in the operation of the algorithm is the 
creation by reproduction of a temporary population T of 4 . Reproduction is a 
result of a random selection of   individuals from the population P (random sampling 
with replacement) in order to create the temporary population T (Table 2). Let us 
notice that chromosomes designated with 1, 2 and 3 joined the population T.  
 

Table 2. Temporary population T 

Number 
of 

individua
l 

1x  2x  1  2  ),( 21 xxf  

1 0,32 0,12 1 1 0,10 
2 0,43 -0,65 1 1 -0,09 
3 -0,62 -0,85 1 1 -0,23 
4 0,43 -0,65 1 1 -0,09 
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 Then, individuals from the population T undergo genetic operations in the form of 
the mutation of chromosome   and change in the value of chromosome x (Table 3 
and Table 4). A single individual is subjected to the mutation procedure (changing 
information contained in the genotype of an individual). First, chromosome  

[σ T
21 ] ,  is mutated, according to the dependence 

 

(0,1))(0,1)exp( ''
iii NN    (2)

 
where: i=1,2,…,n, n – chromosome length, N(0,1) – random number from the normal 
distribution of single sampling for the whole chromosome, Ni(0,1) - random number 

from the normal distribution of sampling for each gene,   and '  - parameters of 
evolutionary strategies, which influence the achievement of convergence of the 
algorithm to the solution. Values of the parameters are obtained from the formulae: 
 

n

C

2
'  , 

n

C

2
  

(3)

  
where the invariable C in most cases assumes the value 1.  

 
Table 3. Mutation of chromosome   of particular individuals in the population T 

Number 
of 

individu
al 

 
N(0,1) 

Gen 1 Gen 2 

1 (0,1)N1

 (0,1))N

N(0,1)exp(

1

'


 

 

'
1  2

 
(0,1)N2

(0,1))N

N(0,1)exp(

2

'


 

 

'
2  

1 0,15 1 -0,42 0,84 0,84 1 -0,45 0,82 0,82 

2 -0,54 1 0,75 1,19 1,19 1 -1,06 0,41 0,41 
3 -0,73 1 -1,02 0,38 0,38 1 0,95 1,22 1,22 
4 0,41 1 1,63 3,24 3,24 1 -0,24 1,06 1,06 

 
 In the following step, on the basis of the calculation of new ranges of the mutation 

'
i , we will determine subsequent values of chromosomes ix  (Table 4), according to 

the dependence  
 

(0,1)'
iii

'
i Nxx   (4)

 
where Ni(0,1)  represents the random value of the normal distribution, i = 1,…,n. 
 

Table 4. Mutation of chromosome x of particular individuals of the population T 

Number 
of 

individual 

Gen 1 Gen 2 

1x  (0,1)N1  (0,1)N1
'
1

'
1x  2x  (0,1)N2 (0,1)N2

'
2  '

2x  

1 0,32 -0,45 -0,38 -0,06 0,12 1,12 0,92 1,04 
2 0,43 0,21 0,25 0,68 -0,65 0,89 0,36 -0,28 
3 -0,62 1,35 0,51 -0,11 -0,85 -0,23 -0,28 -1,13 
4 0,43 -0,05 -0,16 0,27 -0,65 0,17 0,18 0,47 
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 After the genetic operations we obtain the offspring population O containing the 
chromosomes presented in Table 5. 

 
Table 5. Offspring population O 

Number 
of 

individual 

1x  2x  1  2  ),( 21 xxf  

1 -0,06 0,12 0,84 0,82 0,01 
2 0,68 -0,65 1,19 0,41 0,19 
3 -0,11 -0,85 0,38 1,22 -0,60 
4 0,27 -0,65 3,24 1,06 -0,20 

 
According to the operation rule of the strategy )(    a new parent population P is 
created from the best chromosomes of the previously generated population P and 
the current population O (Table 6). 
It is worth noting that for the best individual in the new population the values 1x  and 

2x  are close to an optimum solution. Simultaneously, the values of the components 

1  and 2  corresponding to the best individual are clearly smaller than the ones 
initially assumed. A narrow mutation range enabled a more precise solution and 
decreased the area of the searched space.  
 

Table 6. New parent population P 

Number 
of 

individual 

1x  2x  1  2  ),( 21 xxf  

1 -0,06 0,12 0,84 0,82 0,01 
2 0,43 -0,65 1 1 -0,09 
3 0,32 0,12 1 1 0,10 
4 0,68 -0,65 1,19 0,41 0,19 

 
 Another strategy used is the strategy ),(  , the operation of which is almost 
identical to the strategy )(   . The strategy merely requires that the condition    
should be satisfied, because the new population P with   individuals is created of 
the best   individuals of the population O. 
 Another example of a task solved by means of an evolutionary algorithm is a 
search for a minimum of the two dimensional Ackley function (Rutkowski, 2009)   
 

         exxxxxxf  202cos2cos5,0exp5,02,0exp(20, 21
2
2

2
121  . (5)

 
 It results from the form of the function (5) and its diagram (Fig. 3) that the function 
reaches a global minimum 0)( xf  at the point x=0. Assuming that the number of 

variables is n=2 with the restrictions 5,0 5,0-  ix  50 values of the initial population 

were generated. After 50 generations had been carried out closeness to the value of 
the minimum searched for was achieved in the form of the adaption function 

0,0188),( 21 xxf  for 0,0052- 1 x  and 0,0034- 2 x .  
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 The example should be complemented with the remark that in the following steps 
of the algorithm information about the previous best solution is lost, which prevents 
the algorithm from getting stuck in a local minimum.  

 
Fig. 3. Diagram of the two-dimensional Ackley function (5) 

 
 

4. Application of evolutionary strategies 
 

The correctness and effectiveness of the operation of evolutionary algorithms were 
checked by using as an example measurements of the shape of the sag of the guy 
ropes of an 80 meter high steel smokestack. The shape of the sag of the rope under 
its own weight is described by a chain curve (catenoid) expressed with the equation 
(Adamczewski, 1992)  

 0    cosh 





 

 kb
k

ax
ky . 

(6)

where: 
- k – geometric parameter of the curve, used for calculating the pull force in the 

string, 
- a, b – invariables of the translation of the beginning of the system of 

coordinates  xoy in relation to the beginning the system of measurement 
coordinates XOY (Fig. 3). 

 The task consists in estimating parameters of the regression curve (chain curve) 

when the condition min.][ 2
yv  is satisfied (ordinary regression). 

 The parameter k  determines the shape of the chain curve and is the basis for 
calculating an approximate value of the horizontal component of the pull force of the 
rope H (the same at all the points of the rope), which is directly proportional to the 

unit weight of the rope ][m rope  theofsection -cross  theof area*]/[7850 23mkgq   and 
the parameter k  (Jaśkiewicz et al. 2000) according to the dependence  
 

qkH  . (7)
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Fig. 3. Shape of the guy rope sag curve 

 
 It should be noted that the possible accuracy of the adaption of the chain curve 
depends on how accurately the position of points on the axis of the string is 
determined, and the assumed form of the adaption function (Janusz, 1995,1996). 
Periodical measurements were carried out in order to determine sag and deviation 
arrows for each three ropes stabilizing the position of the smokestack in three 
directions determined by three guy ropes. A set of five points located on the axis of 
each of the three ropes resulted from the measurements. Of course, if necessary, 
more measurement points can be located on the cables. 
 The values of coordinates for one of the guy ropes (the component x is regarded 
as deterministic) are presented in Table 7.   

 
Table 7. List of the coordinates of points located on the guy ropes I 

Number of the 
ponit 

x [m] y [m] my [m] 

 Upper line 
1 0,00 -1,43 0,00 
2 9,54 15,88 0,01 
3 19,02 33,62 0,02 
4 28,53 51,74 0,04 
5 38,17 70,80 0,05 
 Center line 

1 0,00 -1,65 0,00 
2 9,13 10,30 0,01 
3 18,61 23,08 0,02 
4 28,12 36,10 0,03 
5 37,70 49,72 0,04 
 Bottom line 

1 0,00 -1,66 0,00 
2 7,42 5,44 0,00 
3 14,87 12,80 0,01 
4 22,40 20,31 0,01 
5 30,29 28,63 0,02 
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 The adaption of the chain curve was compared with a 2nd degree polynomial of a 

similar shape 2
210 xaxaay   (Koronowski, 1982). Results of the operation of the 

evolutionary algorithm and approximation with a parabola are presented in Table 8 
and Fig. 4. For clearness’ sake the data presented in Fig. 4 have been adequately 
scaled.  
 

Table 8. Approximation results for guy rope I 

Evolutionary strategy )(    Polynomial 2nd stage 

a b k mapr [m] a0 a1 a2 mapr [m] 
Upper line 

477,91 729,10 356,63 0,062 -1,42196 1,78836 0,00270 0,051 
Center line 

431,28 658,41 403,60 0,048 -1,64474 1,29194 0,00186 0,042 
Bottom line 

272,34 448,54 326,65 0,046 -1,64514 0,93891 0,00197 0,060 
 
The horizontal component of the pull force H  for the upper, middle and bottom ropes 
in the guy rope I is respectively: kN88,219uH , kN83,248mH , kN39,201bH . The 

components of all the ropes in guy ropes I, II and III are presented in Table 9.  
 

Table 9. Horizontal components H  of the pull force of the rope 

Number of the guy 
rope 

Horizontal components H  [kN] of the pull force for 
upper line center line  bottom line 

I 219,88 248,83 201,39 
II 249,52 241,80 222,24 
III 248,86 279,14 197,14 

 
 

 
Fig. 4. Adaption of the chain curve into an empirical set of points (upper line) 

 
 In order to obtain satisfying results of the approximation of parameters of the chain 
curve with the use of the evolutionary strategy, it is necessary to adopt a vast parent 
population (250 individuals) and to perform a large number of iterations 
(generations). For this reason, it is not possible to show particular stages of the 
evolutionary algorithm in the article. The variation of changes of values of the best 
adaptation function for the whole population is presented in Fig. 5. 
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Fig. 5. Value of the adaptation function in consecutive generations 
 

 In applications in the field of economy, issues connected to nature and technology, 
where variables occur as physical values (e.g. time, temperature, measurement data) 
orthogonal regression is regarded as more important. The criterion of the 
optimization of the adaption of the orthogonal regression curve is the value of the 
sum of the squares of corrections of the measurement data yx,  (Janusz, 1995)  
 

y
y

x
x m

y
v

m

x
v





   , . 

(8)

 
in relations to the chain curve described with the equation 
 

 cosh b
k

axx
kyy 






 

 . 
(9)

 
according to the assumption  
 

.min][ 22  yx vv . (10)

 
 Results of the calculations in the form of the parameter k and the value of the pull 
force with the use of orthogonal regression and evolutionary algorithms as well as the 
assumption cmmm yx 5  are presented in Table 10. The graphical interpretation of 

the results obtained by means of ordinary and orthogonal regression has been 
adequately scaled and presented in Fig.6. 
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Fig. 6. Adaption deviations on the basis of the procedure of ordinary and orthogonal 

regression (upper line – guy rope I) 
 

Table 10. Parameter k of the chain curve and the pull force of the ropes 

The ordinary regression  

T
he

 g
uy

 
ro

pe
 I 

 k H [kN] mapr [m] 
bottom line 356,63 219,88 0,06 
center line 403,60 248,83 0,05 
upper line 326,65 201,39 0,05 

The orthogonal regression 

T
he

 g
uy

 
ro

pe
 I 

 k H [kN] mapr [m] 
bottom line 356,63 219,88 0,06 
center line 403,60 248,83 0,05 
upper line 326,66 201,40 0,05 

 
 Figure 7 presents graphical results of approximate calculations of the value of the 
pull forces of particular ropes suspended in three directions of the guy ropes. The 
figure shows that the greatest pull force in terms of value occurs in the medium rope 
in the direction III of the guy ropes. 

 

 
Fig. 7. Values of the pull forces in the ropes 
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5. Conclusions 
 

Evolutionary strategies are included into the most important methods of evolutionary 
calculations with the use of deterministic selection methods. The convergence 
theorem has been proved for evolutionary strategies (Arabas, 2001), which states 
that for a large number of searches a global optimum of the criterion optimized is 
obtained with a probability of 1. However, on the basis of this theorem it is not 
possible to obtain information about the speed of the convergence of the algorithm 
towards the expected optimum solution, which is a certain drawback as far as the 
formulation of a condition for stopping the algorithm is concerned. The simplest 
method consists in generating a specified number of times new sets of parameters of 
the task as points in the search space. A drawback of this method is the inability to 
check the quality of the solution obtained. For this reason in most cases the 
operation of the algorithm is stopped when a satisfactory value of the adaption 
function defined is obtained (Łęski, 2008). Evolutionary algorithms are easy to use, 
because there are no restrictions on the criterion optimized.  
 Using evolutionary algorithms as an instrument for determining deformations of 
steel structures provides results which are not less accurate than those obtained by 
means of classical methods. It is also possible to notice that results of the adaption of 
the chain curve obtained by means of orthogonal regression are comparable with 
those obtained by means of ordinary regression.  
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