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Abstract 
 
Proposals of algorithms for solving Navigation faculty’s problems regarding 
navigation along rhumb line (loxodrome), for officer trainees and civil 
students of Faculty of Navigation and Naval Weapons and for deck seamen 
on operational level, are presented in this paper. Proposals of calculation 
algorithms given in the article cover simple mathematical totting based on 
plane sailing (navigational) triangle and Mercator triangle (Mercator sailing). 
The algorithms refer to traditional methods of solving problems and they do 
not cover solutions applicable in automated (integrated) navigational 
systems. 
The formulas enable to solve the tasks with a use of electronic calculator 
and application of traditional methods on plane and sphere, and they also 
take the Earth’s ellipsoidal shape into consideration. 

 
Keywords: loxodrome (rhumb-line sailing), plane (or middle latitude) 
sailing, Mercator triangle (Mercator sailing) 
 

1. Introduction 
 
Navigation along loxodrome, quite often named as mathematical dead reckoning, 
consists in calculating coordinates of the vessel’s position or course and the distance 
she has covered by means of analytical dependencies, with no use of map. 
Problems regarding the navigation along loxodrome have been covered by training 
programmes and examination requirements for deck seamen for a long time already, 
and they are presented in navigation textbooks. Stimuli for preparation of the paper 
have been as the following: 

- project of Decree of Minister of Transportation, Building and Maritime Industry 
(MTBiGM) regarding programmes of training and examination requirements 
for deck seamen (MTGM, 2013), 
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- bringing Central Maritime Examination Board (in Polish: Centralna Morska 
Komisja Egzaminacyjna) into being under the act about safety at sea. 

Materials for lectures (likewise for classes), run in Institute of Navigation and 
Hydrography (INiHM) within confines of trainings for seamen, do meet requirements 
of the above said project of MTBiGM Decree at operational level in deck department. 
For officer trainees and civil students, algorithms for solving the problems 
(distinguished in the text by boxes with shades) are broadened by engineering 
issues, i.e. considering the Earth's sphericality and spheroidality. 
The following elements of WGS-84 ellipsoid have been accepted in the proposed 
formulas and examples: a = 6 378 137,0 m; b = 6 356 752,3142 m; 1/f = 298,257 223 
563, first eccentric e = 0.081819191. 
Formulas regarding the rhumbline sailing computation are given in a form convenient 
for calculations done with a use of commonly accessible electronic calculators. 
Therefore, there are records of trigonometric functions typical for calculators applied 
there, e.g. tan as tg, sin-1 as arcsin, cos-1 as arccos, tan-1 as arctg with no application 
of ctg, sec, cosec functions. 

 
2. Loxodrome Equation 
 
A vessel maintaining constant heading moves along loxodrome (rhumb line) which is 
a line cutting all the meridians at the same angle. The Earth’s meridians are not 
parallel to each other, thus the line crossing them at the same angle is not a straight 
line but a logarithmic spiral – a line of double curvature, heading for the Earth’s pole 
in asymptotic way (Woźnicki, 1954). 
Segment (D) of the rhumb line crossing two points (P1P2) on the Earth surface makes 
a hypotenuse of spheroidal right-angled triangle (P1P2C) - the so-called loxodromic 
triangle (fig. 1). Navigational departure (Δl) is an east-west oriented leg of the said 
triangle and difference in latitude (Δφ) is its meridional leg - expressed in nautical 
miles, calculated from the dependence (1) (Urbański et al.,1996): 
 

CP2 = Δl = (λ2 –λ1)·cosφ = Δλ·cos φ 
 CP1 = Δφ = φ2 – φ1 (1) 

 
 
 
 
 
 
 
 

 
 

 
 
 
 

Fig. 1. Loxodromic triangle 
 

Having in mind the dependence (1), it follows from a small loxodromic triangle P1P2C, 
which may be accepted as a planar right-angled triangle, that: 
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The integration follows to an equation (2) describing investigation of the rhumb line 
crossing two points on the Earth surface (Dimitrev et al., 2004): 
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The loxodrome equation on the ellipsoid (with the Earth oblateness taken into 
consideration) has the following form (3) (Urbański et al., 1996): 

 
(3) 

 
 

where:  
φ1, λ1 – coordinates of rhumb line’s P1 starting point; 
φ2, λ2 – coordinates of rhumb line’s P2 starting point; 
KDd – path angle over sea bed (real loxodrome course); 
e – first eccentric of Earth’s ellipsoid. 
 
Analysis of the loxodrome equation follows to the conclusion that: 

a) the loxodrome crosses every meridian infinite number of times but each time – 
at different latitude (a spiral), 

b) when KDd = 00 (1800), the loxodrome follows an Earth meridian, 
c) when KDd = 900 (2700), the loxodrome follows an Earth parallel, 
d) and it follows equator at φ2 = φ1= 00. 

Expressions of the equations (2) and (3) given in square brackets are differences of 
meridional parts (isometric latitudes) of points P1, P2 on the sphere and on the 
ellipsoid (in radians), namely: 
 ΔV = V2 – V1  (4) 
Formulas for calculating the meridional parts, in nautical miles have the following 
forms: 

a) on the sphere (5) (Woźnicki, 1954): 
 
 (5) 
 
 

b) on the ellipsoid (6) (Urbański et al., 1996): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+
⋅−

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅+
⋅−

⎟
⎠
⎞

⎜
⎝
⎛ +=−

2

1

110
2

2

220
12 cos1

sin1
2

45tanln
cos1
sin1

2
45tanlntan

ee

e
e

e
eKDd

ϕ
ϕϕ

ϕ
ϕϕλλ

⎟
⎠
⎞

⎜
⎝
⎛ +⋅=

2
45tanlg70447.7915 ϕo

kV



Morgaś, W., Kopacz, Z.: Rhumb-line sailing by computation 

17 
 
 

 
(6) 

 

 
c) on WGS84 (7) (Bowdith, 2002): 

(7) 
 

Formulas for calculating difference of the meridional parts (ΔV): 
a) on the sphere (ΔVk): 

 
 

(8) 

 
b) on the ellipsoid (ΔVe): 

 
 
 

(9) 
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The loxodrome equation (2) and (3), with (4) taken into consideration, obtains the 
following form (10): 

(10) 
 

In navigation, problems regarding the mathematical totting are solved by means of: 
- mean latitude – navigational triangle (mean latitude sailing), 
- meridional parts – Mercator triangle (Mercator sailing). 

 
3. Mean and corrected mean latitude sailing (plane sailing) 
 
Small loxodromic triangle presented on a plane is called navigational triangle or 
plane sailing triangle. 
The loxodromic and navigational triangles’ elements are as the following (fig. 1 and 
2): 

Δl – navigational departure, (dep.) 
Δϕ – difference of latitude (d.lat), 
Δλ – difference of longitude (d.long), 
D – distance for the ship to go along the loxodrome, 
KDd – course angle in respect to the sea bed (the course made good, with no 

wind and no current). 
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Fig. 2.  Navigational triangle (plane sailing triangle) 
 

The following dependencies result from the navigational (plane sailing) triangle: 
 

(11) 

 
Solution of the problem requires recalculation of the longitude’s (Δλ) difference onto 
the navigational departure (and opposite). This task may be solved according to the 
mean navigational departure (Δlśr), mean latitude (φśr) and corrected (mathematical) 
mean latitude (φśrm). 
 
Example 1: Data A: φA = 550N,  λA = 0100E 
   B: φB = 600N,  λB = 0150E (Fig. 3) 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3. Loxodromic triangle on a sphere - example 
 
Solution: 

       

Nml

Nmlll

NmlNml

l
EE

sr

sr

BA
sr

BA

sr

AB

019,161'3057cos300'3057
2

6055

037,161
2

0,150073,172
2

0,15060cos300;073,17255cos300

'3005010015

00
00

00

000

=⋅=Δ=
+

=

=
+

=
Δ+Δ

=Δ

=⋅=Δ=⋅=Δ

Δ
==−=−=Δ

ϕ

ϕ

λλλ

b).

a).

 

 
 

600 
Δλ=5o

550 

57030’ Δl=150,0Nm

Δl=172,07Nm 

Δl=161,19Nm

A 

B
φA 

φB 

φsr 

λA=0100E λB=0150E 

PN 

D 

C 

D 

P2

Δϕ 
(d. lat)

Δl (dep) 

P1

KDd (C)

C

ϕ
ϕ

Δ
Δ

=⋅=Δ⋅=Δ − lKDdKDdDlKDdD 1tansincos



Morgaś, W., Kopacz, Z.: Rhumb-line sailing by computation 

19 
 
 

Small difference 161,190-161,037=0,153Nm (i.e. ~0,1%) does confirm legitimacy for 
application of the mean latitude in calculations on a plane: 
  φśr =(φ1 +φ2)/2 (12) 
 c) accurate formula for mean latitude, the so-called corrected (mathematical) 
mean latitude φśrm may be obtained from the dependencies (6) and (8), with the (7) 
taken into consideration, namely (Admiralty Manual of Navigation, 1998]) (13): 
  φśrm = cos-1 (Δl/Δλ) = cos-1 (Δφ/ΔV (13) 
Application of the dependence (13) in the referred example results in: 

φśrm =cos-1 (Δφ/ΔV) = cos-1 (300/559,40165) = 57o 34,125’ 
Δl = Δλ·cos φśrm = 300 cos 57o 34,125’ = 160, 886 Nm 

The difference 160,886 – 161,190 = -0,304 (i.e. ~0,2%) also confirms possibility of 
applying the latitude (φśr) in calculations on a plane, with a satisfactory accuracy in 
navigational practice. In order to achieve higher accuracy, one should take the 
spherical shape of the Earth into consideration, hence to apply the mean plane 
(mathematical) latitude (φśrm) 
The above dependencies serve solving the first and the second problems of 
navigation along the loxodrome, i.e. the tasks of direct and inverse rhumb line sailing. 

 
A. The first problem of loxodromic navigation – the direct RLS problem: 
calculating coordinates of the vessel’s arrival position P2 (φ2, λ2) based on known 
coordinates of her departure point P1 (φ1, λ1), route angle over the sea bed (KDd) 
and the distance she has covered (D) – the direct RLS problem. 
Algorithms of the problem solution - based on formulas of the plane sailing triangle: 
 
a) acc. to the mean latitude (φsr) b) acc. to the corrected (mathematical) 

mean latitude (φsrm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2:  
From a position P1 of coordinates ϕ1 = 57o23,35'N,  λ1 = 020o14,18'E, a vessel has 
covered a distance of D = 175,2 nautical miles, along KDd = 227,5o course. Calculate 
coordinates (ϕ2 and λ2) of her arrival position P2 by means of formulas of the plane 
sailing (navigational) triangle: 
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Solution: 
a) acc. to the mean latitude (φsr) 

φ2 = 55o 24,99’N,     λ2 = 016o 20,75’E 
b) acc. to the corrected (mathematical) mean latitude (φsm) 

φ2 = 55o 24,99’N, λ2 = 016o 20,68’E 
 

B. The second problem of loxodromic navigation – inverse rhumb line sailing 
takes place when coordinates of the departure position P1 (ϕ1,λ1) and of the arrival 
position P2 (ϕ2, λ2) are known, and the course KR (KDd) and the route D connecting 
the points should be calculated. 
The following dependencies serve the above: 
 
a) acc. to the mean latitude (φsr)  b) acc. to the corrected    
                                                           (mathematical) mean latitude (φsrm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example 3: From the position P1 of coordinates ϕ1 = 51o09,35'N, λ1 = 010o05,30'W, 
the vessel is to arrive at the position P2 of coordinates ϕ2 = 49o14,85'N, λ2 = 
006o12,06'W. Calculate the course (KDd) and the loxodromic distance (D). 
 
Solution: 

a) acc. to the mean latitude (φsr) 
KDd = 127,49o, D = 188,15 nautical miles 

b) acc. to the corrected (mathematical) mean latitude (φsm) 
KDd = 127,49o, D = 188,13 nautical miles 

 
4. Mercator sailing 
 
Formulas of the navigational triangle are applicable in practical navigation when: 

- latitudes are small or average (Urbański et al., 1996), ϕ < 50° (Dimitrev et al., 
2004), ϕ < 60° (Wolski, 2012); 

- Δϕ < 3° – 5° (Urbański et al., 1996), Δϕ < 5° (Wolski, 2012); 
- D < 300 – 500 nautical miles (Urbański et al., 1996), D < 600’ (AMoN, 1998), 

D < “a few hundred nautical miles” (Bowdith, 2002), D < 600 nautical miles 
(Wolski, 2012). 
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Should the above conditions be not met, the calculations done based on the 
navigational triangle's formulas shall be burdened with serious inaccuracies. 
Therefore, in practice, formulas of the Mercator triangle (Mercator sailing) are 
applied. 

 
The Mercator triangle occurs as a result of the loxodromic triangle’s surjection onto 
cylinder’s side surface (Mercator projection) and it contains the following elements 
(fig. 4): 

Δλ - difference of longitude (d.long), 
ΔV - difference of meridional parts-(DMP) 
KDd (KR) – vessel’s course made good (CMG) 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Fig. 4. Elements of navigational triangle (continuous lines)  
and of Mercator triangle (dashed lines) 

 
A. The first problem of loxodromic navigation – the direct RLS problem 
As a rule, solving the direct problem based on the Mercator triangle’s formulas is 
executed with a use of the following algorithm of calculations: 
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Solution of the problem executed based on the above algorithm does not take the 
ellipsoidal shape of the Earth into consideration (it is a solution made on a sphere) 
because: 

- difference of latitude (Δφ) is calculated with an assumption that length of the 
nautical mile is constant (1 nautical mile = 1’ = 1852 m), 

- differences of meridional parts (ΔV) are calculated on a sphere – table 11 of 
Navigation tables (TN-89) contains values of the meridional parts (V) 
calculated for Krasovsky ellipsoid. 

Therefore, accurate solution of the problem on ellipsoid requires: 
a) calculation of the meridian arc’s length on the ellipsoid (Se) and the length is 

expressed with the following formula (AMoN, 1998), (Weintrit & Kopacz, 
2012), (Woźnicki, 1954): 
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For the WGS-84, when calculating the length of the meridian arc starting with 
the equator (φ1 = 0, φ2 = φ), one can apply the following formula [6]: 
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b) calculation of the meridional parts according to the formulas (6, 7), and the 

difference of the meridional parts (ΔV) can be calculated, for example, from 
the following formula as been shown (Kaukoranta, 2006): 
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Taking into consideration the above, the algorithm (19) obtains the following form: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 4:  
From position P1, of coordinates ϕ1 =33o00'S, λ1 =122o40'W (Valparaiso, Chile), the 
vessel has covered a distance of D=9100 nautical miles, with a course KDd=297o. 
Calculate coordinates ϕ2 and λ2  of the arrival position P2: 
 
Solution: 

a) acc. to meridional parts on a sphere (algorithm 18) 
φ2 = 35o 51,31’N, λ2 = 093o 10,69’E 

b) acc. to meridional parts with traditional method applied (Δφ – on a sphere, 
while Δλ – on the WGS-84 ellipsoid) 

φ2 = 35o 51,31’N, λ2 = 094o 02,28’E 
c) acc. to meridional parts on the WGS-84 ellipsoid (algorithm 22) 

φ2 = 36o 06,99’N, λ2 = 093o 24,43’E 
 

B. The second problem of loxodromic navigation – inverse rhumb line sailing 
problem 
Algorithms of solution of the navigation second problem – based on dependencies of 
the Mercator triangle (Mercator sailing): 
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a) with traditional method b) with accurate method applied 
applied (D - on a sphere, on an ellipsoid 
KDd – on WGS-84) (D and KDd - on WGS-84) 
 

 
 
 
 
 
 
 
 
 
 

Example 5:  
From position P1 of coordinates ϕ1 = 29o51'S, λ1 = 031o04'E, the vessel has arrived 
at the position P2 of coordinates ϕ2 = 06o30'S, λ2 = 105o00'E. Calculate the course 
(KDd) and the covered distance (D). 
 
Solution: 

a) with traditional method applied (algorithm 23): 
KDd = 71,57o, D = 4431,35 nautical miles, 

b) with accurate method applied on the ellipsoid WGS-84 (algorithm 24): 
KDd = 71,57o, D = 4414,38 nautical miles 

 
It is clear from the above that differences between the traditional solution and the 
proposed solution with the accurate algorithm are significant. The differences are 
given on the below graphs (fig. 5 and 6); they show differences of the loxodromic 
distances calculated with the traditional algorithm used and with the accurate 
algorithm – depending on the starting and ending positions of the vessel (Tijardović, 
2000). 

 

Fig. 5. Differences of loxodromic distances calculated with traditional algorithm 
used and with accurate logarithm – for latitude of starting position φ1 = 0o 
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Fig. 6. Differences of loxodromic distances calculated with traditional algorithm  

used and with accurate logarithm – for latitude of starting position φ1 = 30o 
 

It comes out from the graphs that difference of the loxodrome lengths: 
- grows along with increase of Δλ (which is obvious) and it reaches 

considerable value of over 40 nautical miles for Δλ = 1500 and φśr = 10o; 
- decreases and it goes down to the minimum in average latitudes in the order 

of φsr = 45o. 
 

5. Conclusions 
 
Solving problems of loxodromic (rhumb line) sailing in traditional navigation consists 
in application of simplified algorithms, according to mean latitude (plane triangle) and 
to meridional parts (Mercator triangle). 
For the engineering needs, accurate calculations require application of algorithms 
that take sphericality and spheroidality of the Earth into consideration. 
In the paper, the authors have presented proposals for both simplified and accurate 
solutions that meet contemporary requirements in respect to accuracy of navigation 
conduction. 
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