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Abstract

SIetS

Urban changes occur as a result of new constructions or destructions of buildings, extensions, excavation works and earth
fill arising from urbanization or disasters. The fast and efficient detection of urban changes enables us to update
geo-databases and allows effective planning and disaster management. This study concerns the visualization and analysis
of urban changes using multi-period point clouds from aerial images. The urban changes in the city centre of the Konya
Metropolitan area within arbitrary periods between the years 1951, 1975, 1998 and 2010 were estimated after comparing the
point clouds by using the iterative closest point (ICP) algorithm. The changes were detected with the point-to-surface
distances between the point clouds. The degrees of the changes were expressed with the RMSEs of these point-to-surface

distances. In addition, the change size and proportion during the historical periods were analysed. The proposed
multi-period change visualization and analysis method ensures strict management against unauthorized building or

excavation and more operative urban planning.

Key words: photogrammetry, aerial image, image-based point cloud, digital elevation model, visualization of changes,

urban area

1 Introduction

Land and urban management require detecting changes in to-
pography and urban areas. Topography changes in rural ar-
eas are generally the results of natural processes such as land-
slides, earthquakes, coastal erosion de- or afforestation. Urban
changes consist of new constructions, extensions, destructions,
excavation work and earth fill formed by natural or human ef-
fects. Change detection in urban areas is essential for planning,
management, building and discovering unauthorized construc-
tion activities. In addition, the results of earthquakes can be
detected very quickly, and first aid can reach vital regions.
Changes in topography of urban areas refer to changes in their
digital elevation model (DEM), which can be detected by com-
paring the time period DEMs. A significant amount of informa-
tion, such as the area, volume, cross section and slope of the

earth’s surface, can also be extracted from DEMs.

The key issue in the creation of a three-dimensional (3D)
model and DEM is acquiring high-density 3D spatial data that
represent the object’s shape. High-density spatial data with
short-space 3D points from land or object surfaces are called
point clouds. Point clouds of land surfaces can be obtained
from LiDAR (light detection and ranging), SAR (synthetic aper-
ture radar) or photogrammetry from stereo or multiview im-
ages. The point space of aerial and terrestrial LiDAR depends
on the technical specification of the instrument (Ghuffar et al.,
2013). LiDAR has a sufficient level of measurement accuracy
but requires expensive procedures. Thus, LiDAR cannot be
applied to every measurement task. SAR is applied by satel-
lite and measures the earth’s surface at particular (1-3 m)
grid intervals (Bildirici et al., 2009). The accuracy of a DEM
model created by SAR is lower than that created by LiDAR and
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is approximately 40 cm. However, image based dense point
cloud by using structure-from-motion (SfM) algorithm en-
ables highly accurate point cloud acquisition from stereoscopic
images. The stereoscopic images are recorded by aerial cam-
era from aerial platforms such as airplane, helicopter, or un-
manned aerial vehicle (UAV) or by terrestrial cameras. The au-
tomatic methods are applied to SfM algorithm, and an image-
based point cloud is generated with short-time processes in a
cost-effective manner. Image-based point clouds have been
created for many high-accuracy 3D measurement tasks (Ros-
nell and Honkavaara, 2012; Haala, 2011). The overall perfor-
mance of point cloud generation from stereoscopic images is
high. Typically, point clouds can be derived even from a sin-
gle stereo model with the point density corresponding to the
ground sampled distance (GSD). The height accuracy is depen-
dent on the object properties and the intersection geometry,
and it is 0.5-2 times GSD for well-defined objects. The devel-
opment of interpretation methods that are insensitive to shad-
ows is important to enable optimal use of photogrammetric
technology (Honkavaara et al., 2012). Photogrammetry shares
the advantages of LiDAR with respect to point density, accu-
racy and cost (Leberl et al., 2010). However, excessive images
increase the processing time when creating point clouds. This
problem could be solved by optimization (Ahmadabadian et al.,
2014; Alsadik et al., 2013).

Dense point clouds have been created from multiview
stereoscopic images in many applications such as mapping, vi-
sualization, 3D modelling, DEM creation, and natural hazard
detection. Yang et al. (2013) exploited dense image matching
for 3D modelling of indoor and outdoor objects. Tree heights
were also estimated by DEM created from dense point clouds
of UAV images (Jensen and Mathews, 2016). The same task
was performed with LiDAR point clouds, and a comparison of
their point-cloud-based DEMs showed 19 cm variances. In ad-
dition, point clouds have been created from aerial and UAV im-
ages for detecting the effects of natural disasters in agricultural
areas (Cusicanqui, 2016). New buildings in urban areas have
also been detected using image-based and LiDAR point clouds
(Nebiker et al., 2014; Hebel et al., 2013). A similar study was
carried out to compare the point clouds of historical aerial im-
ages and new LiDAR data (Du et al., 2016). A comparison of
point clouds based on satellite imagery and LiDAR highlighted
changes including small-scale (<50 cm), sensor-dependent,
large-scale, and new home construction (Basgall et al., 2014).

In this study, urban changes in the city centre of the Konya
metropolitan area, Turkey, were visualized by comparing the
point clouds of multiperiod historical aerial images. Historical
images from 1951, 1975, 1998 and 2010 were procured from the
archive of General Command of Mapping (HGK) in Turkey. In
addition, urban changes in density and degrees over the in-
vestigated historical periods were analysed. The rest of the
paper consists of five sections. The related historical studies
are described in section 2, and the study area is described in
section 3. Section 4 introduces image-based point cloud cre-
ation and change detection procedures. The results related to
point cloud creation, geo-registration, change detection and
their analysis are given in section 5. A discussion and conclu-
sion are provided in section 6 and section 7, respectively.

2 Related work

Photogrammetry has been put into practice in many types of
studies such as object modelling (Lingua et al., 2003), accident
recovery (Fraser et al., 2005), natural hazard assessment (Al-
tan et al., 2001), deformation measurement (Jiang et al., 2008),
industrial imaging (Cooper and Robson, 1990), and space re-
search (Di et al., 2008). The photogrammetric processes have

been changed together with the scientific progress. In partic-
ular, developments in computer vision techniques and the in-
troduction of new keypoint detection operators such as scale-
invariant feature transform (SIFT), speeded-up robust features
(SURF), binary robust independent elementary features (BRIEF)
and Affine-SIFT (ASIFT) have contributed to the automatiza-
tion of photogrammetric processes. These new generation key-
point detectors automate image matching despite scale, ori-
entation and lighting differences between stereoscopic images.
The SIFT keypoint detector was first introduced in early 2000
(Lowe, 2004). Other keypoint operators have been introduced
to improve the weak ability of SIFT and its application to dif-
ferent tasks. The first variety of SIFT is the SURF algorithm,
which defines keypoints with lower-dimensional feature vec-
tors for fast evaluation (Bay et al., 2006). Although SURF has
a lower-dimensional feature vector, images can be matched by
SURF with an accuracy similar to that of images matched by
SIFT (Altuntas, 2013). In addition, BRIEF reduced the memory
requirement with respect to SIFT (Calonder et al., 2010). SIFT
does not consider Affine deformation between images when de-
tecting keypoints. ASIFT is obtained by varying the two cam-
era axis orientation parameters — namely, the latitude and the
longitude angles - which are not treated by the SIFT method.
Thus, ASIFT was introduced for effectively covering all six pa-
rameters of the Affine transform (Yu and Morel, 2011).

Keypoint detection operators associate a descriptor with
each extracted image feature. A descriptor is a vector with a
variable number of elements that describes the keypoint. Ho-
mologous points can be found by simply comparing the descrip-
tors, without any preliminary information about the image net-
work or epipolar geometry (Barazzetti et al., 2010). The auto-
matically extracted image coordinates of conjugate keypoints
can be imported and used for image orientation and sparse
geometry reconstruction. The matching results are generally
sparse point clouds, which are then used to grow additional
matches. These procedures, which include camera calibration,
image ordering and orientation, are called SfM or multi-view
photogrammetry in the computer vision community. Dense
point cloud is generated from the image block that was ori-
ented and motion estimated by SfM algorithm. The dense 3D
surface reconstruction is increasingly available to both profes-
sional and amateur users whose requirements span a wide va-
riety of applications (Ahmadabadian et al., 2013).

Dense point clouds can represent small object details ow-
ing to high-density 3D spatial data. The colour recorded for
the measured points and the texture mapping of mesh surfaces
distinguishes dense image-based measurements. Thus, dense
image-based point clouds are especially useful for document-
ing cultural structures (Barazzetti et al., 2010). Object mod-
elling and topography measurement are also performed with
dense point clouds created from aerial or ground-based images
(Aicardi et al., 2018; Rossi et al., 2017). The unmanned aerial
vehicle based image acquisition has increased the popularity of
dense image-based modelling (Haala and Rothermel, 2012).

The accuracy of image-based dense point cloud depends on
the imaging geometry. The appropriate image geometry has
about 1 base/height ratio, which enables high-accuracy mea-
surements (Haala, 2011; Remondino et al., 2013). Its compar-
ison with terrestrial LiDAR has shown a 5 mm standard devi-
ation (Barazzetti et al., 2010). The accuracy related to differ-
ent types of land cover was compared to LiDAR measurement,
and a similar degree of accuracy was obtained (Zhang et al.,
2018). Furthermore, UAV photogrammetric data were found to
capture elevation with accuracies, by root mean square error,
ranging from 14 to 42 cm, depending on the surface complex-
ity (Lovitt et al., 2017).

The number and distribution of ground control points
(GCPs) affect both the scale and geo-referencing accuracy of a



dense point cloud model. Geo-referencing with GCPs that were
signalized before the imaging area was performed with accu-
racy of a few centimetres, and more GCPs did not improve the
geo-referencing accuracy (Zhang et al., 2018). If the GCPs had
not been signalized on the imaging area, the registration would
have been performed by the detail-based GCPs selected and
measured after capturing the images. UAV image data were reg-
istered to the geo-reference system by using the detail-based
GCPs with decimetre-level root mean square error (RMSE) of
coordinate residuals on GCPs. Similarly, historical aerial im-
ages were geo-referenced by detail-based GCPs with approx-
imately 4 m RMSE on residuals of GCPs (Nebiker et al., 2014;
Hughes et al., 2006). At least six object-based GCPs assured a
sufficiently high accuracy for the geo-referencing of historical
aerial images (Hughes et al., 2006). Generally, height residu-
als that correspond to Z coordinates are three times larger than
the horizontal level of the XY plane.

The changes of land topography, forests and urban areas
can be detected with the analyses of point cloud data from
LiDAR or SfM photogrammetry. Significant forest canopy
changes were detected from the image-based point clouds. Im-
age based dense point cloud is preferable with respect to the
other measurement techniques for change detection in for-
est areas (Ali-Sisto and Packalen, 2017). In another study, a
methodology for automatically deriving change displacement
rates in a horizontal direction based on comparisons between
the extracted landslide scarps from multiple time periods was
developed. Horizontal and non-horizontal changes were de-
tected by the proposed method with a RMSE of approximately
12 ¢cm (Al-Rawabdeh et al., 2017). In addition, landslide
changes were detected from LiDAR point clouds with 50 cm
point spaces using a support vector machine through three
axis directions at 70% accuracy (Mora et al., 2018). Further-
more, a terrestrial photogrammetric point cloud for landslide
change detection was tested, and the accuracy of the resulting
models was assessed against the terrestrial and airborne LiDAR
point clouds. It could be demonstrated that terrestrial multi-
view photogrammetry is sufficiently accurate to detect surface
changes in the range of decimetres. Thus, the technique cur-
rently remains less precise than TLS or GPS but provides spa-
tially distributed information at significantly lower costs and is,
therefore, valuable for many practical landslide investigations
(Stumpf et al., 2015; James et al., 2017).

Urbanisation creates many changes such new constructions
or demolitions of buildings, land use and land cover changes.
These changes can be detected by comparing two point clouds,
which should be processed for further information to define
the changes. Awrangjeb et al. (2015) offered a new or demol-
ished building change detection technique from LiDAR point
cloud data. The proposed technique examines the gap be-
tween neighbouring buildings to avoid under-segmentation er-
rors. In another study, the acquisition of changed objects above
ground was converted into a binary classification, in which the
changed area was regarded as the foreground and the other
area as the background. After the image-based point clouds of
each period were gridded, the graph cut algorithm was adopted
to classify the points into foreground and background. The
changed building objects were then further classified as newly
built, taller, demolished and lower by combining the classifi-
cation and the digital surface models of the two periods (Pang
et al., 2018). Barnhart and Crosby (2013) used clouds to mesh
comparisons and a multiscale model to the cloud comparison
in terrestrial laser scanning data of topographic change detec-
tion. Xiao et al. (2015) proposed point-to-triangle distance
from combined occupancy grids and a distance-based method
for change detection from mobile LiDAR system point clouds.
The combined method tackles irregular point density and occlu-
sion problems and eliminates false detections on penetrable ob-
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Figure 1. Visualization of the study area

jects. Tran et al. (2018) suggested a machine learning approach
for change detection in 3D point clouds. They combined classi-
fication and change detection into one step, and eight different
objects were classified as changed and unchanged with overall
accuracy over 90%. Vu et al. (2004) offered regular grid data
for an automatic change detection method to detect damaged
buildings after an earthquake in Japan. Scaioni et al. (2013)
also used regular grid point cloud data for detecting changes
by comparing grid patches. The iterative closest point (ICP)
algorithm and its variants were also employed to detect the
changes between the two point clouds. The change detection
method was proposed by Zhang et al. (2015) as a weighted
anisotropic ICP algorithm, which determined the 3D displace-
ments between the two point clouds by iteratively minimizing
the sum of squares of the distances. They estimated earthquake
changes by evaluating pre- and post-LiDAR data.

The contribution of this study is the visualization of urban
changes by comparing image-based point clouds of the two
periods using the ICP algorithm and analysing the changes of
ordinary time periods.

3 Study Area

Konya city, which was the capital of Seljuk Empire, is located
at the centre of Anatolia. The city has many historical struc-
tures such as caravansary, mosque, fountain, madrasah and
mausoleum. Moreover, it has Mevlana Museum and Rumi mau-
soleum, which are attractive destinations for tourists from all
over the world. On the other hand, Konya city has many in-
dustrial plants that have grown over the years. Therefore, the
population in Konya metropolitan area has recently increased
very fast.

The study area was defined by a rectangle with cross-
corner of geographical coordinates of 37°53’26.67"N lati-
tude, 32°28’37.38"E longitude and 37°52’38.30"N latitude,
32°29’39.11"E longitude. Its dimensions are 1.5 km x 1.5 km,
or 2.25 km?. It largely includes houses and trade buildings, but
it also includes tramway and railway networks, asphalt pave-
ment, green fields and cemetery areas of Musalla (Figure 1).
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Figure 2. Workflow of the applied change detection method

4 Material and Methods

Urban changes can be visualized by comparing the DEMs cre-
ated with image-based point clouds of time series images.
Here, the point clouds were registered to a geo-reference sys-
tem using GCPs, and they were compared after fine-registering
with the ICP algorithm. Actually, geo-referencing procedure
registers all the point cloud data in the same coordinate sys-
tem for change detection. However, their registrations still in-
clude a small error due to object based GCPs in geo-referencing.
Thus, relative fine registration was performed by ICP for elim-
inating registration errors and accurate pairwise comparison.
The differences between each two point clouds represent the
changes from the beginning to the end of the interest period.
The main progressive steps of this study are shown in Figure 2.

4.1 Aerial images

Historical images from 1951, 1975, 1998 and 2010 were pro-
cured from the archive of General Command of Mapping (HGK)
of Turkey. The images from 1951, 1975 and 1998 had been
recorded by analogue aerial cameras, and 2010 images had been
recorded by digital camera. The analogue camera images had
been converted to pixel based digital form with scanning of
their roll films by micro scanner. The user defines the colour
(red green blue versus grey scale) and resolution (dots per inch)
of the scan. Because a pixel resolution and image scale de-
termine the ground sampling distance that related selectable
minimum ground size, users tend to maximize the resolution
of the scan to improve image quality during this digital conver-
sion. The analogue images belonging to the dates of 1951, 1975
and 1998 had been scanned with a pixel resolution of 23.88,

14.96 and 20.60 micrometre respectively for saving in digital
archive of HGK. The scanned image data were taken from this
digital archive.

The HGK is giving permission to the circulation of restricted
number of products from their archive to researchers and other
users. Thus, the camera calibration and exterior orientation pa-
rameters were not available as a metadata. The imaging prop-
erties of all the time series images are given in Table 1.

4.2 Ground control points

The GCPs were used for the geo-referencing of dense point
clouds created from historical aerial images. The images do
not include GCPs signalized in the imaging area before tak-
ing the images. Thus, the GCPs were produced from signifi-
cant object details for geo-referencing. The object-based GCPs
should be selected from the images and should be existing in
situ. Building corners, fences, crossroads, and so on, with
these properties were used to create the object-based GCP (Fig-
ure 3). Therefore, every GCP could not be seen in the stereo-
scopic images of every period, so different GCPs were used for
the geo-referencing of time series image-based point clouds.
Object-based GCP creation is usually very hard in non-building
areas, such as visible in the case of the oldest images from
1951 in this study. Nevertheless, because Konya has many
historical structures that are suitably positioned for creating
GCPs, enough GCPs can be created. A total of twenty-two GCPs
were established, and their geodetic coordinates were mea-
sured based on the global navigation satellite system (GNSS).
Absolute positional accuracy of GCPs is about 10 centimetres.
Geo-referencing with GCPs ensures both integration with the
geodetic coordinate system and scaling for the 3D point cloud



Table 1. The properties and recording details of the images
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Date  Camera Focal length Flying Image scale  Image dimensions Image area  Stereo area  Pixel size
[m] height [m] [km?] [km?] [micron)
1951 Analogue 204.18 6270 30708 18 x 18 cm 46.39 27.6 23.88
1975  Analogue 208.17 7250 20000 18 x 18 cm 23.01 22.7 14.96
1998  Analogue 305 5300 17377 23 X 23 cm 15.97 8.52 20.60
2010  Digital 100.50 8050 80099 9420 X 14430 px 34.26 21.7 7.20

Figure 3. The examples from object-based GCPs

model. The scale can also be established by the ratio of dis-
tances among the same points in the object and model spaces
(Barazzetti et al., 2010; Hartley and Zisserman, 2003). Ah-
madabadian et al. (2013) benefited from base distance to solve
the scale problem in automatic image matching and dense
point cloud creation. In addition, direct geo-referencing is per-
formed with imaging positions recorded on the fly, but its ac-
curacy is lower than geo-referencing with GCPs (Pfeifer et al.,
2012; Gabrlik, 2015).

4.3 SfM algorithm

SfM refers to a set of algorithms that includes the automatic
detection and matching of features across multiple images with
different scales, orientations and brightness. SfM algorithm
uses a technique to resolve the camera and feature positions
within a defined coordinate system. This procedure does not
require the camera to be pre-calibrated. The camera calibration
parameters, image positions and 3D geometry of a scene are
automatically estimated by an iterative bundle adjustment.
SfM algorithm performs image orientation in four steps:

i. feature detection on each image,
ii. feature description,
iii. features matching,
iv. triangulation and bundle adjustment.

In the first step, the image keypoints are detected by keypoint
detection operators (SIFT, ASIFT, SURF, etc.). The keypoints
are described with the characteristic invariant features in the
second step. The descriptor represents the keypoints in huge
dimensional space such as 128 or 64. The similar key points
among all images are matched in the third step, and relative
positions of the images are estimated with triangulation and
bundle adjustment in the fourth step. The matching results
are generally sparse point clouds, which are then used as seeds
to grow additional matches and dense point cloud creation. The
3D spatial coordinates for all matched keypoints are generated
according to the intrinsic local reference coordinate system.
Then, the dense point clouds are generated by estimating the
3D coordinates for additional matches. Currently, all the avail-
able image-based measurement algorithms focus on dense re-
constructions using stereo or other multi-view approaches. All
amateur camera images can be used to create a dense point
cloud data. Furthermore, mobile phones and other sources of

imagery can also be used for creating an image based dense
point cloud. The scale provides real-world measurements to
the created dense point cloud model. Generated GCPs allow us
to obtain a scale for the 3D point cloud model and register it to
a global geo-reference coordinate system.

4.4 Fine registration with ICP algorithm

The geo-referencing of the point clouds enables us in detect-
ing the change between them. However, relative fine registra-
tion of two point clouds enhances change detection accuracy by
removing the small geo-referencing errors that occurs due to
the object based control points. The fine registration is imple-
mented by ICP algorithm. One of the overlapping point clouds
is selected as a reference, and the other (target point cloud)
is oriented and translated in relation to the reference. After
the closest conjugate points between the reference and target
point cloud are selected by the Euclidean distances, the regis-
tration parameters are estimated with these conjugate points.
The estimated registration parameters are applied to the target
point cloud. These steps are applied iteratively until the RMSE
of the Euclidean distances between the corresponding points
are smaller than a threshold value or the iteration reaches a
certain number (Figure 4). At first, the initial coarse registra-
tion must be implemented by interactive or computational ap-
proaches. In this study, geo-referencing results were accepted
as coarse registration of the point clouds. Depending on the
coarse registration, the fine registration is performed after 15
or 20 iterations (Besl and McKay, 1992). ICP provides high-
accuracy in registration, and varying the density of reference
and target point clouds does not affect the registration accuracy
(Altuntas, 2014).

4.5 Change detection methodology

In contrast with 2D change detection, 3D change detection is
not influenced by perspective distortion and illumination vari-
ations. The third dimension as a supplementary data source
(height, full 3D information, or depth) and the achievable out-
come (height differences, volumetric change) expand the scope
of change detection applications in 3D city model updating, 3D
structure and construction monitoring, object tracking, tree
growth, biomass estimation, and landslide surveillance (Tran



6 | Reports on Geodesy and Geoinformatics, 2019, Vol. 107, pp. 1-12

Coarse registration of
M relation to S.
M is reference (fixed),
S is target (moved)
point cloud

Select corresponding closest points of M
and S

\2

Compute registration parameters (3
Rotations and 3 Translations) with
closest points

\2

Applied fine registration to S, and
compute Euclidean distances (E) of
corresponding points

E<threshold? or
Iteration
number>max.
iteration?

Figure 4. Flowchart of the point cloud registration by the ICP algo-
rithm

et al., 2018). The changes between two imaging periods are
detected by estimated height differences of the point clouds.
Point-to-point, point-to-mesh triangle or point-to-normal
direction distances are used to estimate the change distances.

In this study, the changes were estimated with distances
from the target point to the mesh surface of the reference point
cloud. The change ratio in all the area is expressed by the RMSE
of these distances (Eq. (1)):

RMSE= |1 (d:)? @)
n 4 v
1=1

n
- 1
Mean =d = ﬁZdi' (2)
i=1

- 1 ¢ =
Standard deviation = ¢ = o Z(d,- -d)?, (3)
i=1

where d; are the point-to-surface distances, and n is their num-
ber. Additionally, the depth standard deviation (DSTD) descrip-
tor (Eq. (4)) is adopted to measure the variance of depth within
the local area around a point (Chen et al., 2016). If the local area
is defined by voxel,

DSTD = (4)

where m is the number of points, and d is the average d within
the voxel.

Table 2. The informative results of dense point cloud creation

Year 1951 1975 1998 2010
Image # 2 3 2 2
Endlap 70% 75% 70% 70%
Flying altitude [km] 6.27 7.26 5.3 8.05
Ground res. [cm/px] 73.4 40.3 36.6 50.2
Coverage area [km?] 27.6 22.7 8.52 21.7
Tie points 1616 of 6527 0of 38170f 3870 of

1756 6655 3988 3994
Projections 3232 13487 7634 7740
Reproj. err. [px] 0.989 0.867 0.686 0.259
Max. reproj. err. [px] 5.804 8.034 6.59486 1.910

Dense points # 2539040 8859870 3995753 5243623

5 Results
5.1 Point cloud creation

The dense point cloud was created from the stereoscopic im-
ages by Agisoft Photoscan software (Agisoft, 2017). Photoscan
does not need pre-calibration of the camera. It can also per-
form dense matching task without the camera calibration pa-
rameters. If the image data set has six or more images, the cal-
ibration parameters could have been estimated together with
the dense matching. In this study, three periods has two im-
ages and one period has three images (Table 2). Thus cali-
bration parameters were not estimated. After a sparse point
cloud was created for the matched keypoints, a dense point
cloud was produced by estimating the 3D spatial data with pho-
togrammetric equations for matching additional image pixels
(Table 2). The dense point cloud creation time is proportional
to the number of points, and it was 17 min for 1951 and 27 min
for 2010, which has the largest number of points. The point
cloud of 1975, which had three stereoscopic images as differ-
ent from the other periods, had a creation time of 42 min, 1s.

5.2 Geo-referencing

All point cloud data was registered to the geo-reference system
using at least six GCPs. After these, the GCP coordinates were
recomputed by applying the estimated registration parameters.
The residuals between the measured and estimated coordinates
of the GCPs were exploited to evaluate the registration accu-
racy. The residuals (Figure 5) and their RMSEs (Table 3) indi-
cated high accuracy for the geo-referencing. The accuracy was
better than the object-based geo-referencing presented in the
literature (Nebiker et al., 2014; Hughes et al., 2006). Moreover,
the max-reprojection errors were at the one-pixel level.

The RMSEs of the coordinate residuals on the GCPs were
computed by Eq. (5) to (9):

RMSEy = 72("5"' x)? (5)
RMSE,, = 72(25; w? (7)
R ¢ Ll =X + 05 y? ®)

RMSEyy = \/ LlsxP e LOs -y 2@
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by ellipses. The estimated GCP locations are shown with
a dot or cross. (Red rectangle indicates the study area)
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Table 3. The RMSE of residuals on GCP coordinates after the geo-
registration [m]

Date GCP# RMSEy RMSEy RMSE; RMSEyy RMSExy;
1951 6 1.54 1.60 1.86 2.22 2.90
1975 7 1.09 1.03 3.67 1.50 3.96
1998 7 0.80 1.30 2.52 1.53 2.94
2010 6 0.32 0.52 1.62 0.61 1.73

Table 4. The ICP convergence of compared point clouds

Date Convolution = Mean Std. Dev.
comparison [m] [cm] [m]
1951-1975 9.2e-7 0.06 0.99
1975-1998 7.1e-7 -0.87 0.96
1998-2010 9.3e-7 0.09 0.94
1951-2010 9.1e-7 0.12 0.99

where subscript s is the surveying coordinates, and r is the es-
timated coordinates of GCPs. n is the number of GCPs.

5.3 Urban area change detection

The study was implemented on the common stereoscopic area
of the 1951, 1975, 1998 and 2010 images (Figure 5). The cre-
ated dense point clouds did not have a uniform grid, and they
had holes due to the occlusion of buildings. Thus, dense point
clouds were resampled as a uniform grid. The grid spaces were
selected as 0.50 metres as the proper mean GSD of all point
clouds.

The changes were estimated for the periods of 1951 to 1975,
1975 to 1998, 1998 to 2010 and 1951 to 2010. Of the two point
clouds in each period, the oldest point cloud was selected as a
reference, and the other (target) was registered into the refer-
ence coordinate system using ICP in PolyWorks software (Ta-
ble 4). The changes were then estimated with distances com-
puted from the points of the target point cloud to the mesh
triangle of the reference point cloud (Figure 6, Figure 7).

5.4 Analysis of the changes

The sequential analysis of the changes showed urbanization
and growth in the study area during the analysed periods. The
RMSE of the estimated distances between two point clouds in-
dicated the degree of change. The time intervals of the sequen-
tial periods 1951-1975, 1975-1998 and 1998-2010 are roughly
similar, and their change degrees are also close to one another.
For the period 1951-2010, because it is the longest period, its
degree of change is greater than the others (Table 5).

The distances between the point clouds were divided into
10 m intervals to compare the subinterval change degrees in all
periods. The large change in the period 1951-1975 is approxi-
mately 10 m in the upward direction. There are many changes
in the downward direction by approximately 10 m in height
during the period 1975-1998. Average d in Table 5 also indi-
cates the same inferences. These probably resulted from the

Table 5. The change quantities for the historical periods

Year RMSE Average Std. dev.
[m] d [m] o [m]

1951-1975 8.42 4.82 6.91

1975-1998 8.51 -0.90 8.46

1998-2010 9.10 6.69 6.18

1951-2010 14.16 10.60 9.39
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Year 1951
Year 2010

Year 2010

I A

Year 1951

Figure 6. The cross-section from compared data of 1951 and 2010.
The height differences correspond to the changes.

demolished adobe houses. New buildings generate change in
the urban area. The changes related to the new buildings in the
period 1998-2010 have a little more than the others. The com-
parison of the first epoch 1951 and the last epoch 2010 is shown
an extensive 10-20 m change in the upward direction for all
the study area. The higher buildings were constructed around
1998 in these periods, and some of them were reconstructed in
places from which old buildings were removed (Figure 8).

6 Discussion

Current image-based measurement software is focused on au-
tomatic dense point cloud generation. Moreover, using a spe-
cific target shape, scale and geodetic registration can be at-
tained for the model automatically. In this study, a dense point
cloud was created from a set of uncalibrated camera stereo-
scopic images. The mean reprojection error smaller than one
pixel shows the high accuracy of the photogrammetric evalua-
tion.

The registration of the 3D point cloud model into the geo-
reference system needs at least three GCPs in uniform distribu-
tion for high accuracy. Here, every 3D model was registered to
the geodetic coordinate frame with six object-based GCPs. The
establishment of object-based GCPs is very difficult, especially
in open rural areas. Roads, rivers or fences can be used to de-
fine GCPs, but their error-prone selection from images leads
to less accurate registration. Because the study area has many
historical structures, statues, mosques, city arenas, it was pos-
sible to employ them to create the GCPs. An obstacle situation
in the selection of the GCPs was encountered when measuring
the geodetic coordinates with a GNSS receiver due to signal loss
among high buildings. A new other detail was selected in this
situation.

The point cloud density, which is 4-5 points/m2, is suf-
ficient to detect large-scale urban changes. The point cloud
can include occlusion that occurs due to the shadow effect of
buildings or less characteristic surfaces such as glass-covered
buildings. Urban areas have a trivial number of less charac-
teristic surfaces. Nevertheless, high buildings cause occlusion
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Figure 7. The estimated changes (legend units: meters)
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Figure 8. The change comparison during the historical periods

Figure 9. The changes due to demolished and new buildings from 1998

in point clouds, which should be filled by interpolation from
neighbouring points to correctly emphasize the changes.

Urban changes were successfully measured using the pro-
posed point-to-surface distances in this study. For example,
an apartment building that was demolished in 2004 can be
detected by a visual comparison between 1998 and 2010. Al-
though the eleven-story building existed in 1998, it was not
in the images from 2010. The comparison of these two point
clouds showed a change in the downward direction (Figure 9).
In contrast, two new eleven-story buildings west of the demol-
ished building are shown by upward changes of approximately
35 m.

The comparison between 1951 and 2010 showed significant
changes due to new constructions to the west of the railway. Al-
though the region had any buildings in 1951, almost the whole
side had new buildings according to the point cloud of 2010.
The change process during this long historical period can be
investigated via comparison with sequential small-period data
(Figure 10). Whereas the comparison of point clouds between
1975 and 1998 indicated many new buildings, the comparison
between 1998 and 2010 showed slow construction of new build-
ings.

7 Conclusions

The dense point cloud method has been extensively used
for surveying and 3D modelling in many applications. In

60.0
5I].I]I

25.0¢--

u.uu'

-25.0F--

| 50,0
-60.0

to 2010 (Unit: meter)

this study, the urban changes between 1951-1975, 1975-1998,
1998-2010 and 1951-2010 were estimated by comparing two
point clouds created from stereoscopic aerial images. After the
target point cloud was registered to the reference point cloud by
the ICP method, the changes between the two point clouds were
estimated with point-to-triangle mesh distances. In addition,
the changes in these four periods were analysed. The offered
method allowed efficient detection of urban changes that had
occurred as a result of the new constructions or destructions
of buildings, extensions, excavation works and earth fill aris-
ing from urbanization or disasters. In addition, it enabled us to
update the geo-databases, effective planning and disaster man-
agement. On the other hand, low cost imaging platforms such
as unmanned aerial vehicles provide exploiting the method for
strict control against the unauthorized activities.
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