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Abstract
An optimally designed geodetic network is characterised by an appropriate level of precision and the lowest possible setup
cost. Reliability, translating into the ability to detect blunders in the observations and higher certainty of the obtained
point positions, is an important network characteristic. The principal way to provide appropriate network reliability is to
acquire a suitably large number of redundant observations. This approach, however, faces limitations resulting from the
extra cost. This paper analyses the possibility of providing appropriate reliability parameters for networks with moderate
redundancy. A common problem in such cases are dependencies between observations preventing the acquisition of the
required reliability index for each of the individual observation.
The authors propose a methodology to analyse dependencies between observations aiming to determine the possibility of
acquiring the optimal reliability indices for each individual observation or groups of observations. The suggested network
structure analysis procedures were illustrated with numerical examples.
Key words: geodetic networks, network design, second order design, network’s reliability

1 Introduction

The design and optimisation of a measurement network is a
common element when carrying out geodetic tasks. A well-
designed network must satisfy a number of requirements. The
most important are:
• appropriate point placement,
• required accuracy,
• reliability, translating into the ability to detect blunders in
the observations,

• low stabilisation and measurement cost.
The accuracy prerequisite is most often a result of top-

down requirements imposed on geodetic studies. These re-
quirements usually take the form of an inequality. Network’s
reliability is a characteristic which allows to detect a blunder,
identify the location of the distortion and eliminate it. The op-
timisation aims to design a network, so that the assigned task
could be realised at the lowest possible cost.
The design of an optimal geodetic network means �nding

an appropriate compromise between the previously mentioned,
competitive, characteristics and it was the subject of many
investigations collected in the classic book by Grafarend and
Sansò (2012).
According to Grafarend (1974) the optimization problems of

designing a geodetic network are classi�ed into the following
orders:
• zero order design (identi�cation of an appropriate reference
system),

• �rst order design (prospecting for the optimal network con-
�guration),

• second order design (prospecting for the optimal observa-
tion accuracy),

• third order design (prospecting for ways to improve the ex-
isting network).

W. Baarda is considered the precursor of research on network’s
reliability (Baarda, 1967, 1968). In recent years, the term blun-
der “robustness” of the network is commonly used alongside
the term “reliability” (Prószyński and Kwaśniak, 2002).
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The scope of this study focuses on the issues connected to
the network’s internal reliability, that is the ability to detect
distortions in a given set of observations. This characteristic is
described by a variance-covariance matrix of the o�set correc-
tions R obtained from equation (1).

R = I – A (ATPA)– ATP, (1)
where A is the factor matrix of observation equations, P is the
observation weight matrix, whereas I represents the identity
matrix. As this paper deals with the case of uncorrelated ob-
servations, we can assume that P is a diagonal matrix.
Network’s reliability characteristic is represented by the

main diagonal of the R matrix. Its individual elements (Rii)de�ne the reaction of an observation correction to the occur-
rence of a blunder in the ith observation. These elements will
be referred to as reliability indexes for the given observation.
Zero corresponds to uncontrolled observations occurring in un-
ambiguous constructions (without redundant observations). In
turn, high value of the indexmeans that the observation is well-
controlled by the other observations or constraints for the un-
knowns. A blunder in such observation will manifest itself in
the results of a correction in the form of increased observation
correction for the same observation.
Trace of the R matrix corresponds to the number of redun-

dant observations (Tr(R) = n – u) and is not dependant on
weight matrix P.
Reliability requirement is considered ful�lled if the inequal-

ity (2):
Rii > 0.5 (2)

is satis�ed (Prószyński, 1994).
The mean value of the diagonal elements of the Rmatrix (3)

can be assumed as the global reliability index for the network
Ravg = n – un , (3)

where n is the number of observations and u is the number
of unknowns. Due to a diversi�ed structure of the network re-
sulting from various determinants, the individual observations
will have di�erent reliability indices.
Appropriate reliability level should be ensured during the

�rst order design (FOD). The easiest way to achieve that is to
design a large number of redundant observations, which also
has a positive impact on the accuracy characteristics of the
given network. Nonetheless, this approach entails an increase
in the cost of measurements, which is not always acceptable
(Prószyński, 2014).
In practice, the design of a network will take a form of a

compromise between the drive for high degree of reliability and
economic constraints. Apart from cases of exceptional impor-
tance, observation redundancy in a network will usually only
slightly exceed the minimum. In such situations, the second
order design (SOD) becomes increasingly important, as it de-
cides whether both the accuracy and reliability requirements
are met.
While the trace of the R matrix for a given set of observa-

tions is independent of the weight distribution in Pmatrix, the
individual diagonal elements are not. The main objective of the
actions performed during SOD is the selection of observation
weights (accuracies) so that the accuracy requirements are met
with the lowest possible diversi�cation of reliability indices for
each individual observation. There are two possible strategies:
• analytical method,
• trial and error method.

The �rst of the methods suggested in studies Amiri-Simkooei
(2004) and Amiri-Simkooei and Shari� (2004) makes it pos-
sible to obtain a set of observation (errors) weights gener-
ating optimal (the same) reliability indices for all the obser-
vations. The accuracy harmonization procedure proposed by
Nowak (2011) is another variant of this method.
The trial and error method is based on a successive (itera-

tive) search for a set of observation weights meeting the im-
posed criteria to the optimal or targeted degree. The proce-
dure utilising the simulated annealing algorithm (Berné and
Baselga, 2004; Baselga, 2011) is an example of such method.
Regardless of the applied method and algorithm, the ob-

servation weight optimisation aimed at obtaining the desired
network’s reliability indices must take into consideration the
network-speci�c system of dependencies resulting from the
network’s structure and generating a corresponding to that
system reaction pattern (changes in diagonal elements of the
R matrix) to the changes in diagonal elements of the weight
matrix. This issue is the main topic of this study.

2 Dependencies resulting from the distribu-
tion of reliability indices in the network

As previously indicated, the reliability of observation in a
geodetic network is characterized by reliability matrix R. Equa-
tion (1) which describes it can be presented by the formula (4):

R = I – D, (4)
where:

D = A (ATPA)– ATP. (5)
D is a variance-covariance matrix of the corrected observation.
Moreover, similarly to the R matrix, it is symmetric and idem-
potent. Due to the �xed relation between D and R matrices,
matrix D can be, on equal terms with matrix R, used to char-
acterise the observation reliability in a network. Additional ad-
vantage of the said matrix lies in the fact, that it is de�ned
by a slightly less complex equation (5). In the coming part of
this study matrix D will be used to analyse network reliability.
Thus, the inequality (2) will take the form of (6):

Dii < 0.5. (6)
Any of its elements is determined by the formula (7):

Di,k = Ai
(
ATPA

)–
ATkP. (7)

The main objective of the actions undertaken as part of
SOD is to minimise the diversi�cation of reliability indices for
the observations. Those actions, independent of the applied
method are based on modifying the weights (standard devia-
tions) of the observations. The impact of the change in the
standard deviation for the kth observation will be examined.
The standard deviation change factor will be determined by the
formula (8):

γ = σold
σnew

, (8)
where σold, and σnew represent the standard deviation value be-fore and after change. This type of change will cause modi�ca-
tion of the standardised factor matrix of observation equations
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A. The new matrix is de�ned by the equation (9):

Ai =
{
Ai for i 6= k
Aiγ for i = k

}
. (9)

The new matrix of normal equation system coe�cients will
take the form of (10):

ATA = ATA + (γ2 – 1)ATkAk. (10)
In order to determine its inverse the Sherman-Morrison-
Woodbury (Woodbury, 1950) formula will be used. In a version
given by Rao (1982) it can be shown as follows:
(
M + BCBT)–1 =M–1 –M–1B(BTM–1B + C–1)–1 BTM–1, (11)

where M(m×m) and C(n×n) are nonsingular matrices and B is
m× n matrix. By substitution we obtain

(
ATA

)–1 = (ATA + (γ2 – 1)ATkAk)–1 =
= (ATA)–1 –∆

(
ATA

)–1
ATkAk

(
ATA

)–1 , (12)

where
∆ =

(
Ak
(
ATA

)–1
ATk +

(
γ2 – 1)–1)–1 =

=
(
Dkk +

(
γ2 – 1)–1)–1 = γ2 – 1

(γ2 – 1)Dkk + 1 =
(
γ2 – 1)δ.

By taking into consideration the above dependencies, the ele-
ments of the new D matrix can be presented as the value func-
tion of the appropriate elements of the old D matrix and the
coe�cient of the change in standard deviation γ:

Di,j =



Di,j –∆Di,kDk,j = Di,j –
(
γ2 – 1)βDi,kDk,j for i, j 6= k,

γDi,k –∆γDi,kDk,k = γDi,k –
(
γ2 – 1)βγDi,kDk,k =

= γβDi,k for i 6= k; j = k,
γ2Dk,k –∆γ2D2k,k = Dk,k +

(
γ2 – 1)β

(1 – Dk,k)Dk,k =
= γ2βDk,k for i = j = k.


(13)

Observation reliability indices are dependent on the diagonal
elements of the D matrix. By analysing the diagonal element
of the new D matrix

Dk,k = Dk,k +
(
γ2 – 1)(1 – Dk,k)Dk,k
(γ2 – 1)Dkk + 1 = Dk,kγ2

(γ2 – 1)Dkk + 1 ,

one obtains the equation (14).
Dk,k + Dk,kDkkγ2 – Dk,kDkk = Dk,kγ2. (14)

This way one obtains a formula important in reliability design
which allows to determine the change in observation accuracy
based on the requested results:

γ2 = Dk,k
(1 – Dk,k)

Dk,k
(1 – Dk,k) . (15)

2.1 Weight modi�cation result transfer mechanism

The diagonal elements of the D matrix decide the network’s
reliability properties. Using the equation (15) the weight (stan-
dard deviation) of the observation can be modi�ed in such a
way that the desired value of the diagonal element and, as the
result, the value of the reliability index is obtained. However,
the change will cause a modi�cation of a larger fragment of
the D matrix, including the diagonal elements. This results
from the connection between observation functions expressing
themselves by non-zero extra-diagonal elements Di,j. Distri-bution of the results for the observations and the change in the
weight for observation k is governed by the reaction coe�cient
δi|k in accordance with the equation (16):

Di,i – Di,i =
(
Dk,k – Dk,k

)
· δi|k. (16)

The value of this coe�cient is de�ned by the formula (17):

δi|k =


1 for i = k
– D2i,k
Dk,k

(1–Dk,k) for i 6= k
 . (17)

From the equation (18)
∑
i 6=k

δi|k = –1
Dk,k

(1 – Dk,k)
∑
i 6=k
D2i,k = –

Dk,k – D2k,k
Dk,k

(1 – Dk,k) = –1, (18)
it can be concluded that the sum of changes of the reliability in-
dices for the inactive observations (i 6= k) is equal to the change
in the reliability index for an active observation (k) with the
opposite sign. Therefore, the principle that the action is equal
to the reaction is in e�ect.
The value of the δi|k coe�cient satis�es the inequality

|δi|k|≤ 1, but the equality is ful�lled only for two equally accu-rate observations. The reaction coe�cient rapidly decreases as
the distance from the active observation increases. The change
in observation’s accuracy virtually only in�uences the reliabil-
ity indices of the neighbouring observations.

3 Numerical examples

The operation of the described equations will be illustrated in
two numerical examples. The �rst of the examples concerns a
levelling network. The network consists of 12 points connected
by 26 height di�erence observations. Study of this network is
presented in Fig. 1. Black numbers refer to points whereas blue
numbers refer to observations.
From topological perspective the network consists of 5

squares with diagonals. For the level di�erences correspond-
ing to the “sides of the squares” the standard deviation of σ = 1
was assumed, whereas for the diagonals σ = 1.15 was adopted.
The values are presented in column 4 of Table ??.
Assuming a single point datum, the mean value of the diag-

onal element of the D matrix equals:
Davg = un =

11
26 = 0.423.

An overview of diagonal elements of the Dmatrix values for all
of the observations are presented in column 5 of Table ??.
Due to the network’s structure and the datum, the reliability

indices are symmetrical. Condition (6) is not ful�lled for the
two extreme observations (1 and 26). Columns 6 and 7 present
the relationship between the problematic observation 1 and the
rest of the observations. As it can be observed, a signi�cant de-
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Figure 1. Test 1 network

Table 1. Accuracy harmonization of network 1

No. Begin End Start Modi�cations
Obs. 1 Obs. 1, 2, 5 Obs. 1, 2, 5, 26, 25, 22

σ Di,i Di,1 δi|1 σ Di,i σ Di,i σ Di,i
1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 1.00 0.533998 0.533998 1.00 1.10 0.486398 1.10 0.499083 1.10 0.499083
2 1 11 1.00 0.497526 0.255164 -0.26164 1.00 0.509980 1.05 0.485935 1.05 0.485935
3 1 12 1.15 0.394099 0.242464 -0.23625 1.15 0.405344 1.15 0.417838 1.15 0.417838
4 2 11 1.15 0.394099 -0.242460 -0.23625 1.15 0.405344 1.15 0.417838 1.15 0.417838
5 2 12 1.00 0.497526 -0.255160 -0.26164 1.00 0.509980 1.05 0.485935 1.05 0.485935
6 11 12 1.00 0.364588 0.023670 -0.00225 1.00 0.364695 1.00 0.370258 1.00 0.370258
7 11 21 1.00 0.458845 0.011310 -0.00051 1.00 0.458870 1.00 0.460140 1.00 0.460140
8 11 22 1.15 0.359173 0.010747 -0.00046 1.15 0.359195 1.15 0.360342 1.15 0.360342
9 12 21 1.15 0.359173 -0.010750 -0.00046 1.15 0.359195 1.15 0.360342 1.15 0.360342
10 12 22 1.00 0.458845 -0.011310 -0.00051 1.00 0.458870 1.00 0.460140 1.00 0.460140
11 21 22 1.00 0.364255 0.001049 -4.4·10–6 1.00 0.364255 1.00 0.364266 1.00 0.364266
12 21 31 1.00 0.458769 0.000501 -1·10–6 1.00 0.458769 1.00 0.458772 1.00 0.458774
13 21 32 1.15 0.359104 0.000476 -9.1·10–7 1.15 0.359104 1.15 0.359106 1.15 0.359109
14 22 31 1.15 0.359104 -0.000480 -9.1·10–7 1.15 0.359104 1.15 0.359106 1.15 0.359109
15 22 32 1.00 0.458769 -0.000500 -1·10–6 1.00 0.458769 1.00 0.458772 1.00 0.458774
16 31 32 1.00 0.364255 0.000046 -8.7·10–9 1.00 0.364255 1.00 0.364255 1.00 0.364266
17 31 41 1.00 0.458845 0.000022 -2·10–9 1.00 0.458845 1.00 0.458845 1.00 0.460140
18 31 42 1.15 0.359173 0.000021 -1.8·10–9 1.15 0.359173 1.15 0.359173 1.15 0.360342
19 32 41 1.15 0.359173 -0.000021 -1.8·10–9 1.15 0.359173 1.15 0.359173 1.15 0.360342
20 32 42 1.00 0.458845 -0.000022 -2·10–9 1.00 0.458845 1.00 0.458845 1.00 0.460140
21 41 42 1.00 0.364588 0.000002 -1.7·10–11 1.00 0.364588 1.00 0.364588 1.00 0.370258
22 41 51 1.00 0.497526 9.65·10–7 -3.7·10–12 1.00 0.497526 1.00 0.497526 1.05 0.485935
23 41 52 1.15 0.394099 9.55·10–7 -3.7·10–12 1.15 0.394099 1.15 0.394099 1.15 0.417838
24 42 51 1.15 0.394099 -9.6·10–7 -3.7·10–12 1.15 0.394099 1.15 0.394099 1.15 0.417838
25 42 52 1.00 0.497526 -9.6·10–7 -3.7·10–12 1.00 0.497526 1.00 0.497526 1.05 0.485935
26 51 52 1.00 0.533998 1.34·10–7 -7.2·10–14 1.00 0.533998 1.00 0.533998 1.10 0.499083
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Table 2. Accuracy harmonization of network 2

No. Station Target D / A*
Start Modi�cation

σk = 0.001 σd = 0.001 + 0.000004d Obs. 35, 36, 37
σ Di,i Di,35 δi|35 σ Di,i

1 2 3 4 5 6 7 8 9 10
1 2 4 A 0.00100 0.31483 0.00064 0.00000 0.00100 0.314931
2 2 3 A 0.00100 0.29529 0.01050 -0.00047 0.00100 0.295670
3 2 7 A 0.00100 0.28282 -0.01062 -0.00048 0.00100 0.283419
4 2 1 A 0.00100 0.38870 -0.00052 0.00000 0.00100 0.388723
5 2 4 D 0.00250 0.26656 -0.00631 -0.00017 0.00220 0.266905
6 2 3 D 0.00350 0.19006 0.00558 -0.00013 0.00300 0.190105
7 2 7 D 0.00306 0.22616 0.00403 -0.00007 0.00265 0.226802
8 2 1 D 0.00622 0.45573 0.00048 0.00000 0.00518 0.455751
9 3 2 A 0.00100 0.33006 -0.02210 -0.00207 0.00100 0.330487
10 3 4 A 0.00100 0.37008 -0.00730 -0.00023 0.00100 0.370184
11 3 5 A 0.00100 0.32225 0.06050 -0.01555 0.00100 0.325683
12 3 1 A 0.00100 0.42680 -0.03110 -0.00411 0.00100 0.428105
13 3 2 D 0.00350 0.19006 0.00558 -0.00013 0.00300 0.190105
14 3 4 D 0.00200 0.30539 0.01701 -0.00123 0.00180 0.305867
15 3 5 D 0.00258 0.24137 -0.02107 -0.00188 0.00226 0.242192
16 3 1 D 0.00610 0.37276 -0.01562 -0.00104 0.00508 0.373753
17 4 1 A 0.00100 0.35219 -0.01831 -0.00142 0.00100 0.353398
18 4 2 A 0.00100 0.46683 -0.01623 -0.00112 0.00100 0.467363
19 4 3 A 0.00100 0.49941 0.00842 -0.00030 0.00100 0.499471
20 4 5 A 0.00100 0.40064 0.12469 -0.06603 0.00100 0.415269
21 4 6 A 0.00100 0.34751 -0.04731 -0.00951 0.00100 0.356598
22 4 7 A 0.00100 0.35336 -0.05125 -0.01116 0.00100 0.360654
23 4 1 D 0.00600 0.28140 -0.00061 0.00000 0.00500 0.281487
24 4 2 D 0.00250 0.26656 -0.00631 -0.00017 0.00220 0.266905
25 4 3 D 0.00200 0.30539 0.01701 -0.00123 0.00180 0.305867
26 4 5 D 0.00171 0.29359 -0.13729 -0.08005 0.00157 0.310582
27 4 6 D 0.00150 0.29365 0.11672 -0.05786 0.00140 0.311148
28 4 7 D 0.00171 0.29503 -0.01183 -0.00059 0.00157 0.310227
29 5 4 A 0.00100 0.39923 -0.05078 -0.01095 0.00100 0.401508
30 5 3 A 0.00100 0.46590 -0.09923 -0.04182 0.00100 0.475561
31 5 6 A 0.00100 0.46703 0.15001 -0.09557 0.00100 0.488163
32 5 4 D 0.00171 0.29359 -0.13729 -0.08005 0.00157 0.310582
33 5 3 D 0.00258 0.24137 -0.02107 -0.00188 0.00226 0.242192
34 5 6 D 0.00150 0.35769 0.08441 -0.03026 0.00140 0.365040
35 6 5 A 0.00100 0.62062 0.62062 1.00000 0.00140 0.499961
36 6 4 A 0.00100 0.49507 0.24784 -0.26088 0.00122 0.495280
37 6 7 A 0.00100 0.61137 0.13154 -0.07349 0.00140 0.491810
38 6 5 D 0.00150 0.35769 0.08441 -0.03026 0.00140 0.365040
39 6 4 D 0.00150 0.29365 0.11672 -0.05786 0.00140 0.311148
40 6 7 D 0.00150 0.35797 -0.00494 -0.00010 0.00140 0.363970
41 7 4 A 0.00100 0.36471 0.01336 -0.00076 0.00100 0.365467
42 7 2 A 0.00100 0.37371 0.03713 -0.00585 0.00100 0.376982
43 7 6 A 0.00100 0.44888 -0.09900 -0.04163 0.00100 0.474086
44 7 1 A 0.00100 0.47930 0.04852 -0.01000 0.00100 0.484827
45 7 4 D 0.00171 0.29503 -0.01183 -0.00059 0.00157 0.310227
46 7 2 D 0.00306 0.22616 0.00403 -0.00007 0.00265 0.226802
47 7 6 D 0.00150 0.35797 -0.00494 -0.00010 0.00140 0.363970
48 7 1 D 0.00553 0.35859 0.01421 -0.00086 0.00462 0.359734
*D – distance, A – angle
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pendency between observations in relation to the observation 1
can be discussed only for observations 2 to 5, with satisfactory
reliability indices for observations 3 and 4.
The distribution of values Di,1 and δi|1 is con�rmed in thecourse of accuracy harmonisation presented by columns 8–13.

Clearly, the �rst step involving the change in the value of σ
for the �rst observation caused an improvement in the relia-
bility index for this observation, but, at the same time, it was
also the cause of deterioration of the indices for the connected
observations, where for observations 2 and 5 condition (6) was
exceeded. This fact illustrates the role played by coupled obser-
vations characterised by the Dmatrix. Modi�cation of the σ for
observations 2 and 5 during the second iteration led to a situ-
ation, where condition (6) is ful�lled for all the observations
connected to observation 1. Columns 12 and 13 show the �nal
set of σ for all the observations (after changes were applied to
the opposite segment of the network connected to observation
26).
The second example concerns a linear-angular network pre-

sented in Fig. 2. The network consists of 7 points, between
which 48 observations were designed (24 directions, 24 dis-
tances). The assumed constant mean error for the directions
took the value of σA = ±0.001 gon. The mean error for dis-tances is expressed by the equation σD = ±1 mm + 4 ppm. As-suming a non-distorting datum, the mean value of the diago-
nal element of the D matrix is equal to:

Davg = un =
17
48 = 0.354.

A list of observations with their mean errors is presented in
Table 2. On the basis of the reliability indices shown in column
6 one can conclude that condition (6) is not ful�lled for two
directional observations (35 and 37 – in Fig. 2 marked with
a thick, red line), where the observation 35 proves to be the
most problematic (Di,i = 0.62062). By analysing the summaryof the extra-diagonal values Di,35 (col. 7) and the values of thereaction coe�cient δi|35 (col. 8) it can be observed that thestrongest connection for observation 35 occurs between obser-
vation 36 (δi|35 = –0.26088 ). In Fig. 2 these observations aremarked with a thin, red line. Because the reliability index for
that observation lies very close to 0.5, it is expected that the
change in σ35 will cause the Di,i for observation 36 to fail cri-terion (6). In order to avoid such situation, it was decided to
change the σ for both observations, for which the criterion is
not ful�lled (35 and 37) and, at the same time, for the observa-
tion 36. The e�ects of the change are presented in columns 9
and 10. As it can be observed, condition (6) was satis�ed for all
the observations in a single iteration.

4 Conclusions

Basing on the carried-out studies and computational tests the
following conclusions can be drawn. By utilising formula (15)
it is possible – through change in the standard deviation σ for
the selected observation – to easily obtain the desired value of
the reliability index for that observation. However, this type
of change deteriorates the indices for the remaining observa-
tions. The reaction coe�cient δi|k (17) is the measure of thee�ect a change in standard deviation σ for the observation has
on the reliability index for any other observation. Analysis of
the value of this coe�cient makes it possible to predict the
negative e�ects (deterioration of the reliability indices) for the
other observations in the network and “preventively” modify
the σ for other “endangered” observations, thereby shortening
the process of reaching the �nal outcome.
The procedure applied in this study possesses, to a large

Figure 2. Test 2 network

degree, the characteristics of a manual one. However, the pre-
sented equations may serve as a base for the creation of an au-
tomated algorithm, where consecutive steps will be carried out
on the basis on unambiguous rules. De�nition of these rules
and identi�cation of the connected numerical parameters re-
quires further research.
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