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Abstract
Very Long Baseline Interferometry (VLBI) is the only space geodetic technique
capable to realise the Celestial Reference Frame and tie it with the Terrestrial
Reference Frame. It is also the only technique, which measures all the Earth
Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in deter-
mination of the universal time, nutation and polar motion and station coordinates
is invaluable. Although geodetic VLBI has been providing observations for more
than 30 years, there are no clear guidelines how to deal with the stations or
baselines having significantly bigger post-fit residuals than the other ones. In our
work we compare the common weighting strategy, using squared formal errors,
with strategies involving exclusion or down-weighting of stations or baselines.
For that purpose we apply the Vienna VLBI Software VieVS with necessary addi-
tional procedures. In our analysis we focus on statistical indicators that might be
the criterion of excluding or down-weighting the inferior stations or baselines, as
well as on the influence of adopted strategy on the EOP and station coordinates
estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions
there is no need to exclude any data as the down-weighting procedure is suffi-
ciently efficient. Although results presented here do not clearly indicate the best
algorithm, they show strengths and weaknesses of the applied methods and
point some limitations of automatic analysis of VLBI data. Moreover, it is also
shown that the influence of the adopted weighting strategy is not always clearly
reflected in the results of analysis.
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1. Introduction

The Very Long Baseline Interferometry (VLBI) is a space-based geodetic technique which
relies on observations of radio signals from extragalactic radio sources using special radiote-
lescopes located on the Earth’s surface. It plays the key role in modern geodesy, as it is
used to define the International Celestial and the International Terrestrial Reference Frames
(ICRF and ITRF, respectively) and to monitor their mutual relations, as well as dynamics
and orientation of the Earth. VLBI can also be used to create and improve ionosphere
models and validate tropospheric parameters derived from other space geodetic techniques
(Schuh & Behrend, 2012). It also furnish information about relativistic bending (Sovers et al.,
1998), gravitational deflection of radio waves, rudimentary details of radio-source structure,
Earth’s long term motion in inertial space (galactic rotation) or Love numbers (Krasna, 2013).
Therefore it is required to maintain all technical and computational aspects of the technique
at the highest possible level (Petrachenko et al., 2013). To fulfil these requirements there is
a need for improvement of observing equipment, but also of observing strategies, models or
data analysis process, which is the main concern in this work.

Many investigations of the subject have been performed and some improvements of
stochastic model have been proposed. For instance, (Schuh & Tesmer, 2000) suggest
usage of full variance-covariance matrix with a priori correlations between the observables;
(Tesmer, 2003), (Tesmer & Kutterer, 2004) and (Zubko et al., 2012) propose to differentiate
between stochastic quantities using several variance components (e.g. source dependent
variance, elevation dependent variance). All of the research mentioned above focus on
finding an alternative to the standard Gauss-Markov model with one stochastic property (that
is common level of variance). There have been also investigated other problems connected
with data analysis like the role of constraints (Kutterer et al., 2003) or methods of the outliers
detection (Bachmann et al., 2012). Nevertheless, the process of VLBI data analysis still
depends, to a certain extent, on experience of an analyst, especially when incorrect data
negatively affect results (e.g. (Nilsson et al., 2014)). In such cases, the analyst has to
decide between removing, down-weighting or leaving these data unchanged. Removing
data seems to be the least desirable action as it leads to losing information or even to lack of
the solution (due to singularity of normal equations). Moreover, excluding any station causes
disability to determine coordinates of this site and changes of geometry of the network. On
the other hand, if we want to improve the solution, leaving bad data is not an option. The
most appropriate solution seems to be down-weighting observations, as it allows saving the
required data.

In our work we are attempting to assess when the data should be down-weighted and how
the weighting strategy influences the results. We focus here on Earth Orientation Parameters
(EOP) and station coordinates. We check four approaches to weighting observations and
compare them with the standard approach, all described in section 2. Results of analysis
are described in section 3 and conclusions are outlined in section 4.

2. Data and weighting strategies

In this investigation, about 1400 24-hour geodetic VLBI sessions of type R1, R4 and RDV
were processed (IVS, 2013). Data sets have been downloaded from the International VLBI
Service (IVS) websites and they are in NGS format files. We selected sessions which are
appropriate to estimate EOP and station coordinates, so we are able to asses the influence
of the weighting strategies on those parameters. Each session was processed separately,
using the Vienna VLBI Software - VieVS developed by (Böhm et al., 2012) and applying the
same set of parameters and models.
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We adopted VTRF2008 (Böckmann et al., 2010) and ICRF2 (Fey et al., 2009) as the
terrestrial and celestial reference frames, respectively. Station coordinates were estimated
as one offset per session, applying the No Net Rotation and No Net Translation conditions.
Conditions were imposed on all stations in a session, except those not contained in the
VTRF2008 catalogue or excluded from the catalogue due to e.g. an earthquake. Moreover,
we introduced station corrections due to the solid Earth tides, ocean tidal loading (FES2004,
(Lyard et al., 2006)), atmosphere tidal and non-tidal loading after (Böhm et al., 2006), pole
tide, ocean pole tide and thermal antenna deformation. The radio-source coordinates
were fixed to their catalogue positions, and source structure corrections were not applied.
Regarding troposphere, we estimated zenith wet delays with 1 hour interval, and gradients
with 6 hours interval. The a priori tropospheric delays were modelled using the Vienna
mapping functions (VMF1, (Böhm et al., 2006)) and the Saastamoinen tropospheric model
(Saastamoinen, 1972), temperature and pressure were taken from the NGS file (observed
at a site). The clock offsets were estimated with 1 hour resolution, as a piece-wise linear
offsets with one rate and one quadratic term per clock. Regarding EOP, all parameters were
estimated once per day. As an a priori values we set the IERS C04 08 time series, including
a priori celestial pole offsets and high frequency variations due to ocean tides and librations.
As a precession-nutation model we used IAU 2006/2000A (Petit & Luzum, 2010). As an
additional restriction we chose observations with elevation angle exceeding 5 degrees.

2.1. The standard approach

The standard approach (SA) to parameter estimation realized by VieVS is based on the least
squares adjustment with the Gauss-Markov model, given by:

Ax = y + v, with D(y) = Cyy = σ2
0Qyy = σ2

0P−1 (1)

where y is a vector of the n observations, v denotes vector of the residuals, A is a design
matrix and x is a vector of the u unknowns. The stochastic model is described by the
dispersion operator D(·), the observation covariance matrix Cyy , the corresponding cofactor
matrix Qyy , the weight matrix P and the variance scaling factor σ2

0, estimated on the basis of
post-fit residuals. The vector of unknown parameters x̂ is estimated using the least-squares
formula:

x̂ =
(
AT PA

)−1
AT Py, (2)

and the estimate σ̂2
0 of the unitless variance factor is computed based on the post-fit residuals

v̂ = Ax̂ − y, by:

σ̂2
0 =

v̂T Pv̂
n − u

(3)

As the stochastic dependencies between the observations are unknown, the weight matrix
P does not contain a priori information about correlation between observations and it is
realized by a diagonal matrix:

P =


(
σ2

1 + σ2
const

)−1 0 ... 0
0

(
σ2

2 + σ2
const

)−1 ... 0
... ... ... ...
0 0 ...

(
σ2

n + σ2
const

)−1

 = diag
(
σ2

i + σ2
const

)−1
(4)

where σi is a formal error of a particular observation, derived during the correlation process
and given in the NGS file, and σ2

const = 1 cm2 is an arbitrary quantity added to account for
model deficiency.
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2.2. Baseline-dependent weighting approaches

VieVS offers possibility to apply baseline dependent weights (BDW). In this variant the whole
process of parameter estimation is made, the vector v̂ of residuals is computed and the new
weights are computed based on it. Then the process of estimation is repeated using the new
weight matrix PBDW . The matrix is still diagonal, still contains formal errors σi , but instead of
constant factor of 1 cm2 the baseline RMS σ2

bk
(where bk refers to a k -th baseline) is used:

PBDW = diag
(
σ2

i + σ2
bk

)−1
(5)

In this approach all observations of all baselines have different weights. The baseline
RMS σbk is constant for all nbk observations of a particular baseline and it is computed based
on the residuals v̂bk of the baseline:

σ̂2
bk

=
v̂T

bk
v̂bk

nbk

(6)

As it was mentioned before, the BDW approach changes weights of all observations.
Therefore for our purpose we slightly modify the variant and apply new weights for obser-
vations of only one baseline, and we call the approach one baseline dependent weights
(OBDW). In this approach the variance estimator (eq. 3) for each baseline is computed first,
then it is compared to the critical value σ2

max taken from the χ2 distribution. If the ratio of
those two values exceeds the critical value, the factor σ̂2

bk
is computed using eq. 6. The new

weights are computed for observations of the baseline with the highest value of σ̂2
bk

and 1 cm2

is added to all observations (even those down-weighted). So the new weight matrix POBDW

has on its diagonal
(
σ2

i + σ2
const + σ2

bk

)−1 for the least reliable baseline, or
(
σ2

i + σ2
const

)−1 for
the rest of observations.

2.3. Station-dependent weighting approaches

VieVS enables also down-weighting observations containing a particular station. This variant
is partially manual, as the down-weighting factor σst is not computed automatically, but
is given by a user in the option file (see http://vievswiki.geo.tuwien.ac.at for details). The
squared factor is added to the σ2

i + σ2
const of all observations containing the particular station

in the weight matrix. We slightly modified this option for our purpose by implementing the
following two approaches: Station-Dependent Weighting (SDW) and One-Station-Dependent
Weighting (OSDW). In both cases the process of computation is similar to the BDW and
OBDW approaches, respectively. Although, instead of using σ̂2

bk
, the down-weighting factor

σ̂st (station RMS) is used:

σ̂2
sti =

v̂T
sti v̂sti

nsti
(7)

where v̂sti is a residual vector of observations containing i-th station and nsti is a number
of the observations. In the SDW approach the weights of all observations are changed,
using the new weight matrix PSWD = diag

(
σ2

i + σ2
sta + σ2

stb

)−1 with formal errors and down-
weighting factors of both stations constituting the baseline. In this case no changes of the
reference frame definition are introduced. In the OSDW approach, the weighting matrix
POSDW has on its diagonal

(
σ2

i + σ2
const + σ2

sti

)−1 for observations of a baseline with the worst

station, or
(
σ2

i + σ2
const

)−1 for the rest of observations. The rule of choosing the weakest
station is the same as the way of choosing the weakest baseline in the OBDW approach.
Moreover, the down-weighted station is excluded from the NNT/NNR conditions.
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3. Analysis and results

To assess the influence of adopted strategies we processed over 1400 VLBI 24-hour ses-
sions using standard approach, as well as four alternative weighting strategies. The standard
models were applied in computation while changing only the weighting strategy (see Sec-
tion 2). In order to choose the most appropriate algorithm for particular cases we compared
the results and analysed a set of indicators. As a first index of the solution appropriateness
we used the variance scaling factor, as it is commonly used in statistic and in VLBI data
analysis (eg. (Nilsson et al., 2014)). For each step and for each session the variance
scaling factors of session, stations and baselines were computed to indicate the possible
source of inappropriateness. In Figure 1 the variance factors of main solution for all sessions
in each approach are presented. As it could be seen, the variance factors are smaller
for all alternative approaches than for the standard approach which is desirable in most
sessions. However, in the BDW and SDW algorithms all observations are down-weighted
that significantly decreases the value of the variance factor much below 1. Although we
expect a lower variance factor, it should not be much lower than 1, as it means that the a
priori errors of observations, which are introduced to the weight matrix, are too high.
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Fig. 1. Estimated variance factors for the analysed sessions and strategies: SA - Standard Approach,
SDW - Station-Dependent, OSDW - One-Station-Dependent, OBDW - One-Baseline-Dependent,
BDW - Baseline-Dependent

In the standard approach only about 56% of sessions have the variance factor lower
than 1, about 34% between 1 and 1.5 and about 10% higher than 1.5. Therefore about 620
out of 1400 sessions require additional analysis to decrease the variance factor below the
critical level. For alternative approaches the number of sessions having the variance factor
lower than 1 significantly increases: for BDW by ∼ 91.5%; SDW ∼ 98%; OSDW ∼ 78%;
OBDW ∼ 60.5%. Taking the variance factor as an indicator of correctness of solution we
can notice that SDW algorithm reduces the need of manual analysis to 2% of sessions (28
sessions of 1400) while OBDW does not seem efficient in terms of reducing the variance
factor.

Apart from the a posteriori session variance factors of main solutions we present the
station variance factors (Table 1), the baseline variance factors (Figure 2) and residuals
for chosen sessions (Figure 3). Session 14MAY29XE (top left) shows results which are
typical for about 60-70% of analysed sessions, where change of weighting strategy does
not change much the variance factor and value of estimated parameters. As it is shown for
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Tab. 1. A posteriori variance factors from different solution strategies for selected sessions

Stat. No session SA BDW SDW OSDW OBDW

14MAY29 1.06 0.91 0.70 1.02 1.02

1 MATERA 1.05 0.88 0.67 1.00 1.00
2 NYALES20 0.84 0.79 0.56 0.82 0.82
3 KATH12M 0.90 0.82 0.63 0.90 0.90
4 FORTLEZA 0.94 0.81 0.62 0.90 0.90
5 HOBART12 0.91 0.82 0.61 0.89 0.89
6 WETTZELL 0.95 0.84 0.59 0.89 0.89
7 KOKEE 1.14 0.84 0.71 1.06 1.06
8 TIGOCONC 0.98 0.76 0.63 0.92 0.92

02AUG29 5.63 1.02 0.78 2.25 4.14

1 NYALES20 6.26 1.06 0.85 2.43 4.70
2 WETTZELL 7.43 1.01 0.86 1.16 4.98
3 ALGOPARK 4.66 0.97 0.65 2.22 3.47
4 SESHAN25 2.22 0.61 0.37 1.25 1.59
5 KOKEE 3.19 0.92 0.66 2.78 2.93

09MAY26 22.83 0.85 0.65 0.86 0.90

1 NYALES20 7.14 0.78 0.55 0.73 0.75
2 ONSALA60 5.87 0.81 0.60 0.82 0.84
3 WESTFORD 35.15 0.79 0.62 0.84 0.89
4 WETTZELL 15.02 0.83 0.60 0.83 0.84
5 ZELENCHK 2.84 0.78 0.57 0.75 0.76
6 FORTLEZA 16.20 0.81 0.62 0.83 0.89
7 TSUKUB32 4.31 0.81 0.63 0.87 0.89
8 TIGOCONC 86.38 0.91 0.84 0.88 1.33

06MAY11 30.49 0.59 0.48 1.17 10.77

1 FORTLEZA 3.23 0.74 0.25 1.41 1.99
2 MEDICINA 16.22 0.48 0.20 0.78 4.03
3 ALGOPARK 12.94 0.49 0.23 0.92 4.20
4 SESHAN25 76.53 0.53 1.34 1.54 28.71
5 WETTZELL 18.57 0.51 0.21 0.96 7.08
6 KOKEE 48.20 0.41 0.78 1.37 16.69

this session, the variance factor of standard approach is close to one, significantly lower
than the critical value. The same holds for station and baselines (which are not presented
here). However, we can see that the use of the alternative weighting strategies decreases
the variance factor, although it is not necessary in this case. In case of session 14MAY29 the
residuals are at the level of several centimetres for all approaches. The solution for standard
approach is good and change of weighting strategy does not influence the size of residuals.

For sessions 02AUG29, 09MAY26 and 06MAY11 we can notice high session’s and
stations’ variance factors for standard approach and considerably lower values for the
alternative ones. For sessions 09MAY26 and 06MAY11 we can see very high, reaching
even several meters, residuals obtained by the standard approach. When applying the
alternative weighting strategies both the size of residuals and the post-fit variances of
sessions, stations and baselines became significantly lower. For session 09MAY26 all
alternative approaches improve main solution and decrease the variance coefficient for
all stations and baselines participating in the observations. Each alternative approach is
efficient and gives the variance factor below the critical level. However, for session 06MAY11
the one-baseline-dependent-weighting is not efficient enough. That might suggest that not a
baseline is affected but probably a station, which could be deduced from the list of variance
factors shown in Table 1 for this session. For the last mentioned session 02AUG29 both the
residuals and variance factors are quite large, reaching 40 cm and 5.6, respectively. Here,
a change of the weighting strategy gives a positive solution only if we apply the station or
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Fig. 2. Baseline variance factors for different approaches (from left: SA, BDW, SDW, OSDW, OBDW)
for sessions 09MAY26 (top) and for 06MAY11 (bottom). Stations are identified by the same numbers
as in Table 1

baseline-dependent weighting. Changing weights of baselines containing particular station
or weights of one particular baseline does not decrease the variance factor and residuals
below the critical level, hence we should apply more strict algorithm as BDW or SDW.

Another quality indicator is the baseline length repeatability. Figure 4 illustrates the
baseline length repeatability for baselines computed more than 50 times from about 1400
sessions between 1997 and 2014. As it could be seen, change of weighting strategy does
not cause big variations in the baseline repeatability. It is also visible that for short baselines
(up to 3000 km) there are almost no changes in baseline lengths. In Table 2 we present four
baselines with the largest changes of the length repeatability. For the last baseline shown in

Tab. 2. Baseline repeatability in [cm] for vectors having the worst baseline repeatability factor and for
a typical baseline: SESHAN25-WESTFORD

Baseline length [km] SA BDW SDW OSDW OBDW

TSUKUB32-YARRA12M 7205 34.39 12.87 22.37 42.80 50.49
HOBART12-YARRA12M 3211 23.55 11.39 10.91 10.95 10.92
FORTLEZA-HARTRAO 7025 11.52 6.09 7.75 13.74 15.07
HARTRAO -WETTZELL 7832 11.03 2.62 6.67 11.84 14.83

SESHAN25-WESTFORD 10 157 1.75 1.67 1.70 1.76 1.71

Table 2, SESHAN25-WESTFORD (representative for most of the baselines), the change in
baseline repeatability is very subtle and cannot be treated as an indicator for improvement
or deterioration of solution due to the weighting strategy. For problematic baselines applying
OSDW or OBDW increases the baseline repeatability factor (i.e. standard deviations of
baselines from all sessions), which is undesirable. On the other hand, the BDW and SDW
algorithm allow us to significantly decrease the repeatability factor.
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Fig. 3. Post-fit residuals of baseline lengths for sample sessions.
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Fig. 4. Baseline repeatability for baselines estimated more than 50 times in about 1400 sessions

The last overall aspect, which we test here, is the correlation coefficient between the
estimated parameters. In Figure 5 the correlation matrices for different approaches for
sample session 05MAY19, representative for most cases.

What could be seen here is that the correlations between estimated parameters are
slightly changed. It shows that introducing the additional weighting in most cases do not
increase the correlations between estimated parameters. However, in extreme cases down-
weighting observations might cause the singularity in normal equation matrix disabling the
least-squares solution. After taking into account all of these indicators it can be concluded
that introducing of any alternative weighting strategy is difficult for being automated. Chang-
ing the weighting strategy must be carefully analysed and supervised by the user, although
some strategies seem to be more effective.

EOP and Station Coordinates
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The overall indicators give an overview of sessions or stations condition and tell whether
introducing another weighting strategy improves or deteriorates the solution. We are inter-
ested in the influence of the weighting approach on the estimated parameters such as station
coordinates and EOP. To assess the impact on EOP, first we compared values obtained in
different approaches with respect to the IERS EOP C04 series, which are shown in Figure 6.
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Fig. 6. Corrections to the IERS C04 EOP series estimated from VLBI data basing by using different
approaches of weighting strategies

Besides a few sessions, the weighting strategy does not change significantly the es-
timated values of polar motion, nutation or universal time. The differences between the
estimates based on particular strategies, in most cases, are not larger than the uncertainties
of the estimated parameters. However, in some cases quite big discrepancies can be
noticed. Nevertheless they usually refer to sessions with high variance factors, which can
be also seen from the comparison in Figure 7, where the estimated corrections to the EOP
C04 series are presented for sample sessions from Table 1. Detailed description of this
comparison is presented below.

Subsequently, we compared mean values of each parameter (Table 3), to check if a bias
occurs in any approach. Then we subtracted mean value from the respective time series
and computed standard deviation (Table 3) of each parameter. Many values and standard
deviations are at the same level in each approach, so we can conclude that no bias occurs
in our results and a chosen strategy has no substantial influence on EOP estimates.
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Tab. 3. Mean differences with respect to the IERS-08-C04 series and standard deviations of EOP
(UT1 in [ms], Polar motion and nutation in [mas])

Mean values Standard deviations

Approach xpol ypol UT1 dX dY xpol ypol UT1 dX dY

SA 0.0141 0.1518 -0.0013 0.0028 -0.0044 0.2461 0.2806 0.0147 0.0961 0.1055
BDW 0.0119 0.1453 -0.0018 0.0023 -0.0031 0.2361 0.2745 0.0138 0.0868 0.0933
SDW 0.0140 0.1502 -0.0015 0.0051 -0.0047 0.2475 0.2797 0.0135 0.0929 0.0987

OSDW 0.0155 0.1518 -0.0015 0.0033 -0.0033 0.2410 0.2705 0.0140 0.0884 0.0942
OBDW 0.0114 0.1520 -0.0014 0.0032 -0.0048 0.2443 0.2766 0.0140 0.0951 0.1049

Nevertheless, we checked also percentage of outliers in the time series of every EOP
derived from each approach (Table 4). For polar motion we discarded values higher than 1
mas, for nutation corrections higher than 0.5 mas and for dUT1 higher than 100µs. Despite
the similar level of standard deviations, all alternative approaches have a lower percentage
of outliers than the standard approach. It is visible especially for nutation corrections. In this
comparison, the BDW approach seems to be the most effective.

Regarding station coordinates, we compared corrections obtained with different ap-
proaches for all stations, which took part in more than 20 sessions. We analysed not only
corrections as such, but also differences between corrections obtained with alternative
approaches and the standard one. In Figure 8 the time series of XYZ corrections to the
coordinates for station Wettzell are shown. This station was chosen as its time series covers
the whole time span and it participated in most sessions, i.e. 1296.

There are no big discrepancies between values based on different weighting strategies.
Typical difference between coordinates from alternative approaches and the SA does not
exceed 0.5 centimeter and the Wettzell station is representative for most of stations. In
general, mean differences between coordinates corrections from alternative approaches and
the standard one do not exceed (or slightly exceed) the level of 0.5 cm in 80% of stations.
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Tab. 4. Percentage of outliers in time series of each EOP [%]

Approach xpol ypol UT1 dX dY

SA 4.94 6.35 2.60 1.62 1.27
BDW 4.02 5.57 2.19 0.28 0.35

SBDW 4.02 5.85 2.54 0.63 0.63
OSDW 3.39 4.87 2.19 0.42 0.63
OBDW 4.37 6.00 2.47 0.99 0.56
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Fig. 8. Estimated corrections to the station coordinates using different approaches; case of station
WETTZELL

In fact, depending on approach about 72 to almost 86% differences between corrections
are not bigger than 0.25 cm, 85 to almost 92 % not bigger than 0.50 cm, 92 to over 95%
not bigger than 1.00 cm and only 5.0 to 8% is higher than 1.0 cm. Those few percent cases
with considerable discrepancies could be simply divided into two groups. First, where the
change of weighting strategy gave actual improvement (e.g. session 09MAY26, see second
row of Figure 9) and second, where discrepancies in coordinates are high, but there was no
improvement, or there was a deterioration.

Nevertheless, looking at Figure 10 the RMSs of coordinates obtained with different
method are at the same level and the maximum differences are not higher than 0.3 cm, so
it seems that the change of the strategy does not have much influence on corrections to
station coordinates.

Finally, we compared station coordinates and EOP from sessions 14MAY29, 09MAY26,
02AUG29 and 06MAY11 (Figures 9 and 7, respectively) with results from Table 1. Regarding
sessions 14MAY29 and 09MAY26, results from Table 1 and Figures 9 and 7 are consistent.
The former one is a good representation of most sessions and in this example it is visible that
differences between corrections (from all approaches) to both station coordinates and EOP,
are small and there is no clear indication which strategy might be more efficient or better than
the standard one. Therefore, when a session seems to contain a good-quality data, changing
of weighting strategy does not influence results and simply might be unnecessary. On the
other hand, the latter session is a good example of sessions having some bad quality data.
Regarding this example it is clear that the standard approach does not deliver good quality
solution. It results in a high variance factor and very high corrections to station coordinates
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Wielgosz, A., Tercjak, M., Brzeziński, A.: Impact of the adopted strategy. . .

−3 −2 −1 0 1 2 3

MATERA  
NYALES20
KATH12M 

FORTLEZA
HOBART12

KOKEE   
WETTZELL
TIGOCONC

S
es

si
on

 1
4M

A
Y

29

−3 −2 −1 0 1 2 3 −2 0 2

−3 −2 −1 0 1 2 3

NYALES20
ONSALA60

WESTFORD
WETTZELL
ZELENCHK
FORTLEZA
TSUKUB32
TIGOCONC

S
es

si
on

 0
9M

A
Y

26

−3 −2 −1 0 1 2 3−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

NYALES20

WETTZELL

ALGOPARK

SESHAN25

KOKEE   

S
es

si
on

 0
2A

U
G

29

−3 −2 −1 0 1 2 3−3 −2 −1 0 1 2 3

−100 −50 0 50

FORTLEZA

MEDICINA

ALGOPARK

SESHAN25

WETTZELL

KOKEE   

X [cm]

S
es

si
on

 0
6M

A
Y

11

−20 0 20 40 60

Y [cm]

−20 −10 0 10 20

Z [cm]

SA BDW SDW OSDW OBDW

Fig. 9. Corrections to the coordinates estimated using different approaches for sample sessions

and EOP. Nevertheless, again it is hard to say which alternative approach is more efficient,
as all of them give similar results. Looking at results from sessions 02AUG29 and 06MAY11,
we can see that the corrections to EOP and station coordinates are not exactly consistent
with the variance factors. Considering the session 02AUG29 the SA and OBDW seem to not
deliver a good solution (Table 1), but it does not reflect in corrections to station coordinates
and EOP. Although in many cases corrections from both solutions assume the largest values,
they often do not exceed the assumed limit of outliers. Another situation is in the session
06MAY11. According to Table 1, the BDW, SDW and OSDW approaches seem to improve
the solution, nevertheless it is not explicitly reflected in the rest of results, especially station
coordinates. In this case, only the BDW approach seems to actually improve the solution.

Summarizing, we can conclude that for about 70% sessions the standard approach
gives an appropriate solution and the change of the weighting strategy does not influence
significantly the results. For 29% of sessions using the alternative algorithms improve solution
in terms of the variance factor. Nevertheless estimated corrections to station coordinates and
EOP seem to not always reflect those improvements. However, there were also sessions,
wherein none of the approaches could improve the solution and further manual analysis
(including station exclusion) was necessary. Nonetheless, they constitute only about 1% of
all sessions.
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Fig. 10. RMS of VLBI station coordinates for different weighting strategies

4. Conclusions and remarks

In this experiment different weighting strategies of VLBI observations were tested. We
assumed the difference between the estimated variance coefficient and its nominal unit value
as an indicator of appropriateness of the solutions. We also analysed residuals, baseline
repeatability and correlation between the estimated parameters. Finally, we compared the
EOP and station coordinates derived on the basis of five different approaches. We automate
the process of introducing alternative weighting strategy, as well. After taking into account all
of aforementioned issues we can point out that:

• not every session requires an alternative weighting strategy; therefore any possible
automation of the process should take into account some selected indicators, e.g. the
variance factor, in order to asses whether any change is advisable;

• all alternative approaches change the main solution of the session, however, the BDW
and SDW solutions decrease values of weights too much. Therefore they might not
reflect properly the influence of particular observations. Moreover, the OBDW strategy
is not effective and in most cases does not improve the solution sufficiently;

• promising alternative seems to be the OSDW algorithm, which does not change weights
of a good-quality sessions and stations. Application of this strategy allows down-
weighting baselines with a problematic station. Nonetheless, it increases correlations
between estimated parameters and sometimes it does not fully compensate the impact
of other badly behaving stations and should be done in an iterative way for one or
more stations per session;

• it seems that the least effective is the OBDW approach, which gives results most
consistent with the standard approach and in most of analyses do not introduce any
improvement.
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• the estimation of EOP and station coordinates does not strongly depend on a weighting
strategy. The differences between the five solutions are generally not larger than their
uncertainties. Nevertheless it could be expected that the weighting algorithm affects
other estimated parameters;

• there were some sessions for which no alternative approach was efficient and the
exclusion of a station or a baseline was necessary. Nonetheless, the problem concerns
only about 20 sessions out of over 1400.

Summarizing, we can claim that down-weighting observation is in most cases an efficient
way to improve the solution. Nevertheless it is difficult to completely automate the VLBI data
analysis. Hence the analysis process still requires an user’s attention.
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