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Abstract

In the modern geodesy the role of the permanent station is growing
constantly. The proper treatment of the time series from such station lead
to the determination of the reliable velocities. In this paper we focused on
some pre-analysis as well as analysis issues, which have to be performed
upon the time series of the North, East and Up components and showed
the best, in our opinion, methods of determination of periodicities (by
means of Singular Spectrum Analysis) and spatio-temporal correlations
(Principal Component Analysis), that still exist in the time series despite
modelling. Finally, the velocities of the selected European permanent
stations with the associated errors determined following power-law
assumption in the stochastic part is presented.
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1. Introduction

The International Terrestrial Reference Frame (ITRF) is being defined, inter alia, by
GNSS (Global Navigation Satellite System) permanent stations that constantly
register navigation data for observing changes of their position in time. According to
GGOS (Global Geodetic Observing System) resolutions, the ITRF should be stable
at the level of 0.1 mm/yr with respect to the velocities (Plag nad Pearlman, 2009).
Furthermore, the EPN (EUREF Permanent Network) guidelines recommend to move
the permanent station into A (the highest) class when the formal uncertainty of the
last velocity estimate is below 0.5 mm/year (Bruyninx et al., 2013). These demands
make that the several topics during the process of velocity estimation from the
topocentric (North, East and Up) component time series have to be complied.
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2. Data

The number of permanent GNSS stations is constantly growing and starting to cover
almost the entire world with a global network. In consequence, the time span of the
GNSS-derived time series (position, ZTD or EOP) is getting longer and longer. For
our research we used selected position (North, East and Up) time series processed
by Nevada Geodetic Laboratory with PPP (Precise Point Positioning) mode and
expressed in IGS08 (Rebischung et al., 2012) reference frame.

-180°  -150° 1200 90 -60 -30 0 30 60" 90" 120 150 180°
P T
=5 JF
s Teagla. o ' ; 60"
et 4
2 2
Gy
Oloety
30 ; b8 20/
T Do
i G : \ Wy 3 e i
0 > . : o . o
-30° e e o o -30°
AaLisimes = oY NERE 1
‘J
-60° -60°
-90° b + 90"
-180°  -180° -1200  -90° 60 -30° 0 30 60° 90 120 150° 180°

Fig. 1. Layout of stations being processed by the NGL

3. Deterministic model

The time series of each topocentric component (North, East or Up) can be expressed
as:

x(£) = X, + v, -t+i[Ai -sin(w, -+ ¢)]+ O, +iHj x4 e (1) (1)

i=1 j=1

where x, corresponds to the initial value, v, is the station’s velocity, 4;, ; and ¢ are
the amplitude, angular velocity and phase shift of the i-th frequency component of the
time series, O, are the outliers, x? are the offsets’ amplitudes. & are the residuals of
the time series. First 5 terms form the deterministic model, while the last one
(stochastic part) is the underlying noise. Long-term trend (linear or non-linear) is
interpreted as the velocity of station, widely used in modern geodesy to maintain the
terrestrial reference frames (e.g. Altamimi et al., 2011) or for geodynamical
interpretations (e.g. Caporali et al., 2013; Schenk and Schenkova, 2013 or Bogusz et
al., 2014).

Proper pre-analysis consisting of outliers and offsets removal is a crucial issue
since it can affect the character of the time series. We used Median Absolute
Deviation (MAD) criterion (for detail see Klos et al., 2015) for outliers and Sequential
t-test Analysis of Regime Shifts (STARS) algorithm (Rodionov and Overland 2005)
for offset detection.
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The origins of frequency components should be searched within (Dong et al.,

2002):

1. real geophysical processes (tides, loadings or thermal effects coupled with
hydrodynamics etc.);

2. numerical artefacts (draconitics (Agnew and Larson, 2007; Amiri-Simkooei, 2013)
or aliasing (Penna and Stewart, 2003)).

To estimate the influence of the seasonal signal on the trend determination we
defined the General Dilution of Precision (GDP, Klos et al., 2016) as a ratio of
velocity uncertainties when two different deterministic parts are assumed: with and
without seasonal terms. This is a slight modification of a Dilution of Precision
introduced by Blewitt and Lavallée (2002). However, they did not considered
coloured noise in a data, but simply assumed white process. Bos et al. (2010)
discussed their results introducing a model with a coloured noise. They concluded,
that the noise character plays as important role as amplitude of periodic signals in the
data. In this research we initially assumed the deterministic model consisting of
annual, draconitics and Chandler oscillations as well as selected fortnightly
periodicities (Bogusz and Klos, 2015) and then computed the inverse of covariance
matrix for the general power-law process to estimate the variances of the determined
parameters, including station’s velocity. Fig. 2 presents the reduced value of GDP for
North component of BOR1 (Borowiec, Poland) station. If we assume that the relative
error of the GNSS-derived velocity should not exceed 1%, we noticed that 6 years of
data is indispensable to reliably estimate velocity.
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Fig. 2. Reduced General Dilution of Precision for North component of BOR1
(Borowiec, Poland) station. We can notice that the stability at the level of 1%
was obtained with 6 years of continuous observations

It is widely acknowledged, that the most powerful oscillations are concentrated
near tropical year and its overtones (Ray et al., 2008) and are widely modelled by the
Least Squares Estimation (LSE) (e.g. Blewitt and Lavallée, 2002 or Kenyeres and
Bruyninx, 2009). However, this method assumes constancy of amplitudes and phase
shift in time. There is no basis to claim that either real geophysical effects or
numerical artefacts introduce oscillations that are constant in time. So, any of the
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non-parametric estimations should be applied (e.g. Freymueller 2009; Bogusz et al.,
2015). One of them is the Singular Spectrum Analysis (SSA) provided by Broomhead
and King (1986), Vautard et al. (1989) or Ghil and Taricco (1997) and previously
used to analyse GNSS time series by Chen et al. (2013), Zerbini et al. (2013) or
Gruszczynska et al. (2016).

In SSA approach, the Reconstructed Components (RC) are produced for the
original time series (Vautard and Ghil, 1989):

%Zt:AA( _j+DE()  for 1<t<M-1
M
R.(1)= ﬁZAk(t— JADE()  for M<i<N' @)
j=1
1 M
—— Y A4(t-j+1E() for N'<t<N
N_l+1]tZN:+Mt j+1E(t) for t

with M, N being length of the window and number of data in the time series,
respectively, and N'=N-M+1. In this research we adopted M=3-year sliding window,
confirmed previously to be optimal to retrieve the annual and semi-annual oscillations
(Gruszczynska et al., 2016).

This way, we can choose specified periodic signals of interest (e.g. annual and
semi-annual), and investigate their changes in time (Fig. 3).
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Fig. 3. Difference in the seasonals estimation using LSE and SSA approaches. Up
component of CAGS (Gatineau, Canada) GPS permanent station.

As the results of SSA-based analysis, we obtained the variance contribution of
annual and semi-annual signals, as a percentage of the total variance of data in the
Up component. For the set of permanent stations considered here, we noticed, that
the stations located in the South-Eastern part of Europe are characterized by larger
variance in the annual signal compared to other stations (more than 30% of the total
variance is explained by the annual signal) (Gruszczynska et al., 2016).

4. Stochastic part

Agnew (1992) stated that almost all geophysical phenomena follow the power-law
noise being characterized by spectral index and amplitude of the colored noise. It
assesses the goodness of fit by finding the value of likelihood function that best fits
the data in a procedure called parameter estimation (Langbein and Johnson, 1997):
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lik(¥,C,) = -exp(— 05-v".C.™ -e) (3)

where [ik represents the likelihood function, v is the time series residua matrix, Cy is
the covariance matrix of the observations. The integer spectral indices, i.e. -2, -1 and
0 correspond successively to: random-walk (RW), flicker (FN) and white noise (WN),
respectively. As was previously shown by e.g. Zhang et al. (1997), Williams et al.
(2004) or Santamaria-Gémez et al. (2011) the GPS time series are characterized
well by the power-law dependencies being quite close to flicker noise, that is the
effect of mismodelled satellite antenna phase centers (APC), Earth Orientation
Parameters (EOP), SV orbits as well as large-scale atmospheric or hydrologic effects
not being considered to a standard processing of the navigation data.

However, the residua being the ordinary difference between time series and the
deterministic model still are either temporally or spatially correlated (Wdowinski et al.,
1997). The possible reasons of those correlations should be searched within
mismodelling of Earth Orientation Parameters, satellite orbits, clocks and Antenna
Phase Centre (APC) variations as well as unmodeled large scale effects originated
from atmosphere and hydrosphere. Computing algorithms and methods should also
be mentioned as the potential contributors (Dong et al., 2006). That is why we need
to define the Common Mode Error (CME), which is the sum of environmental and
technique-dependent systematic errors in GPS position time series. The CME, which
is a kind of the temporally correlated noise, can be seen in the time series from
regional GNSS networks that span hundreds of kilometers. The method of
subtracting CME was firstly presented by Wdowinski et al. (1997). Nikolaidis (2002),
implemented method called “weighted stacking” by taking individual position Root
Mean Square (RMS) error into consideration. For the set of European stations
associated to the EPN (EUREF Permanent Network) it was successfully investigated
by Bogusz et al. (2015).

In this research we used Principal Component Analysis (PCA), which implements
Empirical Orthogonal Functions (EOF) to reveal common signals in residual time
series (Dong et al., 2006). PCA is a statistical procedure, that uses orthogonal
transformation to subtract the CME stored in particular Principal Components (PC,
Williams et al., 2004). Using this method, we found p-first numbers of significant PCs,
and we then computed CME as follows (Dong et al., 2006):

P

CMEj(ti): Zak (ti )Vk(rj) (4)

with

ak(ti):ZR(ti’rj)vk(rj) (5)

being the k-th principal component of matrix R and v, is corresponding
eigenvector. PCA is an effective algorithm for removing CME. Figure 4 presents
normalized response of the considered network, which can be identified with positive
station contribution into the amount of variation of Up component in first PC.
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Fig. 4. Positive response to the 1st PC for Up component of the selected European stations

The effectiveness of spatio-temporal filtration was proved by the average reduction
of velocity uncertainty of 0.2 mm/year, while maximal reduction was 0.8 mm/year,
which means that the after-filtration reduction of accuracy is about 70% on average
(Gruszczynski et al., 2016).

5. Summary

The term “reliable velocities” has to be understood twofold: in the sense of optimally
determined accuracy as well as consistency with the current knowledge of dynamic
processes that are being occurred in the considered region of the world. In this paper
we focused on the first meaning, the second one was widely described in the paper
by Bogusz et al. (2013). Nowadays, it is widely acknowledged that the stochastic part
of GNSS-derived time series shows the existence of power-law dependencies with
the focus on flicker noise. Omitting that property may lead to overestimation of the
uncertainty of velocity. The velocity values determined with linear regression should
be estimated with taking into consideration the colored noise of the residuals
following (Bos et al., 2008):

4y, TE-x)TH-x)-(N-1)°

ATZ—% F(Z _K'j 2 (6)
2

where N is the data length, x means the estimated spectral index, AT is the
sampling rate, Ap; represents the amplitude of noise, with I' being the gamma
function. Table 1 presents the final product of our analysis by means of the velocities
of the selected European permanent stations with the associated errors determined
following power-law assumption in the stochastic part.

m ==x

v
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Tab. 1. Velocities [mm/y] of the selected European permanent station with the errors

Time span Velocity [mml/y] Velocity error [mmly]
Name Location [decimal
year] N E U my Mg my
AJAC | Ajaccio, France | 2001.0-2005.8 | 15.29 | 21.38 | 0.10 | 0.04 | 0.03 | 0.11
ANKR | Ankara, Turkey | 2000.8-2007.9 | 1243 | 041 | -2.61 | 0.04 | 0.04 | 0.10
BOR1 | Borowiec, Poland | 1996.0-2016.0 | 14.65 | 20.12 | -0.69 | 0.01 0.01 0.03
CRAO | Simeiz, Ukraine | 2003.1-2008.4 | 11.37 | 24.20 | 1.31 | 0.09 | 0.10 | 0.28
EBRE | Roquetes, Spain | 1999.0-2016.0 | 16.19 | 19.70 | -0.33 | 0.03 | 0.02 | 0.03
GLSV | Kiev, Ukraine | 1998.1-2016.0 | 12.03 | 22.48 | 0.11 | 0.02 | 0.02 | 0.06
GOPE O”dlgeég‘lj’bﬁfe"h 1996.0-2016.0 | 1571 | 2018 | 1.56 | 0.01 | 0.01 | 0.03
GRAS | Caussols, France | 1996.0-2016.0 | 16.54 | 20.70 | 0.51 | 0.01 | 0.01 | 0.03
GRAZ | Graz, Austria | 1996.0-2016.0 | 15.93 | 21.64 | 0.35 | 0.01 | 0.01 | 0.03
HERS Ha"ﬂ;ﬁggoﬂ"ted 2001.6-2016.0 | 1641 | 1648 | 0.04 | 002 | 001 | 0.05
HOFN | Hoefn, Iceland | 2002.0-2016.0 | 14.78 | 13.98 | 13.12 | 0.02 | 0.02 | 0.05
KIRU Kiruna, Sweden 1996.0-2016.0 | 14.89 | 16.09 | 6.80 0.02 0.03 0.10
KOSG Kootwijk, 1996.0-2003.0 | 16.22 | 1845 | -0.96 | 0.03 | 0.02 | 0.08
Netherlands
LAMA | Olsztyn, Poland | 2008.0-2012.0 | 14.12 | 20.03 | -0.98 | 0.08 | 0.04 | 0.17
MARS | Maartsbo, Sweden | 1999.1-2016.0 | 14.12 | '519 | 7.31 | 0.01 | 0.01 | 0.06
MATE | Matera, ltaly | 1996.0-2016.0 | 19.45 | 23.22 | 0.97 | 002 | 0.01 | 0.04
MDvO | , Mendeleevo, | 4999 0.2002.8 | 10.65 | 23.74 | 0.89 | 0.10 | 0.13 | 0.49
Russian Federation
METS | IEONUMML | 4996.1.2010.5 | 12.66 | 20.00 | 4.51 | 0.02 | 0.02 | 0.07
NICO | Nicosia, Cyprus | 2009.0-2016.0 | 14.12 | 18.89 | 0.17 | 0.08 | 0.06 | 0.20
NOTO Noto, Italy 1996.0-2000.7 | 18.91 | 20.66 | 0.69 | 0.14 | 0.07 | 0.22
NSSP | Yerevan, Armenia_| 2007.0-2009.7 | 16.39 | 29.37 | -1.76 | 0.14 | 0.16 | 0.59
NYAT Ny-Alesund, | 2000.0-2016.0 | 14.61 | 10.94 | 834 | 003 | 0.01 | 0.10
NYAL Norway 1996.0-2016.0 | 14.08 | 10.65 | 825 | 0.03 | 0.02 | 0.10
ONSA | Onsala, Sweden | 1996.0-2016.0 | 14.77 | 17.25 | 2.54 | 0.01 | 0.01 | 0.02
PDEL Pong,ao Ejég?da’ 2000.2-2016.0 | 16.22 | 12.28 | -0.68 | 0.05 | 0.04 | 0.11
PENC | Penc, Hungary | 2008.0-2016.0 | 14.24 | 22.44 | -1.65 | 0.07 | 0.05 | 0.17
POTS | Potsdam, Germany | 1996.0-2016.0 | 15.15 | 19.15 | -0.27 | 0.01 | 0.01 | 0.04
Qagqortoq /
QAQ1 |  Julianehaab, | 2004.0-2011.0 | 13.53 | -17.24 | 3.44 | 0.04 | 0.07 | 0.24
Greenland
RAMO M'tz"lgrsslmon’ 2006.0-2012.0 | 19.22 | 23.06 | 1.11 | 0.07 | 0.06 | 0.23
REYK | Reykjavik, Iceland | 1996.0-2016.0 | 20.86 | -10.57 | -1.13 | 0.02 | 0.02 | 0.06
RIGA Riga, Latvia | 2001.0-2016.0 | 13.56 | 20.13 | 0.28 | 0.02 | 0.02 | 0.09
SFER | S@n gg;’i‘ﬁ”dq 2001.0-2016.0 | 16.99 | 14.75 | 0.65 | 0.03 | 0.02 | 0.09
SULP | Lviv, Ukraine | 2004.0-2010.6 | 13.97 | 21.64 | -0.01 | 0.04 | 003 | 0.13
TROT | — ' Norway | 2005.0-2016.0 | 15.00 | 14.83 | 4.24 | 0.05 | 0.03 | 0.23
TROM ! Y 172004.0-2009.4 | 14.65 | 14.25 | 3.04 | 0.02 | 0.02 | 0.20
UPAD | Padova, ltaly | 1996.0-2001.9 | 17.85 | 21.60 | 2.54 | 0.06 | 0.03 | 0.09
VILL | Villafranca, Spain | 1996.0-2016.0 | 16.96 | 18.95 | -0.93 | 0.03 | 0.03 | 0.06
WTZA 2001.0-2016.0 | 15.25 | 19.93 | -0.39 | 0.02 | 0.01 | 0.04
WTZR | Bad Koetzting, | 1996.0-2016.0 | 15.50 | 20.35 | -0.85 | 0.02 | 0.01 | 0.03
WTZS Germany 2009.0-2016.0 | 13.78 | 19.14 | -0.46 | 0.10 | 0.05 | 0.23
WTZZ 2002.4-2016.0 | 15.22 | 20.19 | -0.11 | 0.03 | 0.02 | 0.08
zimv | Zmmerwald, 4996 0.9013.0 | 16.43 | 1945 | 264 | 002 | 001 | 0.05
Switzerland
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