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Abstract  
 
The study is devoted to the uses of laser scanning in the field of 
engineering surveying. It is currently one of the main trends of research 
which is developed at the Department of Engineering Surveying and Civil 
Engineering at the Faculty of Mining Surveying and Environmental 
Engineering of AGH University of Science and Technology in Krakow. They 
mainly relate to the issues associated with tower and shell structures, 
infrastructure of rail routes, or development of digital elevation models for a 
wide range of applications. These issues often require the use of a variety 
of scanning techniques (stationary, mobile), but the differences also regard 
the planning of measurement stations and methods of merging point 
clouds. Significant differences appear during the analysis of point clouds, 
especially when modeling objects. Analysis of the selected parameters is 
already possible basing on ad hoc measurements carried out on a point 
cloud. However, only the construction of three-dimensional models 
provides complete information about the shape of structures, allows to 
perform the analysis in any place and reduces the amount of the stored 
data. Some structures can be modeled in the form of simple axes, sections, 
or solids, for others it becomes necessary to create sophisticated models of 
surfaces, depicting local deformations. The examples selected for the study 
allow to assess the scope of measurement and office work for a variety of 
uses related to the issue set forth in the title of this study. Additionally, the 
latest, forward-looking technology was presented - laser scanning 
performed from Unmanned Aerial Vehicles (drones). Currently, it is 
basically in the prototype phase, but it might be expected to make a 
significant progress in numerous applications in the field of engineering 
surveying. 
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1. Introduction 
 
Over the last several years, laser scanning has become one of the most important 
methods of acquiring information about structures which are of interest to 
engineering surveying. Its main advantage, compared to other methods, is the 
possibility to obtain a full model of the structure, and not just its selected geometrical 
parameters. The result of scanning is a point cloud, constituting the basis for 
obtaining a 3D model, followed by its characteristic elements such axes, edges, 
cross sections, surface areas, etc. Sometimes the modeling of the entire structure is 
not required, or sometimes it is too complex, and then it can be reduced to 
approximation of the desired elements of the structure only, or read selected 
information directly from the cloud. Regardless of the final use and the type, a 
continuous model of the structure, replacing a discrete, dense point cloud, allows for 
a considerable reduction in the amount of the data needed to be stored, and 
facilitates a comparison of periodic measurements. 

This paper presents the uses of terrestrial laser scanning in the field of 
engineering surveying and the related applications. The main issue relates to 
measurement methodologies and also provides examples of data modeling. The 
objects which were selected were of various size, structure and specific character: 
elongated and surface structures, with regular and irregular shape. Elongated 
structures can be both uniform objects, for example tower structures, as well as 
extensive investments related to communication routes. In this case, scanning 
methods (stationary or mobile), the methods of data modeling, and the obtained 
geometric parameters subject to assessment, may be different. Surface structures 
can be characterized by a diversified scale as well: from the shell of a shell structure, 
to extensive digital elevation models. Also in these cases, it is possible to use not 
only stationary, or, more broadly, terrestrial scanning, but the combined use of 
scanning and the UAV technique is increasingly gaining significance, which can be 
used, for example, to determine the cubic volume of bulk materials. Depending on 
the shape of the surface (regular or not) and the required accuracy of the models, 
analysis of the data may be performed based on various approximation methods. 

The study discusses examples involving the measurements of industrial chimneys, 
shell structures, infrastructure related to railway routes and elements of the digital 
elevation model. A separate section is devoted to the UAV scanning, which is 
currently treated as a tool in its testing stage, but with a considerable potential to be 
used in the field of engineering surveying.  

Research studies on these issues are currently being conducted at the 
Department of Engineering Surveying and Civil Engineering at the Faculty of Mining 
Surveying and Environmental Engineering of AGH University of Science and 
Technology in Krakow. 
 
2. Tower structure on the example of an industrial chimney 
 
Industrial chimneys are examples of tower structures, for which one of the key 
parameters determined during as-built measurements is the shape of the vertical 
axis. It is most frequently determined using the method of bisector directions tangent 
to the surface, or the polar method (Gocał, 2010), observing at least a few selected 
levels of the structure. The result of the study is the axis in the form of a broken line, 
related to the selected levels, presented in projections to all planes of the coordinate 
system. The measurement and calculation procedures are simple and fast, however, 
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with low accuracy. The coverage is to some extent dependent on the range of the 
scanner - the greater it is, the farther away the stands may be arranged from the 
chimney, which consequently increases the range. 

The range is a key factor determining the applicability of the scanning technique 
for the measurements of tower structures of significant height. It is definitely reduced 
by soot and other pollutants, but red and white warning stripes located in the upper 
parts of chimneys may cause a problem as well. A laser beam with a green dot (e.g. 
Leica ScanStation C10) is strongly absorbed by the red color of the surface, resulting 
in every other stripe being poorly measurable (Fig. 2.a). Scanning of higher chimneys 
most frequently requires a significant approach of the measurement stands towards 
the structure, and measurements of their upper parts are carried out at unfavorable, 
steep lines of sight. 

Point clouds obtained from adjacent positions are usually merged by means of 
separately scanned adjustment points (reflective targets or spheres). Their 
arrangement should form an irregular spatial solid with the span comparable to the 
size of the structure which, in the case of tower structures, may be difficult to meet. 
Due to the industrial infrastructure surrounding chimneys, to ensure visibility from the 
neighboring stands, these points are generally established at a short distance from 
the positions of the scanner, which can be located in close proximity to the chimney. 
The area where the points are located, usually has a smaller (often significantly 
smaller) horizontal span than the height of the observed structure. Additionally, 
vertical span of the target grid, conditioned by the possibility to access high 
structures, is usually limited to a few meters. From the perspective of the scale of a 
tower structure, the arrangement of reference points can therefore be regarded as 
close to coplanar, with a smaller span than the dimensions of the structure. Such 
geometry results in the errors of the elevation coordinate of the target inducing 
several times greater error of fitting clouds at great heights. Therefore, it is 
particularly important to ensure a stable arrangement of targets. To strengthen their 
spatial structure, it is advisable to additionally use the points located on the higher 
parts of the chimney, which can be distinguished on adjacent scans. These 
fragments should be scanned separately, with high resolution to get the best fitting of 
the clouds. The scanning from four observation stands, as it was mentioned above, 
contributes to the appropriate coverage of the clouds. 

Filtration of point clouds, which allows to eliminate these observations which are 
not the chimney construction (galleries, ladders, antennas, lighting, etc.), is an 
important issue preceding the process of the proper modeling. Generally, this 
process is carried out manually, but it is possible to use M-estimation algorithms 
(Huber, 2009), removing outliers from a given model by a predetermined value. This 
model can be a cylinder, a cone, or a set of planes (in the case of octagonal brick 
chimneys). Automatic filtering effect can be assessed in Figure 2.a. The final filtering 
of the cloud is always carried out manually, though, which prevents the removal of 
the points illustrating local deformations of the structure. 

Analysis of the results, depending on the required information, leads to the 
formation of a regular (ideal solid), irregular (surface taking into account deformations 
of the structure), and cross-sectional model. The regular model, as for the filtration of 
the cloud, is created by using elementary geometrical solids or groups of solids. It 
allows to acquire information about local deformations of the structure with respect to 
its design shape, by determining the distance between the points and the surface 
(Fig. 2.b). The presented model contains points with larger deviations (12-30 mm) 
resulting from inaccurate filtering of the points from exterior installations. However, 
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3. Shell structure on the example of a multi-patch roof 
 
Scanning measurements of shell structures become a standard tool for obtaining 
geometric information about the objects of this type. Unlike the tower structures, for 
which the shape of the axis is important, in the case of shells, the most important 
information is about the shape of the shell surface. Classical methods of 
measurement (angular spatial intersection method and polar method using 
reflectorless total stations) are very time-consuming, and moreover, the first one 
requires targeting the existing or determined points. The resulting set of observations 
of small size, typically not exceeding a few hundred points, does not sufficiently 
reflect local deformations of the shell. 

Laser scanning seems to be the currently the most appropriate tool for 
measurements of this type of structures. The point cloud and the models created on 
its basis, offer the possibility of a detailed analysis of local shell deformations. The 
general principles for the arrangement of measurement stations and targets in the 
case of some shells which are also tower structures at the same time (e.g. cooling 
towers), are similar to those for chimney measurements. For the observations of 
shells, there is usually a higher number of scanner stands, which results from a much 
larger span of the structure in the horizontal direction, and often its level of detail (Fig. 
3). The key factor in the selection of the stations is the range of the scanner, 
especially due to the greater variety of materials and colors that can cover the shell. 
Scanning of the object presented in Figure 3, due to its complex structure which 
consisted of seven surface patches of different size, required the use of six 
measurement stations. In the case of shells of a significant spread in the horizontal 
direction, the selection of targets is less critical. Even if it is not possible to install 
them at a greater height, the large area which they cover is protected from failure to 
fit the upper parts of the clouds by the merging process. In addition, when merging 
adjacent scans, due to a large surface being observed, the cloud to cloud method 
could be used as a support. A necessary condition for this method is obviously an 
adequate margin of the cloud coverage, and good merging accuracy is supported by 
high scanning resolution. In particular, the process of merging all the scans can be 
performed only basing on the cloud to cloud method, which significantly accelerates 
the measurement, eliminating the part related to the arrangement and scanning of 
the targets. If merging of the clouds is carried out with their use, neighboring stations 
should be merged by at least three targets. Most frequently, they are arranged on the 
structure or in its close vicinity, which makes a specific point visible only from two, or 
at most three, adjacent stands. For comparison, with a favorable arrangement of 
targets during measurements of the chimney, it is possible to see the same points 
from all positions of the scanner (only four such points may prove to be sufficient). 
For the measurement of the structure illustrated in Figure 3.a, 19 targets were used, 
which gives an idea of the amount of work associated first with their arrangement, 
and then scanning. As a result of the measurements, the cloud visible in Figure 3.b. 
was obtained. It has gaps in the observations related to the structure being obscured 
by the elements such as vegetation, additional installations on the structure, or 
adjacent surface patches. 

Just as for the tower structures, point cloud must be filtered to eliminate 
installations covering the surface. Automatic algorithms are of limited use here, 
because the surface patches are not necessarily simple geometric solids, in relation 
to which the process of eliminating the outliers can be carried out. In the case of the 
structure discussed here, the observations inside the building structure, near the 
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For the modernization purposes of the railway tunnel and the railway inside it, 
track axis adjustment project was prepared (Strach, 2013). The project specified 
adjustments to the spatial position of the track axis. The project can be implemented 
under the condition of the preservation of the structure clearance gauge for the new 
track position in the tunnel. The examination of the clearance gauge has been 
demonstrated in Fig. 10.d. The envelope of the clearance gauge for the existing track 
position (red) and designed track position (blue) was plotted on the transverse profile 
generated from the point cloud. 
 
5. Laser scanning of topographic objects 
 
Multiple examples of buildings and other types of manmade structures surveys ware 
given. Laser scanning has proven to be extremely effective by obtaining vast amount 
of details in a very short time. The next logical step was to use this technology for 
surveying of topographical structures. 

Laser scanning can be used in monitoring changes in volumes of spoil tips. It 
allows to acquire fast information on how the size of a tip alters, and also makes it 
possible to monitor the changes in the angle of slopes on sides of such objects. In 
order to maintain safety, the slopes must ensure that not even heavy rain is going to 
make upper layer to slide. Laser scanning is more useful than standard GPS profiling 
due to obtaining more data in shorter time. However, since most tips are undergoing 
land rehabilitation process consisting usually of planting various kinds of trees, it is 
important to plan the survey in advanced, and sometimes it is sufficient to use 
airborne laser scanning techniques and later filter the vegetation out of the point 
cloud.  

Perhaps the most common usage of this technology is inventory of open pit mines. 
Excavation in open pit mines is usually done in steps, involving blasting material, 
transporting it to the preparation plants and then setting explosives for the next blast. 
Constant survey of the blasting and excavating process must be done. Depending on 
law and economic reasons, this is being done in various intervals of time, usually 
weekly to monthly. GPS techniques ware commonly used for profiling the open pit. In 
cases safety reason prohibit from entering the object UAV-Based Photogrammetry 
technique is implemented. Those processes, however, is either time consuming or 
not very accurate. In (Tong et al., 2015) authors are taking into consideration 
classical methods and laser scanning. A laser scanner like UAV does not need to 
enter the measured object (the exception being target placement). Also the accuracy 
is similar to GPS. What is more, laser scanning could be used as reference for 
cheaper and faster photogrammetry method providing extra reference points.  

Other kind of objects that might require higher accuracy during measurements are 
landslides (Strurzengger et al., 2007; Lenda et al., 2016). Since landslides can be 
unpredictable, it might be important to measure even smallest, but continuous 
changes to the observed areas. The result does not necessary need to be a dense 
point cloud but the clouds done in time intervals need to be in the same coordinates 
systems. Only then it might be possible to observe small changes.  

Laser scanning is a part of remote sensing technology for a reason, it allows for 
gathering spatial information without accessing the measured structure. This is 
extremely helpful in regard to measuring objects like open pit mines or cliffs. Setting 
the stations in appropriate distance from each other and from the object might cause 
some problems. Taking into consideration the strength of the beam and the density 
parameters of the used scanners is crucial. With top parts of spoil tips, beach, even 
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If a point cloud is dense and the terrain relatively uncomplicated, the means of 
interpolation are not as important. The difference becomes more apparent if the point 
cloud is sparse or terrain more complex. In the case illustrated in Figure 12, the 
difference in height of the slope was about 20 meters. The terrain was a little bit 
complicated, but there were no greater differences in model between creating a 
mesh from 1% and 100% of original point cloud (fig. 12).  
 
6. UAV-borne laser scanning 
 
Laser scanning with the use of UAVs (Unmanned Aerial Vehicles) is a relatively new 
technique for acquiring information, which is currently developing very intensively. In 
engineering surveying, this technology should be treated as the one with very good 
perspectives. For this reason, a decision was made to introduce laser scanning with 
the use of UAV, although currently it is not used yet in the problems typical of 
engineering surveying. 

From the point of view of the title of this paper, it is important to draw attention to 
the difference in relation to the most common use of UAVs. Despite the immense 
popularity and the growing trend of using UAVs for acquiring data, it should be 
mentioned that in the subject of this study concerning laser scanning, the current use 
of UAVs is not widespread, nor is it a standard functionality of the UAS (Unmanned 
Aerial System). The most common use of the UAS is photogrammetry, or acquiring 
information from photographs taken with a digital camera (CCD camera). The UAS 
measuring systems, equipped with laser scanners, are currently expensive solutions. 
The cost is generated not only by the price of ultra-light laser scanner. The 
installation of such an expensive device with a potentially high-quality measuring 
results, as a consequence requires the installation of the GNSS (or GPS) receiver 
and IMU (standard or even tactical class). In such Unmanned Aerial Systems, 
sometimes one, or even more, digital cameras are installed. 

The purpose of the UAS laser scanning is to obtain information about large areas 
from the air. A particular advantage is the possibility to capture information about 
inaccessible areas or those which are difficult to access, as well as in the conditions 
posing a threat to humans. The main innovation contributed by the UAS solutions is 
the elimination of the remote control, which is necessary in the ALS. This is a very 
important extension of the availability of data acquisition technology from the air. 
Another advantage is the significant reduction in project costs due to the replacement 
of a manned aircraft or helicopter with a much smaller and less expensive UAV. This 
is not an ideal change, though, and entails limitations for flight conditions. Manned 
aircraft can fly into the storm. UAVs can fly at wind speeds up to approx. 10 m/s. On 
the other hand, the UAV's dimensions allow to use it in places inaccessible to 
manned aircraft, and provide a possibility to scan from the air while hovering, in the 
case of multirotor UAVs. 

The areas where the UAS laser scanning can be used, depend to some extent on 
the equipment of the UAV. From the point of view of this study, the minimum 
equipment of the UAS is a GNSS receiver, IMU, laser scanner, CCD camera. In 
addition, it is possible to install additional thermal or multispectral imager, which 
enables a specialized image analysis. An important parameter of each UAV is 
MTOW (Maximum Take Off Weight) and the associated maximum flight time. Flight 
time is still a very important drawback of the UAS, because it is usually from a few to 
tens of minutes. 
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synchronization of the GNSS receiver with the frequency of 1 Hz with the IMU with 
the frequency of 200 Hz. The authors assessed the accuracy of the set GPS/IMU at 
30 cm. The quality was improved to the level of a few centimeters thanks to the CCD 
camera images. 

In the case presented in (Wallace et al., 2012) the results were obtained with a 
decimeter accuracy. The authors pointed to the inadequately designed control points 
as the main cause (too large) and the systematic sampling properties of the laser 
scanner. Beam divergence, which is high in Ibeo LUX laser scanner, affects 
predominantly the horizontal accuracy of the point cloud in the direction along the 
track. The aim of the research regarding forest areas is not without significance in 
this respect. 

In (Glennie et al., 2013), the same scanner was used as in (Wallace et al., 2012) - 
Ibeo LUX, which has the accuracy of only 10 cm. The accuracy of the study results 
was assessed for the following heights: 6 cm to 15 cm, and topographically at the 
level of 20 cm. 

The study (Eisenbeiss et al., 2009) analyzes the accuracy of the trajectory of the 
moving UAV. Surveying reference measurement was used, which was carried out 
with a precision total station measuring 360º prism, installed in the UAV. However, 
the experiment, which was very reliably planned and carried out, has a fundamental 
drawback. The UAS prototype was equipped with a single-freqency GPS module 
manufactured by U-blox. 

Currently, also commercial solutions of leading companies in the market of laser 
scanners and satellite receivers are available. There are considerable differences in 
the UAS as well. One such solution has a rotor span of almost 3m and 50 kg payload 
capacity. It is highly probable that the advantages of this solution compared to the 
ALS (LiDAR) is only limited to the lack of staff in the UAV. In the UAV which is so 
large, it is surprising that it is equipped only in a single-frequency GNSS receiver with 
precision of the coordinates in real time at the level of 20 cm. In another solution, as 
claimed by the manufacturer, the set IMU/GNSS is characterized by the position 
accuracy at 0.05 m - 0.3 m. On the other hand, laser scanner is available in three 
types, differing in range and accuracy. For the most accurate variant, the 
manufacturer claims the accuracy to be at the level of 5 mm for the maximum range 
of up to 420 m. The minimum range is also significant, in this case it is 1.2 m. This is 
the distance which the measured object may be approached to. 

The analysis of the source literature proves that it is advisable to complement the 
laser scanner measurement with CCD camera images. In some cases, it may serve 
to increase the accuracy of the study results by using accurate georeferencing of the 
images. 

The accuracy of the results obtained from the UAS may not be the highest 
possible to achieve for a specific object by surveying methods, but a compromise 
between the accuracy and the economic side of measurements may point to the UAS 
as more advantageous. Also, specific conditions of place and measurements can 
significantly limit, or exclude, other surveying techniques. 
The technical parameters provided by the manufacturers of mass-produced 
equipment, look very promising as to the possibilities of using laser scanning with the 
UAS in engineering surveying. It will be possible to attempt to carry out 
measurements of the shape, displacements and deformations of various engineering 
structures, including industrial structures. 
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7. Summary 
 
The presented examples illustrate only a part of the possible applications of laser 
scanning, but they demonstrate how useful this technology has become in virtually all 
issues related to engineering surveying and related applications. The most often 
used scanning methods include terrestrial methods, i.e. stationary and mobile which, 
depending on the structure, may substantially differ in the arrangement of stands, 
ground control points, or measurement platform (mobile solutions). The scanning 
carried out using UAVs looks promising. After eliminating temporary problems with 
the accuracy of data acquisition and the duration of the flight, it will facilitate the 
access to additional information about the geometry of structures, unachievable from 
the ground stations. Measurement methods, in spite of their rapid development, tend 
to be more refined than the current method for developing point clouds. Data 
processing algorithms associated with filtration, extraction and data modeling, 
represent a very extensive subject. Modeling can be performed based on two-
dimensional sections, three-dimensional spatial axes, simple geometric solids, and 
even sophisticated surfaces imaging local deformations of the structure. The 
condition for economic and correct modeling is, however, appropriate filtration and 
extraction of data, in which automation is probably the biggest challenge in the field 
of processing data from laser scanning. 
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