Identification of the forces developed by upper limbs in various forms of human physical activity and in manual techniques used by physiotherapists – a brief review

Open access

Abstract

The aim of this study was to review the literature dealing with the force-time characteristics of different forms of physical activity performed with upper limbs by the elderly and the disabled (Nordic Walking and using a wheelchair, respectively) and of manual techniques used by physiotherapists. Values of work and power were analysed as well. Based on the analysis of the literature concerning the substantive areas included in this article, we believe that objective measurements will expand the present knowledge about values of force developed by upper limbs during different forms of human activity. It seems to be of particular significance in the application of manual therapy techniques, because currently values of force exerted upon the patient while applying these techniques are selected by a physiotherapist intuitively and are neither objective nor systematically controlled. The identification of the values of force developed with upper limbs by the elderly, the disabled and physiotherapists during the aforementioned forms of activity will make an original contribution to the broadly defined physical culture, especially rehabilitation and health promotion.

1. Morgulec-Adamowicz N, Marszałek J, Jagustyn P. Nordic Walking - a new form of adapted physical activity (A literature review). Hum Mov 2011;12(2):124-32.

2. Tschentscher M, Niederseer D, Niebauer J. Health Benefits of Nordic Walking: A Systematic Review. Am J Prev Med 2013;44(1):76-84.

3. Fritschi JO, Brown WJ, Laukkanen R, van Uffelen JGZ. The effects of pole walking on health in adults. Scan J Med Sci Sports 2012;22:e70-8.

4. Hagen M, Hennig EM, Stieldorf P. Lower and Upper Limb Loading in Nordic Walking in Comparison with Walking and Running. J Appl Biomech 2011;21: 22-31.

5. Hartvigsen J, Morsø L, Bendix T, Manniche C. Supervised and non-supervised Nordic walking in the treatment of chronic low back pain: a single blind randomized clinical trial. BMC Musculoskelet Di 2010;11:30, 1-9.

6. Mikalacki M, Radjo J, Cokorilo N, Korovljev D, Smajic M. Influence of Nordic walking on body composition of elderly women. Health Med 2012;6(2):476-82.

7. Takeshima N, Mohammod IM, Rogers ME, Rogers NL, Sengoku N, Koizumi D, Kitabayashi Y, Imai A, Naruse A. Effects of Nordic Walking compared to Conventional Walking and Band-Based Resistance Exercise on Fitness in Older Adults. J Sport Sci Med 2013;12(3):422-30.

8. Ebersbach G, Ebersbach A, Gandor F, Wegner B, Wissel J, Kupsch A. Impact of Physical Exercise on Reaction Time in Patients With Parkinson’s Disease - Data From the Berlin BIG Study. Arch Phys Med Rehabil 2014;95(5): 996-9.

9. Spafford C, Oakley C, Beard JD. Randomized clinical trial comparing Nordic pole walking and a standard home exercise programme in patients with intermittent claudication. Bri J Surg 2014;101(7):760-7.

10. Wilson J, Torry MR, Decker MJ, Kernozek T, Steadman JR. Effects of walking poles on lower limb gait mechanics. Med Sci Sports Exerc 2001;33(1):142-7.

11. Schiffer T, Knicker A, Dannöhl R, Strüder HK. Energy cost and pole forces during Nordic Walking under different surface conditions. Med Sci Sports Exerc 2009;41(3): 663-8.

12. Pšurný M, Janura M, Krejčí J, Jakubec A. Impact of walking speed and slope of the ground on axial force of poles in nordic walking. Acta Univ Palacki Olomuc, Gymn 2013;43(3): 57-63.

13. Bechard D, Birmingham TB, Zecevic AA, Jones JC, Leitch KM, Griffin JR, Jenkyn TR. The effect of walking poles on the knee adduction moment in patients with varus gonarthrosis. Osteoarthr Cartilage 2012;20: 1500-6.

14. Shim JM, Kwon HY, Kim HR, Kim BI, Jung JH. Comparison of the Effects of Walking with and without Nordic Pole on Upper Limb and Lower Limb Muscle Activation. J Phys Ther Sci 2013;25(12): 1553-6.

15. Schiffer T, Knicker A, Montanarella M, Strüder HK. Mechanical and physiological effects of varying pole weights during Nordic Walking compared to walking. Eur J Appl Physio 2011;111: 1121-6.

16. Hansen L, Henriksen M, Larsen P, Alkjaer T. Waking does not reduce the loading of the knee joint. Scan J Med Sci Sports 2008;18: 436-41.

17. Stief F, Kleindienst FI, Wiemeyer J, Wedel F, Campe S, Krabbe B. Inverse dynamic analysis of the lower limbs during Nordic Walking, walking and running. J Appl Biomech 2008;24:351-9.

18. Crespo-Ruiz BM, Del Ama-Espinoza AJ, Gil-Agudo AM. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classification. Adapt Phys Activity Q 2011;28:152-72.

19. Kwarciak AM, Sisto SA, Yorossi M, Price R, Konaroff R, Boninger ML. Redefining the Manual Wheelchair Stroke Cycle: Identification and Impact of Nonpropulsive Pushrim Contact. Arch Phys Med Rehabil 2009;90:20-6.

20. Ambrosio F, Boninger ML, Souza AL, Fitzgerald SG, Koontz AM, Cooper RA. Biomechanics and Strength of Manual Wheelchair Users. J Spinal Cord Med 2005;28:407-14.

21. Chow JW, Millikan TA, Carlton LG, Chae W, Morse MI. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system. J Biomech 2000;33: 601-8.

22. Faupin A, Gorce P, Thevenon A. A wheelchair ergometer adaptable to the rear-wheel camber. Int J Ind Ergon 2008;38:601-7.

23. Wei S, Huang S-L, Jiang Ch-J, Chiu J-Ch. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain. Clin Biomech 2003;18: S46-52.

24. Van der Woude LHW, de Groot S, Janssen TWJ. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health. Med Eng Phys 2006;28:905-15.

25. Van der Woude LHW, Veeger HEJ, Dallmeijer AJ, Janssen TWJ, Rozendall LA. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys 2001;23:713-33.

26. Vegter RJK, Lamoth CJ, de Groot S, Veeger DHEJ, van der Woude LHV. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill. J Neuroeng Rehabil 2013;10:9; http://www.jneuroengrehab.com/content/10/1/9.

27. Ardigo LP, Goosey-Tolfrey VL, Minetti AE. Biomechanics and Energetics of Basketball Wheelchairs Evolution. Int J Sports Med 2005;26: 388-96.

28. De Groot S, Veeger HEJ, Hollander AP, van der Woude LHV. Consequence of feedback-based learning of an effective hand rim wheelchair force production on mechanical efficiency. Clin Biomech 2002;17: 219-26.

29. De Groot S, Veeger HEJ, Hollander AP, van der Woude LHV. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. Med Eng Phys 2005;27: 41-9.

30. Gagnon DH, Babineau AC, Champagne A, Desroches G, Aissaoui R. Pushrim biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury. J Rehabil Res Dev 2014;51(5): 789-802.

31. Lui J, MacGillivray MK, Sheel AW, Jeyasurya J, Sadeghi M, Sawatzky BJ. Mechanical efficiency of two commercial leverpropulsion mechanisms for manual wheelchair locomotion. J Rehabil Res Dev 2013;50(10): 1363-72.

32. Lenton JP, van der Woude L, Fowler N, Nicholson G, Tolfrey K, Goosey-Tolfrey V. Hand-Rim Forces and Gross Mechanical Efficiency in Asynchronous and Synchronous Wheelchair Propulsion: A Comparison. Int J Sports Med 2014;35(3): 223-31.

33. Dellabiancia F, Porcellini G, Merolla G. Instruments and techniques for the analysis of wheelchair propulsion and upper limb involvement in patients with spinal cord injuries: current concept review. Muscles Ligaments and Tendons J 2013;3(3): 150-6.

34. Snodgrass SJ, Rivett DA, Robertson VJ. Manual forces applied during posterior-to-anterior spinal mobilization: the review of the evidence. J Manipulative Physiol Ther 2006;29(4): 316-29.

35. Snodgrass SJ, Rivett DA, Robertson VJ. Manual forces applied during cervical mobilization. J Manipulative Physiol Ther 2007;30(1): 17-25.

36. Snodgrass SJ, Rivett DA, Robertson VJ. Calibration of an instrumented table for measuring manual therapy forces applied to cervical spine. Man Ther 2008;13(2): 171-9.

37. Waddington G, Diong J, Adams R. Development of a hand dynamometer for the control of manually applied forces. J Manipulative Physiol Ther 2006;29(4): 297-304.

38. Chaudhry H, Bukiet B, Findley T. Mathematical analysis of applied loads on skeletal muscles during manual therapy. J Am Osteopath Assoc 2008;108(12): 680-8.

39. Snodgrass SJ, Odelli RA. Objective concurrent feedback on force parameters improves performance of lumbar mobilization, but skill retention declines rapidly. Physiother 2012;98(1): 47-56.

40. Sheaves EG, Snodgrass SJ, Rivett DA. Learning lumbar spine mobilization: the effects of frequency and self control of feedback. J Orthop Sports Phys Ther 2012;42(2): 114-24.

41. Snodgrass SJ, Rivett DA, Robertson VJ, Stojanowski E. A comparison of cervical spine mobilization forces applied by experienced and novice physiotherapist. J Orthop Sports Phys Ther 2010;40(7): 392-401.

42. Descarreaux M, Dugas C. Learning spinal manipulation skills: assessment of biomechanical parameters in a 5-year longitudinal study. J Manipulative Physiol Ther 2010;33(3): 226-30.

43. Snodgrass SJ, Rivett DA, Robertson VJ, Stojanowski E. Real-time feedback improves accuracy of manually applied forces during cervical spine mobilization. Man Ther 2010;15(1): 19-25.

44. De Souza MV, Ventorini C, Teixeira LM, Chagas MH, de Resende MA. Force-displacement relationship during anteriorposterior mobilization on the ankle joint. J Manipulative Physiol Ther 2008;31(4): 285-92.

45. Pagé I, Nougarou F, Dugas C, Descarreaux M. The effect of spinal manipulation impulse duration on spine neuromechanical responses. J Can Chiropr Assoc 2014;58(2):141-8.

46. Chester R, Swift L, Watson MJ. An evaluation of therapist’s ability to perform graded mobilization on simulated spine. Physiother Theory Pract 200;19: 23-43.

47. Waddington GS, Adams RD. Initial development of a device for controlling manually applied forces. Man Ther 2007;12: 133-8.

48. Herzog W. The biomechanics of spinal manipulation. J Body Mov Ther 2010;14(3): 280-6.

49. Myers CA, Enebo BA, Davidson BS. Optimized prediction of contact force application during side-lying lumbar manipulation. J Manipulative Physiol Ther 2012;35(9): 669-77.

50. Stemper BD, Hallman JJ, Peterson BM. An experimental study of chest compression during chiropractic manipulation of the thoracic spine using an anthropomorphic test device. J Manipulative Physiol Ther 2011;34(5): 290-6.

51. Vaarbakken K, Ljunggren AE. Superior effect of forceful compared with standard traction mobilizations in hip disability. Adv Physiother 2007;9:117-28.

52. Gokeler A, van Paridon-Edauw GH, DeClercq S, Matthijs O, Dijkstra PU. Quantitative analysis of traction in the glenohumeral joint. In vivo radiographic measurements Man Ther 2003;87(2): 97-102

Advances in Rehabilitation

The Journal of Academy of Physical Education, Warsaw

Journal Information


CiteScore 2016: 0.04

SCImago Journal Rank (SJR) 2016: 0.104
Source Normalized Impact per Paper (SNIP) 2016: 0.014

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 16
PDF Downloads 41 41 12