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Background. In emission tomography maximum likelihood expectation maximization reconstruction technique has 
replaced the analytical approaches in several applications. The most important drawback of this iterative method 
is its linear rate of convergence and the corresponding computational burden. Therefore, simplifications are usually 
required in the Monte Carlo simulation of the back projection step. In order to overcome these problems, a recon-
struction code has been developed with graphical processing unit based Monte Carlo engine which enabled full 
physical modelling in the back projection. 
Materials and methods. Code performance was evaluated with simulations on two geometries. One is a sophisti-
cated scanner geometry which consists of a dodecagon with inscribed circle radius of 8.7 cm, packed on each side 
with an array of 39 x 81 LYSO detector pixels of 1.17 mm sided squares, similar to a Mediso nanoScan PET/CT scanner. 
The other, simplified geometry contains a 38,4mm long interval as a voxel space, detector pixels are assigned in two 
parallel sections each containing 81 crystals of a size 1.17x1.17 mm. 
Results. We have demonstrated that full Monte Carlo modelling in the back projection step leads to material 
dependent inhomogeneities in the reconstructed image. The reasons behind this apparently anomalous behaviour 
was analysed in the simplified system by means of singular value decomposition and explained by different speed 
of convergence.
Conclusions. To still take advantage of the higher noise stability of the full physical modelling, a new filtering tech-
nique is proposed for convergence acceleration. Some theoretical considerations for the practical implementation 
and for further development are also presented.

Key words: PET; maximum likelihood expectation maximization reconstruction; positron range; singular value decom-
position; convergence speed; transport Monte Carlo,

Introduction

In emission tomography maximum likelihood 
expectation maximization (ML-EM) image recon-
struction technique1,2 has replaced the analytical 
approaches (e.g. the widely used filtered back pro-
jection) in several applications, since ML-EM offers 
improvements in spatial resolution and stability 
due to the more accurate modelling of the system 

and to the ability of accounting for noise structure.3 
In exchange ML-EM has only a linear rate of con-
vergence2 and its computational cost is still tedious 
even with the rapidly increasing processing capac-
ity of current computers. Thus a significant part of 
recent research activities aims at accelerating the 
algorithm.3-5 Another important property partly 
connected to the low convergence rate is the maxi-
mal resolution achievable for a given reconstruc-
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tion method given a certain noise level towards 
which most of the developments are directed.6-9

In order to achieve improvement in both con-
vergence rate and spatial resolution an ML-EM 
positron emission tomography (PET) reconstruction 
code has been developed with graphical processing 
unit (GPU) based Monte Carlo engine.10 GPUs paral-
lel threads allow for running the inherently parallel 
neutral particle Monte Carlo transport simulations 
approximately hundred times faster than on a com-
parably priced CPU thus significantly reducing the 
time required for the reconstruction. As increased 
computational capacity allows for better physics 
modelling the main novelty of this code is the ability 
of full particle transport modelling as accurate as it 
is worthwhile in hope of improving image quality.11

Contrary to expectations such faithful physics 
modelling in the back projection step of the algo-
rithm causes strong artefacts: modelling positron 
range leads to tissue dependent inhomogeneity 
artefacts in the reconstructed image. Furthermore, 
these inhomogeneities disappear when simplified 
Monte Carlo simulations are used without. All the 
differences between the two cases occur in the sys-
tem matrix (derived from the Monte Carlo simula-
tions) of the back projection step. These differences 
were analysed with respect to the convergence 
properties and stability to noise in a smaller test 
system by means of singular value decomposition 
(SVD) which is a powerful when analysing rectan-
gular matrices. We found a significant advantage 
of the matrix belonging to the simplified simula-
tions in terms of both singular values and vectors 
that characterized the convergence properties and 
stability of the algorithm. In other words more ac-
curate physical modelling is less efficient in terms 
of convergence and these differences explained the 
perceived artefacts. However, after numerous iter-
ations accurate modelling gives better reconstruc-
tion for low noise cases. Taking advantage of these 
results we created an a posteriori filtering matrix 
applied in each iteration after the back projection 
step with which we could further amplify these 
differences for speeding up the convergence, but 
without spoiling the stability to noise.

This paper is organised as follows: in the first 
subsection of Materials and methods the details of 
our reconstruction code and a simplified system 
are described. Second subsection contains the no-
tations. Third subsection gives a short tutorial for 
SVD including the closely related Picard condi-
tion and the corresponding convergence and noise 
analysis. Results section is divided into four sub-
sections, which present the perceived artefact in 

detail, the use of faithful modelling and our newly 
developed SVD filtering method with comparison 
to the original algorithm. Finally, possible solutions 
for the implementation are offered with theoretical 
considerations to further research. Discussion sum-
marises the impact of the SVD analysis and filter 
and presents our connecting further research goals.

Materials and methods

A 3D Monte Carlo based ML-EM image recon-
struction code named PANNI (PET Aimed Novel 
Nuclear Imager) has been developed in the frame-
work of the TeraTomo project.12,13

PANNI is a Monte Carlo based image reconstruc-
tion software written for GPUs using C and CUDA 
environments surmising roughly 40 000 lines.11 
The key feature of our software is the possibility 
of faithful Monte Carlo modelling which accounts 
for positron range, gamma photon-matter interac-
tion and detector response supported by advanced 
variance reduction methods. Detectors around the 
object are positioned on a quasi-cylindrical surface 
with dodecagon cross section. Detector response 
is either simulated or a pre-generated tabulated 
response function may be used. Positron range 
modelling simplifies to the following probability 
density function.14

with r being the positron range distance, a, A, b and 
B material dependent constants. 

As sampling each of the terms is equivalent to 
sampling the sum of two exponentially distrib-
uted random variables x can be obtained by using 
double exponential sampling.15 Advanced variance 
reduction methods are implemented for source an-
gular sampling outgoing direction and energy bi-
asing and for free flight sampling. The Monte Carlo 
engine has been validated against MCNP5.16 The 
code is capable of simulating 108 photon pairs per 
second on a commercially available GPU (NVidia 
GeForce 690).

Both the forward projection and the back pro-
jection steps are carried out via the Monte Carlo 
method. In the back projection step some of the 
physics modelling may be turned off. 

The code has been tested with two geometries, 
a sophisticated scanner geometry (“full system”) 
and a simplified smaller system (“1D model”). 
Acquisition geometry for the full system can be 
set as wished, in our current setup it consists of a 
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dodecagon with inscribed circle radius of 8.7 cm, 
packed on each side with an array of 39 x 81 LYSO 
detector pixels of 1.17 mm sided squares compa-
rable to a small animal PET scanner similar to the 
Mediso nanoScan PET/CT scanner. Coincidence 
counting is accepted between detector pixels on 
opposite and next to opposite dodecagon sides (1:3 
coincidence). The voxel space of the full system is 
divided into 128x128x128 voxels (0.3 mm sided) 
and contains a water-cylinder (light grey area in 
Figure 1 and Figure 2) except for a smaller cylin-
drical area containing bone material (dark grey 
area in Figure 1 and Figure 2) Activity phantom 
for the evaluation is a cylindrical ring of 15O par-
tially located in bone material (the more commonly 
used 18F gives less conspicuous results). From now 
on simplified modelling means the neglect of the 
positron range effect in the back projection Monte 
Carlo simulations in contrast with faithful model-
ling which accounts for positron range.

The voxel space of the 1D model is a 38.4 mm 
long interval containing 256 voxels half of which 
is located in bone material the other half in water. 
Detector pixels are assigned in two parallel sections 
each containing 81 crystals of a size 1.17.x.1.17 mm. 
Every pixel is in coincidence with every pixel on 
the opposite side. Roughly speaking the 1D mod-
el is a cross-section of the full system geometry of 
PANNI (Figure 3).

The 1D model contains only positron range mod-
elling, neither gamma photon-matter interaction nor 
detector response modelling is included. Detection 
is based on the angle of view of the detector from a 
given voxel. The two analysed settings are: positron 

 FIGURE 1. Top view of the reconstruction of the cylinder-ring 
mathematical phantom of the full system with faithful modelling 
in the back projection. Light grey area represents water, dark 
grey area represents bone material. Underestimated activity 
and increased full width at half maximum (FWHM) / full width 
at tenth maximum (FWTM) can be seen for voxels located in 
water. FWHM and FWTM are calculated along the ring. Red line 
indicates the phantom ideal FWHM.

FIGURE 3. Mathematical phantom and system geometry for 1D model. 1-128 voxels are located in bone material, 129–256 voxels 
are located in water. 

FIGURE 2. Top view of the reconstruction of the cylinder-ring 
mathematical phantom of the full system with simplified 
modelling in the back projection. Homogeneous activity 
estimate and full width at half maximum (FWHM) can be seen 
along the ring, neglect of positron range in theback projection 
abolished the artefact of Figure 1 and phantom ideal FWHM 
is reached.
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range neglected (back projection posrange OFF) 
and positron range modelled (back projection pos-
range ON) in the back projection. Forward projec-
tion always accounts for positron range.

Notations

x – vector of activity estimate in the voxels, 
 

ym – vector of measured data 
y – vector of forward-projected data
yr – pointwise (i.e. Hadamard) ratio vector of meas-
ured and forward-projected data 
vi – ith singular vector corresponding to voxel space 
σi – ith singular value
Lor – Line of response
ui – ith singular vector corresponding to sinogram 
space 
T in superscript means transpose
A – system (response) matrix
Ax – forward projection
ATyr – back projection 
Back projection posrange OFF – simulation ne-
glects positron range in the back projection
Back projection posrange ON – simulation ac-
counts for positron range in the back projection
FWHM – Full Width at Half Maximum
FWTM – Full Width at Tenth Maximum
L2-norm – Vectorial L2-norm divided by the L2-norm 
of the activity distribution and multiplied by 100: 

SVD analysis

The effect of positron range modelling and the av-
erage positron range is accounted for by the system 
matrix. As an obvious tool for the analysis of rec-
tangular matrices, the algorithm and the back pro-
jection step is examined by means of singular value 
decomposition. SVD is a factorisation of any  
real or complex matrix A of the form A = UDVT. 
The following notation is used: U is an  ma-
trix, D and V are  square matrices. In general, 
matrix V has k orthogonal columns where k is the 
rank of the system matrix A. V can be completed to 
a  dimensional matrix by adding n-k orthogo-
nal vectors from the null space of AT to form a basis 
in the voxel space. The first k columns of U are also 
orthogonal and can also be completed to a basis in 
the sinogram space by adding m-k orthogonal vec-
tors from the null space of A. In this last case, D 
is zero filled to a  dimensional matrix. In the 
point of view of our analysis the completion of U is 

not needed and we chose the nomenclature where 
U has only n (as A has full rank, thus k = n) col-
umns. D and V  in this case. 

SVD was used for the analysis of convergence 
speed of the reconstruction algorithm with respect 
to the applied back projection. According to Liu et 
al.17 the speed of convergence of PET ML-EM algo-
rithm particularly depends on the singular values 
of the back projection system matrix. Singular val-
ues represent relative weights for the voxel space 
basis vectors (i.e. corresponding voxel space singu-
lar vectors) in the update process of the previous 
activity estimate in a given iteration.

Sinogram space singular vectors can measure 
the information content of a given measurement-
forward projection Hadamard ratio in the corre-
sponding back projection step by means of Picard 
condition formalism. For the existence of a square 
integrable solution to the problem y = ₳x the fol-
lowing has to be true (₳ is the integral operator the 
discretization of which is the system matrix A).18

In case of matrices instead of integral operators, 
the discrete Picard condition requires the spectral 
coefficients  to decay faster in average than the 
singular values.18 Despite back projection is not a 
direct inversion from this point of view the faster is 
the decay of the spectral coefficients  of the ra-
tio as the index increases the heavier the blurring of 
the back projection. Higher frequency components 
level off at a plateau which is dominated by noise 
and can be regarded as an error-level estimate18 
because these components do not contain informa-
tion for the corresponding back projection. Even 
accounting for voxel space effects only (e.g. posi-
tron range) sinogram space singular vectors are not 
the same for the simplified and faithful modelling. 
The back projection step of the algorithm back pro-
jects the Hadamard ratio of the measured and the 
currently forward-projected data.

The aforementioned difference in the sinogram 
space basis affects the  product, i.e. the spectral 
coefficients of the Hadamard ratio. 

Results

We have compared two reconstruction results for 
the sophisticated scanner geometry: one with full 
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physics modelling in the back projection (Figure 1) 
and one omitting positron range in the back pro-
jection (Figure 2). After 80 iterations faithful mod-
elling produced the reconstruction in Figure 1.  
The cross section of the cylindrical ring phantom 
in radial direction is originally a box function 
which is blurred due to gridding and averaging in 
a given voxel (similarly to partial volume effect). 
Therefore, it can be well approximated by a gauss-
ian with a Full Width at Half Maximum of 3 voxels 
which is indicated by the red line in Figure 1 and 
Figure 2. The Full Width at Half Maximum/Full 
Width at Tenth Maximum is calculated by fitting 
a gaussian in radial direction along the ring sepa-
rately for each angular position with resolution of 
1 degree. 

Accounting for positron range in the back pro-
jection caused systematic inhomogeneity in the re-
constructed image in Figure 1. The activity estima-
tion in the bone material is appropriate (FWHM = 
3.5 voxel) in contrast with the activity of the voxels 
located in water which is underestimated (FWHM 
= 5 voxels). The inhomogeneity reduces with sim-
plified back projection, when positron range is 
neglected in the Monte Carlo simulation. Also the 
FWHM is reduced in the water area (Figure 2).

The effect of modelling any physical phenome-
non appears in the system matrix, thus our analysis 
aims at finding the differences in the back projec-
tion system matrix caused by positron range. Due 
to its size the system matrix of the full system cannot 
be stored thus the 1D model was used for further 
calculations. For real and valid results a compari-
son of the test system with the full system is needed. 
Simulations confirmed the analogous behaviour as 
the perceived artefact appeared in the case of posi-
tron range modelling in the back projection while 
neglecting positron range abolished the problem. 
Thus, the analysis focuses on the positron range ef-
fect, back projection posrange OFF and back pro-
jection posrange ON settings are compared. (The 
positron range free path is sampled with two ran-
dom variables similarly to the full system). As the 
corresponding system matrix is of a size 6561x256 
it can be directly stored and also the numerical 
SVD calculation may be carried out. 

Comparing the back projection posrange OFF 
and back projection posrange ON case in terms 
of singular values of the system matrix, Figure 4 
shows the positive difference for the first 133 index 
belonging to the former setting.

 In the light of the convergence analysis of Ref.17 
smaller singular values mean that the correspond-
ing frequency components of the solution are later 

reconstructed with positron range modelling com-
pared to the positron range neglecting back projec-
tion. This space frequency characterises the singu-
lar vectors of the voxel space (Figure 5), which is a 
second but not less significant difference between 
the two types of system matrices. 

Figure 5 on the left accounts only for the sym-
metries of the system while on the right reflects 
also the tissue map of the volume. As the average 
positron free path is much longer in water than in 
the bone material space frequency of every basis 
vector is smaller in the area located in the water. 
Thus the reconstruction of the activity of these vox-
els is significantly slower and this property is the 
reason of the obtained artefact resulted from faith-
ful modelling in the back projection and the solu-
tion to the perceived anomalous behaviour.

The third and final difference occurs in the sino-
gram space basis vectors with which the measure-
ment-forward projection Hadamard ratio can be 
unfolded in a given iteration. The absolute value 
of the obtained spectral coefficients can be seen in 
Figure 6 after 15 iterations for the positron range 
neglecting and modelling case respectively (the 
spectrum varies slowly through iterations).

Faster decay in the spectral coefficients equals 
to heavier blurring in the back projection.18 This 
means that the positron range modelling gathers 
less information from the Hadamard ratio in a 
given iteration than the positron range neglecting 
back projection. This also implies the faster conver-
gence and higher stability to noise.

FIGURE 4. Singular values of the system matrix for positron 
range neglecting and modelling case. Increased values for the 
former imply the faster convergence of the corresponding (first 
133) basis components of the activity estimate.
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Advantage of faithful modelling

ML-EM with faithful modelling converges to the 
exact solution.1,2 Algorithm using simplified back 
projection converges to different fix point due to 
unmatched forward-backward projector pair and 
only approximates the solution.2,3,5 These state-
ments were verified by test simulations with vary-
ing noise level (Figure 7). In presence of high noise 
semi-convergence property of the algorithm3,19 is 
dominant, reaching the optimum estimate as fast as 
possible is desired which is the advantageous prop-
erty of the simplified back projection. In low noise 
case after numerous iterations the faithful model-
ling outperforms the simplified one reaching much 
better activity estimate (Figure 7). SVD analysis 
showed the disadvantage of the former in the term 
of convergence speed but due to matched forward-
backward projector pair it converges to the exact 
solution1 in contrast with the simplified modelling. 

This result resolves the contradiction as addi-
tional information indeed leads to better image re-
construction thus the perceived anomaly was only 
apparent. Simplification just luckily affects the 
behaviour of the algorithm from a mathematical 
point of view. However, this form is not the ideal 
back projection operator but the one that is easy 
to implement without much modification to the 
original algorithm. To obtain a better back projec-
tion operator the previously listed advantages can 
be amplified with a posteriori manipulation and a 
close to ideal form can be reached. As a possible 
degree of freedom, singular values of the simpli-
fied back projection operator can be further in-
creased similarly to the accompanying effect of the 
simplified modelling. In this case U and V matrices 
are unchanged. The possible fix points of the algo-
rithm can be obtained from the next equations (ra-
tio is in a Hadamard sense) as the update process 
multiplies (also in Hadamard sense) the current 
estimate by 1 when the following is true:

Rearranging:

Using the dyadic definition of SVD:

 FIGURE 6. Absolute value of the spectral coefficients of the measurement-forward 
projection Hadamard ratio in the sinogram basis corresponding to positron range 
neglect (left – back projection posrange OFF) and positron range modelling (right 
– back projection posrange ON). Faster decay means less information gathered as 
the coefficients of the horizontal plateau are corrupted by noise thus it represents an 
error level estimate. Due to one to one correspondence property of SVD between 
sinogram and voxel space singular (basis) vectors these basis coefficients of the 
activity are not hoped to be correctly estimated

FIGURE 5. One of the voxel space singular vectors of the system matrices 
corresponding to positron range neglect (left – back projection posrange OFF) and 
positron range modelling (right – back projection posrange ON). Back projection 
posrange OFF reflects only the symmetries of the geometry. Back projection 
posrange ON accounts for the material map as well, increased position uncertainty 
due to longer average positron free path implies smaller space-frequency in water 
area. 

FIGURE 7. The L2-norm of the difference between the activity distribution and the 
current estimate after a given number of iterations. Smaller value means better 
agreement. Subfigure on the left shows the result of the noiseless test case where 
the convergence of back projection posrange ON setting to the exact solution 
and the convergence of back projection posrange OFF setting to an other fix point 
is presented. Subfigure on the right shows the result of a simulated reconstruction 
with 106 positron used for measurement generation and in both forward and back 
projection Monte Carlo simulations. After slower initial convergence back projection 
posrange ON reaches much better activity estimate. Back projection posrange OFF 
converges to a different fix point similarly to noiseless case.
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 and  are the columns of matrix V and U respec-
tively. As V is an orthogonal matrix the linear com-
bination above equals to zero precisely when every 

 coefficient equals to zero. The singular val-
ues are all nonzero thus the  dot product equals 
to zero for . This implies that . Matrix U 
remains the same with singular value modification 
so the possible fix points are unchanged. 

SVD filter

The easiest way to modify the singular value spec-
trum of the back projection system matrix is the ap-
plication of a matrix of the form:

 is the matrix with which  has the desired 
form. In noiseless (test) case, i.e. when there is no 
noise added to simulations, this form is (the scalar 
multiple of) the identity matrix, in agreement with 
the convergence analysis5,17,20, as the singular val-
ues are clustered together as far as possible. The 
SVD filter fastens the convergence with two or-
ders of magnitude. However, it cannot be applied 
straightforward for the real, noisy case. 

The measurement process equals to  
where  stands for the activity distribution. Thus, 
the measurement attenuates its frequency com-
ponents according to the singular value spectrum 
(multiplication with matrix ) and adds some 
noise to the result. As so only those components 
which fit to the discrete Picard condition (Figure 6) 
can be amplified.

We performed several reconstructions with such 
an SVD filter. The best result was obtained when 

 diagonal matrix contains elements of the form 
(Figure 8): 

for some  and small . 
Then   is also diagonal with the following en-

tries: 

which are closer to 1, so the singular value spec-
trum of the resulted back projection system matrix 
is contracted . 

The conventional ML-EM formula looks like as 
follows (yr is the pointwise, i.e. Hadamard ratio 
vector of measured and forward-projected data, 

 is a sinogram space vector containing 
ones in every coordinate):

Instead, we use the modified iteration formula 
which looks like as follows (  as being sym-
metric and  as  is orthogonal.  is the iden-
tity matrix. The ratio and the multiplication in the 
update process of  is in Hadamard sense):

Figure 8 shows the result of the reconstruction 
compared to regular ML-EM algorithm with both 
back projection posrange ON and back projection 
posrange OFF settings (  positron used). The 
L2-norm of the difference of the activity distribu-
tion and the current activity estimate is presented 
for each setting after a given number of iterations. 
Smaller L2-norm means better agreement.

SVD filter outperforms the best setting so far as 
the initial convergence is faster and better agree-
ment is reached in every iteration. Furthermore, 
the rise of the discrepancy due to semi-conver-
gence occurs later. Additionally, the faster initial 
convergence of the positron range neglecting back 
projection (back projection posrange OFF) can be 
seen compared to back projection posrange ON. 

 FIGURE 8. The L2-norm of the difference between the 
activity distribution and the current estimate after a given 
number of iterations. Smaller value means better agreement. 
Reconstruction with SVD filter outperforms the best setting so 
far in terms of faster initial convergence and the farther starting 
point of increasing discrepancy due to semi-convergence. 
Also the faster initial convergence of positron range neglecting 
back projection can be seen compared to positron range 
modelling back projection.
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Implementation of SVD filter for realistic 
geometries

SVD filter requires the calculation of  
matrix, which is of a size Nvoxel Nvoxel, so im-
possible to store directly for full system. On the 
other hand, this matrix is diagonally dominant not 
only in the case of the 1D test system but for a 3D 
full system as well. Consequently it is enough to 
store the main diagonal and some side-diagonals. 
Thus, the remaining task is the calculation of the 
filtering matrix which requires a numerical SVD. 
As the calculation is still computationally tedious 
we present an alternative way. The simplified back 
projection accounts only for the qualities of the im-
aging system and the material dependent effects in 
the reconstructed volume are neglected. For the re-
construction, the activity of the voxels is assigned 
in a finite length vector. A forward projection-back 
projection operator composition (in matrix terms 

) maps a voxel space vector into another voxel 
space vector performing a low-pass filtering. In 
other words, a space-limited signal is low-pass fil-
tered and space-limited again. The eigenfunctions 
of such an operator are the well-known prolate 
spheroidal wave functions (PSWF)21 and per defi-
nition these are the voxel space singular functions 
of the forward projection (and also the back projec-
tion) operator for simplified modelling case. 

Observing (the square of) the singular value 
spectra of the system matrix, low-pass filtering is 
not ideal but PSWFs are good approximation for the 
singular vectors. Owing to this favourable property, 
matrix B can be calculated if singular value spec-
trum has been obtained (e.g. by means of inverse 
iteration). However, for an increased precision, 
certain generalisation of the functions is needed, as 
the low-pass filter (characterised by the squares of 
the singular values) is not ideal. This is done by us-
ing special spectral techniques from the theory of 
Sturm-Liouville operators applied to the Jacobi per-
turbed differential operator of Karoui et al.22 

 case in Karoui et al.22 corresponds to 
regular PSWFs, but  type generalisation 
gives a very good approximation for singular value 
spectrum and the voxel space singular vectors as well. 

Discussion

In our paper all of the three SVD matrices from the 
factorisation of the system matrix were analysed. 
The results explained the perceived artefact as the 
convergence speed of the scheme with positron 

range modelling back projection was material de-
pendent and the further advantage of the simpli-
fied back projection in terms of overall convergence 
speed and stability to noise. The presented SVD 
filter further amplified these favourable proper-
ties so as to fasten the algorithm but preserving its 
robustness. Additionally the use of faithful mod-
elling was pointed out when high computational 
capacity is available.

A posteriori filtering is in close relation with 
such a priori methods when a regularizing term 
is added to the likelihood function in the problem 
formulation for decreasing noise sensitivity and 
accelerate the convergence. The resulted filter-
ing term is then present usually in the nominator 
of the backprojection in additive form and arises 
from known constraints about the imaging pro-
cess. In general, some kind of regularisation is al-
most always required due to the ill-posed nature 
of the reconstruction problem. Our SVD filter ap-
proaches from a bit different point of view: it does 
not require any a priori knowledge. The effect of 
B matrix is not strictly regularisation but rather 
deconvolution which accelerates the convergence 
and the deconvolution process itself has to be regu-
larised due to the presence of noise. Thus, the pro-
cess has a filtering effect as well. 

Monte Carlo simulations result slightly different 
system matrix elements through iterations which 
imply slightly different SVDs and B matrices. So 
as to make the most of the presented SVD filtering 
technique our further aim is to find the connection 
with conventional deconvolution methods which 
obtain exactly the same effect but the filtering fac-
tors can be recalculated in each iteration tailored 
to the given back projection system matrix. The 
special form (PSWF which is strongly connected 
to Fourier-transform22,23) of the singular vectors 
makes this direction promising.
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