The influence of folate pathway polymorphisms on high-dose methotrexaterelated toxicity and survival in children with non-Hodgkin malignant lymphoma

Open access

Abstract

Background. We evaluated the influence of folate pathway polymorphisms on high-dose methotrexate (HD-MTX) related toxicity in paediatric patients with T-cell non-Hodgkin lymphoma (NHL). Patients and methods. In total, 30 NHL patients were genotyped for selected folate pathway polymorphisms.

Results. Carriers of at least one MTHFR 677T allele had significantly higher MTX area under the time-concentration curve levels at third MTX cycle (P = 0.003). These patients were also at higher odds of leucopoenia (P = 0.006) or thrombocytopenia (P = 0.041) and had higher number of different HD-MTX-related toxicity (P = 0.035) compared to patients with wild-type genotype.

Conclusions. Our results suggest an important role of MTHFR 677C>T polymorphism in the development of HD-MTXrelated toxicity in children with NHL.

1. Gregoric B, Zadnik V, Jezersek Novakovic B. The diffuse large B-cell lymphoma - where do we stand now in everyday clinical practice. Radiol Oncol 2012; 46: 153-9.

2. Reiter A, Schrappe M, Ludwig WD, Tiemann M, Parwaresch R, Zimmermann M, et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 2000; 95: 416-21.

3. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 2011; 67: 993-1006.

4. Erculj N, Kotnik BF, Debeljak M, Jazbec J, Dolzan V. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53: 1096-104.

5. Jazbec J, Kitanovski L, Aplenc R, Debeljak M, Dolzan V. No evidence of association of methylenetetrahydrofolate reductase polymorphism with occurrence of second neoplasms after treatment of childhood leukemia. Leuk Lymphoma 2005; 46: 893-7.

6. Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 2007; 48: 786-92.

7. Imanishi H, Okamura N, Yagi M, Noro Y, Moriya Y, Nakamura T, et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 2007; 52: 166-71.

8. Kantar M, Kosova B, Cetingul N, Gumus S, Toroslu E, Zafer N, et al. Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2009; 50: 912-7.

9. Seidemann K, Book M, Zimmermann M, Meyer U, Welte K, Stanulla M, et al. MTHFR 677 (C-->T) polymorphism is not relevant for prognosis or therapyassociated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol 2006; 85: 291-300.

Radiology and Oncology

The Journal of Association of Radiology and Oncology

Journal Information


IMPACT FACTOR 2018: 1,846
5-year IMPACT FACTOR: 1,923

CiteScore 2018: 1.94

SCImago Journal Rank (SJR) 2018: 0.651
Source Normalized Impact per Paper (SNIP) 2018: 0.867


Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 216 8
PDF Downloads 106 86 3