Prevalence and malignancy risk of focal colorectal incidental uptake detected by 18F-FDG-PET or PET/CT: a meta-analysis

Open access

Abstract

Background. The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (18F-FDG-PET or PET/CT).

Methods. A comprehensive computer literature search of studies published through July 31st 2012 regarding FCIs detected by 18F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported.

Results. Thirty-two studies comprising 89,061 patients evaluated by 18F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by 18F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6-4.7%). Overall, 1,044 FCIs detected by 18F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60-75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs.

Conclusions. FCIs are observed in a not negligible number of patients who undergo 18F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by 18F-FDG-PET or PET/CT

1. Lin M, Koo JH, Abi-Hanna D. Management of patients following detection of unsuspected colon lesions by PET imaging. Clin Gastroenterol Hepatol 2011; 9: 1025-32.

2. Treglia G, Calcagni ML, Rufini V, Leccisotti L, Meduri GM, Spitilli MG, et al. Clinical significance of incidental focal colorectal (18)F-fluorodeoxyglucose uptake: our experience and a review of the literature. Colorectal Dis 2012; 14: 174-80.

3. Isobe K, Hata Y, Sakaguchi S, Takai Y, Shibuya K, Takagi K, et al. The role of positron emission tomography in the detection of incidental gastrointestinal tract lesions in patients examined for lung cancer. Nihon Kokyuki Gakkai Zasshi 2010; 48: 482-87.

4. Chopra A, Ford A, De Noronha R, Matthews S. Incidental findings on positron emission tomography/CT scans performed in the investigation of lung cancer. Br J Radiol 2012; 85: e229-37.

5. Zhuang H, Hickeson M, Chacko TK, Duarte PS, Nakhoda KZ, Feng Q, Alavi A. Incidental detection of colon cancer by FDG positron emission tomography in patients examined for pulmonary nodules. Clin Nucl Med 2002; 27: 628-32.

6. Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002; 224: 783-87.

7. Chen YK, Kao CH, Liao AC, Shen YY, Su CT. Colorectal cancer screening in asymptomatic adults: the role of FDG PET scan. Anticancer Res 2003; 23: 4357-61.

8. Pandit-Taskar N, Schöder H, Gonen M, Larson SM, Yeung HW. Clinical significance of unexplained abnormal focal FDG uptake in the abdomen during whole-body PET. Am J Roentgenol 2004; 183: 1143-47.

9. Agress H Jr, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology 2004; 230: 417-22.

10. Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, et al. Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 2004; 45: 1804-10.

11. Lardinois D, Weder W, Roudas M, von Schulthess GK, Tutic M, Moch H, et al. Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol 2005; 23: 6846-53.

12. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med 2005; 46: 752-57.

13. Gutman F, Alberini JL, Wartski M, Vilain D, Le Stanc E, Sarandi F, et al. Incidental colonic focal lesions detected by FDG PET/CT. Am J Roentgenol 2005; 185: 495-500.

14. van Westreenen HL, Westerterp M, Jager PL, van Dullemen HM, Sloof GW, Comans EF, et al. Synchronous primary neoplasms detected on 18F-FDG PET in staging of patients with esophageal cancer. J Nucl Med. 2005; 46: 1321-25.

15. Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, et al. PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med 2005; 46: 758-62.

16. Even-Sapir E, Lerman H, Gutman M, Lievshitz G, Zuriel L, Polliack A, et al. The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging 2006; 33: 541-52.

17. Wang G, Lau EW, Shakher R, Rischin D, Ware RE, Hong E, et al. How do oncologists deal with incidental abnormalities on whole-body fluorine-18 fluorodeoxyglucose PET/CT? Cancer 2007; 109: 117-24.

18. Hemandas AK, Robson NK, Hickish T, Talbot RW. Colorectal tubulovillous adenomas identified on fluoro-2-deoxy-D glucose positron emission tomography/ computed tomography scans. Colorectal Dis 2008; 10: 386-89.

19. Terauchi T, Murano T, Daisaki H, Kanou D, Shoda H, Kakinuma R, et al. Evaluation of whole-body cancer screening using 18F-2-deoxy-2-fluoro-Dglucose positron emission tomography: a preliminary report. Ann Nucl Med 2008; 22: 379-85.

20. Lee ST, Tan T, Poon AM, Toh HB, Gill S, Berlangieri SU, et al. Role of low-dose, noncontrast computed tomography from integrated positron emission tomography/ computed tomography in evaluating incidental 2-deoxy-2-[F-18] fluoro-D-glucose-avid colon lesions. Mol Imaging Biol 2008; 10: 48-53.

21. Tessonnier L, Gonfrier S, Carrier P, Valerio L, Mouroux J, Benisvy D, et al. Unexpected focal bowel 18-FDG uptake sites: should they be systematically investigated? Bull Cancer 2008; 95: 1083-87.

22. Strobel K, Haerle SK, Stoeckli SJ, Schrank M, Soyka JD, Veit-Haibach P, et al. Head and neck squamous cell carcinoma (HNSCC) - detection of synchronous primaries with (18)F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 2009; 36: 919-27.

23. Lee JC, Hartnett GF, Hughes BG, Ravi Kumar AS. The segmental distribution and clinical significance of colorectal fluorodeoxyglucose uptake incidentally detected on PET-CT. Nucl Med Commun 2009; 30: 333-37.

24. Weston BR, Iyer RB, Qiao W, Lee JH, Bresalier RS, Ross WA. Ability of integrated positron emission and computed tomography to detect significant colonic pathology: the experience of a tertiary cancer center. Cancer 2010; 116: 1454-61.

25. Kei PL, Vikram R, Yeung HW, Stroehlein JR, Macapinlac HA. Incidental finding of focal FDG uptake in the bowel during PET/CT: CT features and correlation with histopathologic results. Am J Roentgenol 2010; 194: W401-06.

26. Ozkol V, Alper E, Aydin N, Ozkol HF, Topal NB, Akpinar AT. The clinical value of incidental 18F-fluorodeoxyglucose-avid foci detected on positron emission tomography/computed tomography. Nucl Med Commun 2010; 31: 128-36.

27. Luboldt W, Volker T, Wiedemann B, Wehrmann U, Koch A, Toussaint T, et al. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cut-off. Eur Radiol 2010; 20: 2274-85.

28. Peng J, He Y, Xu J, Sheng J, Cai S, Zhang Z. Detection of incidental colorectal tumours with 18F-labelled 2-fluoro-2-deoxyglucose positron emission tomography/computed tomography scans: results of a prospective study. Colorectal Dis 2011; 13: e374-78.

29. Farquharson AL, Chopra A, Ford A, Matthews S, Amin SN, De Noronha R. Incidental focal colonic lesions found on (18)Fluorodeoxyglucose positron emission tomography/computed tomography scan: further support for a national guideline on definitive management. Colorectal Dis 2012; 14: e56-63.

30. Salazar Andía G, Prieto Soriano A, Ortega Candil A, Cabrera Martín MN, González Roiz C, Ortiz Zapata JJ, et al. Clinical relevance of incidental finding of focal uptakes in the colon during 18F-FDG PET/CT studies in oncology patients without known colorectal carcinoma and evaluation of the impact on management. Rev Esp Med Nucl 2012; 31: 15-21.

31. Oh JR, Min JJ, Song HC, Chong A, Kim GE, Choi C, et al. A stepwise approach using metabolic volume and SUVmax to differentiate malignancy and dysplasia from benign colonic uptakes on 18F-FDG PET/CT. Clin Nucl Med 2012; 37: e134-40.

32. Lin M, Ambati C. The management impact of clinically significant incidental lesions detected on staging FDG PET-CT in patients with non-small cell lung cancer (NSCLC): an analysis of 649 cases. Lung Cancer 2012; 76: 344-9.

33. Yildirim D, Tamam MO, Sahin M, Ekci B, Gurses B. Differentiation of incidental intestinal activities at PET/CT examinations with a new sign: Peristaltic segment sign. Rev Esp Med Nucl Imagen Mol. 2013; 32: 86-91.

34. Gill RS, Perry T, Abele JT, Bédard EL, Schiller D. The clinical significance of incidental intra-abdominal findings on positron emission tomography performed to investigate pulmonary nodules. World J Surg Oncol 2012; 10: 25.

35. Shim JH, O JH, Oh SI, Yoo HM, Jeon HM, Park CH, et al. Clinical Significance of Incidental Colonic (18)F-FDG Uptake on PET/CT Images in Patients with Gastric Adenocarcinoma. J Gastrointest Surg 2012; 16: 1847-53.

36. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.

Radiology and Oncology

The Journal of Association of Radiology and Oncology

Journal Information


IMPACT FACTOR 2018: 1,846
5-year IMPACT FACTOR: 1,923

CiteScore 2018: 1.94

SCImago Journal Rank (SJR) 2018: 0.651
Source Normalized Impact per Paper (SNIP) 2018: 0.867


Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 382 278 16
PDF Downloads 100 82 2