Titanium dioxide in our everyday life; is it safe?

Open access

Titanium dioxide in our everyday life; is it safe?

Background. Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as "possible carcinogenic to humans" by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects.

Conclusions. Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care.

Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979; 53: 290-6.

Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 1990; 102: 268-81.

Backus R. Lighting up time for TiO2. Industrial Minerals 2007; 473: 28-39.

Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 2009; 43: 4227-33.

Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients. Fourth ed. London: Pharmaceutical Press, London, United Kingdom, and the American Pharmaceutical Association; 2003.

Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 2008; 27: 1825-51.

Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41.

Kosmulski M. The pH-dependent surface charging and points of zero charge V. Update. J Colloid Interface Sci 2011; 353: 1-15.

Tang H, Prasad K, Sanjinbs R, Schmid P E, Levy F. Electrical and optical properties of Ti02 anatase thin films. J Appl Phys 2004; 75: 2042-7.

Augustynski J. The role of the surface intermediates in the photoelectro-chemical behaviour of anatase and rutile TiO2. Electrochimica Acta 1993; 38: 43-6.

Hewitt JP. Titanium dioxide: a different kind of sunshield. Drug Cosmet Ind 1992; 151: 26-32.

Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 2008; 63: 515-82.

Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 68: 1794-807.

Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 2008; 38: 371-6.

Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17: 593-623.

Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001; 24: 108-15.

Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113: 1555-60.

Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006; 40: 4353-9.

Kocbek P, Teskac K, Kreft ME, Kristl J. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 2010; 6: 1908-17.

Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. Acs Nano 2008; 2: 2121-34.

Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med 2001; 58: 211-6.

Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622-7.

Dunford R, Salinaro A, Cai LZ, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. Febs Lett 1997; 418: 87-90.

Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005; 213: 66-73.

Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Persp 2007; 115: 1631-7.

Lu N, Zhu Z, Zhao X, Tao R, Yang X, Gao Z. Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin. Biochem Biophys Res Commun 2008; 370: 675-80.

Park EJ, Yi J, Chung YH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008; 180: 222-9.

Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174-85.

Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 2008; 183: 72-80.

Uchino T, Tokunaga H, Ando M, Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol in Vitro 2002; 16: 629-35.

Dodd NJ, Jha AN. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutat Res 2009; 660: 79-82.

Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2011; 5: 341-53.

Petković J, Küzma T, Rade K, Novak S, Filipič M. Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. J Hazard Mater 2011; doi: 10.1016/j.jhazmat.2011.09.004.

Barthel A, Klotz LO. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 2005; 386: 207-16.

Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, et al. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health, Part A 2008; 71: 478-85.

Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Persp 2002; 110: 797-800.

Wang JJ, Sanderson BJS, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res-Gen Tox En 2007; 628: 99-106.

Xu A, Chai YF, Nohmi T, Hei TK. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 2009; 6: 3.

Zhu RR, Wang SL, Chao J, Shi DL, Zhang R, Sun XY, et al. Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mat Sci Eng C-Bio S 2009; 29: 691-6.

Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008; 49: 399-405.

Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 2007; 171: 99-110.

Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res-Gen Tox En 2007; 634: 205-19.

Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 1997; 18: 423-30.

Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69: 8784-9.

Li N, Ma LL, Wang J, Zheng L, Liu J, Duan YM, et al. Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 2010; 51: 108-15.

Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR. Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicol in Vitro 2008; 22: 1689-96.

Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 2010; 267: 125-31.

Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 2010; 106: 114-7.

de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 2006; 36: 1469-79.

Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 2011; 81: 56-67.

Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 2006; 3: 11.

Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 2006; 3: 13.

Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40: 4346-52.

Liu SC, Xu LJ, Zhang T, Ren GG, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 2010; 267: 172-7.

Liu XY, Ren XF, Deng XY, Huo YA, Xie J, Huang H, et al. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials 2010; 31: 3063-70.

Scuri M, Chen BT, Castranova V, Reynolds JS, Johnson VJ, Samsell L, et al. Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health, Part A 2010; 73: 1353-69.

Nohynek GJ, Schaefer H. Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001; 333: 285-99.

FDA. Sunscreen drug products for over-the-counter human use, Final Monograph, Federal Register 64 27666, US Rockville, MD; 2000.

Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 2009; 61: 685-92.

Breggin L, Falkner R, Jaspers N, Pendergrass J, Porter R. Securing the promise of nanotechnologies towards transatlantic regulatory cooperation. London: Affairs RIoI; 2009.

Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 2007; 360: 794-802.

Salvador A, Chisvert A. Sunscreen analysis - A critical survey on UV filters determination. Anal Chim Acta 2005; 537: 1-14.

Nohynek GJ, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2010; 243: 239-59.

Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007; 373: 251-77.

Salinaro A, Emeline AV, Zhao J., Hidaka. H., Ryabchuk V, Serpone KN. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields (Technical Report). Pure Appl Chem 1999; 71: 321-6.

Serpone N, Salinaro A, Hidaka H, Horikoshi S, Knowland J, Dunford R. Solar engineering. In: Morehouse JM, Hogan RE (eds). New York: ASME; 1998.

Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf Interface Anal 2006; 38: 473-7.

Labiele J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, et al. Agging of TiO2 nanocomposites used in sunscreens. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 2010; 158: 1-8.

Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photoch Photobio A 1997; 108: 1-35.

Wakefield G, Lipscomb S, Holland E, Knowland J. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem Photobiol Sci 2004; 37: 648-52.

Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 2009; 54: 511-20.

Kiss B, Biro T, Czifra G, Toth BI, Kertesz Z, Szikszai Z, et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 2008; 17: 659-67.

Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 2008; 219: 1871-7.

Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, et al. Titanium Dioxide Nanoparticles Aggravate Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Exp Biol Med 2009; 234: 314-22.

Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles - known and unknown health risks. J Nanobiotechnology 2004; 21: 12.

Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmetic Sci 2010; 33: 234-44.

Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999; 12: 247-56.

Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001; 14: 92-7.

Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002; 54: S157-63.

Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, et al. Human safety review of "nano" titanium dioxide and zinc oxide. Photochem Photobiol Sci 2010; 9: 495-509.

Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 2010; 35: 107-13.

Tan MH, Commens CA, Burnett L, Snitch PJ. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 1996; 37: 185-7.

Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Letters 2009; 191: 1-8.

Sadrieh N, Wokovich AM, Gopee NV, Zheng JW, Haines D, Parmiter D, et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO(2) Particles. Toxicol Sci 2010; 115: 156-66.

Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317: 1098.

FDA [Internet]. Food and drugs chapter I, Listing of color additives exempt from certification. Federal Register 21CFR73, US Rockville, MD; 2010; [cited 2011 October 14]. Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=73&showFR=1

Kumagai K. Uber den Resorptionvergang der corpuscularen Bestandteile im Darm. 192: 429-31.

Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 1994; 105: 157-68.

Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007; 168: 176-85.

Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010; 31: 894-9.

Powell JJ, Harvey RSJ, Ashwood P, Wolstencroft R, Gershwin ME, Thompson RPH. Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. J Autoimmun 2000; 14: 99-105.

National Cancer Institute. Bioassay of titanium dioxide for possible carcinogenicity. Washington, DC: U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health; 1979.

Bernard BK, Osheroff MR, Hofmann A, Mennear JH. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Env Health 1990; 29: 417-29.

Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005; 26: 11-21.

Hext PM, Tomenson JA, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005; 49: 461-72.

Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, et al. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 2003; 45: 400-9.

Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 157: 697-706.

NIOSH. Occupational Exposure to Titanium Dioxid. Department Of Health And Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health 2011.

Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810-5.

Peters A, Doring A, Wichmann HE, Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 1997; 349: 1582-7.

McGuinnes C, Duffin R, Brown S, Mills NL, Megson IL, MacNee W, et al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 2011; 119: 359-68.

Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ Health Perspect 2001; 109: 523-27.

Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 1992; 65: 535-42.

Oberdörster G, Ferin J, Lehnert BE. Correlation between particle-size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994 102: 173-9.

Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 2001; 172: 119-27.

van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 2009; 186: 152-9.

Kapp N, Studer D, Gehr P, Geiser M. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Methods Mol Biol 2007; 369: 431-47.

Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164: 1665-8.

Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 2008; 5:1.

Kim HW, Ahn EK, Jee BK, Yoon HK, Lee KH, Lim Y. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J Nanopart Res 2009; 111: 55-65.

Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001; 74: 1-8.

Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91: 227-36.

Rehn B, Seiler F, Rehn S, Bruch J, Maier M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol 2003; 189: 84-95.

Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007; 115: 397-402.

Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007; 230: 90-104.

Roursgaard M, Jensen KA, Poulsen SS, Jensen NEV, Poulsen LK, Hammer M, et al. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Scientific World Journal 2011; 11: 801-25.

Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, et al. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 2006; 20: 2393-5.

Park EJ, Yoon J, Choi K, Yi J, Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 2009; 260: 37-46.

Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary Response of Rats Exposed to Titanium-Dioxide (TiO2) by Inhalation for 2 Years. Toxicol Appl Pharmacol 1985; 79: 179-92.

Borm PJA, Hohr D, Steinfartz Y, Zeittrager I, Albrecht C. Chronic inflammation and tumor formation in rats after intratracheal instillation of high doses of coal dusts, titanium dioxides, and quartz. Inhal Toxicol 2000; 12: 225-31.

Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal Toxicol 1995; 74: 533-56.

Muhle H, Bellmann B, Creutzenberg O, Koch W, Dasenbrock C, Ernst H, et al. Pulmonary response to toner, TiO2 and crystalline silica upon chronic inhalation exposure in Syrian golden hamsters. Inhal Toxicol 1998; 10: 699-729.

Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, et al. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 2002; 70: 86-97.

Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004; 77: 347-57.

Hsieh TH, Yu CP. Two-phase pulmonary clearance of insoluble particles in mammalian species. Inhal Toxicol 1998; 102: 121-30.

Wang JX, Liu Y, Jiao F, Lao F, Li W, Gu YQ, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008; 254: 82-90.

Yamadori I, Ohsumi S, Taguchi K. Titanium dioxide deposition and adenocarcinoma of the lung. Acta Pathol Jpn 1986; 36: 783-90.

Chen JL, Fayerweather WE. Epidemiologic-study of workers exposed to titanium-dioxide. J Occup Environ Med 1988; 30: 937-42.

Ramanakumar AV, Parent ME, Latreille B, Siemiatycki J. Risk of lung cancer following exposure to carbon black, titanium dioxide and talc: results from two case-control studies in Montreal. Int J Cancer 2008; 122: 183-9.

Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, et al. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 2004; 15: 697-706.

IARC. Carbon black, titanium dioxide, and talc. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 93. International Agency for Research on Cancer: Lyon, France, 2006.

Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 2006; 74: 295-6.

Cadosch D, Chan E, Gautschi OP, Filgueira L. Metal is not inert: Role of metal ions released by biocorrosion in aseptic loosening-Current concepts. J Biomed Mater Res A 2009; 91: 1252-62.

Sargeant A, Goswami T. Hip implants - Paper VI - Ion concentrations. Mater Design 2007; 28: 155-71.

Valentine-Thon E, Schiwara HW. Validity of MELISA (R) for metal sensitivity testing. Neuroendocrinol Lett 2003; 241: 57-64.

Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 2001; 83: 428-36.

Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 2009; 30: 4590-600.

Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82: 457-76.

Margevicius KJ, Bauer TW, McMahon JT, Brown SA, Merritt K. Isolation and characterization of debris in membranes around total joint prostheses. J Bone Joint Surg Am 1994; 76: 1664-75.

Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, et al. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am 1988; 70: 347-56.

Giavaresi G, Ambrosio L, Battiston GA, Casellato U, Gerbasi R, Finia M, et al. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metalorganic chemical vapour deposition: an in vivo study. Biomaterials 2004; 25: 5583-91.

Cui C, Liu H, Li Y, Sun J, Wang R, Liu S, et al. Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 2005; 59: 3144-48.

Drnovsek N, Daneu N, Recnik A, Mazaj M, Kovac J, Novak S. Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants. Surf Coat Tech 2009; 203: 1462-68.

Tedetti M, Sempere R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 2006; 82: 389-97.

Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 2009; 407: 1461-68.

Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 2006; 134: 225-32.

Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010; 269: 190-7.

Kim S-C, Lee D-K. Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 2005; 80: 227-32.

Hong J, Ma H, Otaki M. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J Biosci Bioeng 2005; 99: 592-7.

Velzeboer I, Hendriks AJ, Ragas AMJ, Van de Meent D. Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 2008; 27: 1942-47.

Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 2006; 40: 3527-32.

Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010; 78: 209-15.

Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009; 76: 1356-65.

Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD. Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ; 408: 2268-72.

Lee S-W, Kim S-M, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Phar 2009; 281: 86-91.

Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 2008; 433: 278-84.

Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 2007; 844: 415-30.

Scown TM, van Aerle R, Johnston BD, Cumberland S, Lead JR, Owen R, et al. High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout but with no Observable Impairment of Renal Function. Toxicol Sci 2009; 109: 372-80.

Linhua H, Zhenyu W, Baoshan X. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histpathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 2009; 21: 1459-66.

Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 2010; 158: 1748-55.

Zhu X, Wang J, Zhang X, Chang Y, Chen Y. Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010; 79: 928-33.

Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 2007; 67: 160-66.

Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 2007; 178: 245-54.

Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 2010; 96: 151-8.

Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008; 175: 410-20.

Reeves JF, Davies SJ, Dodd NJF, Jha AN. Hydroxyl radicals (OH) are associatedwithtitaniumdioxide (TiO2) nanoparticle-inducedcytotoxicityandoxidative DNA damage in fish cells. Mutat Res-Fund Mol M 2008; 640: 113-22.

Drobne D, Jemec A, Pipan Tkalec Z. In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 2009; 157: 1157-64.

Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008; 421: 4447-53.

Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R. Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Hazard Mater 2009; 171: 160-5.

Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 2009; 157: 1171-7.

Roh J-Y, Park Y-K, Park K, Choi J. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Phar 2010; 29: 167-72.

Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 2010; 42: 586-91.

Yang F, Hong F, You W, Liu C, Gao F, Wu C, et al. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 2006; 110: 179-90.

Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, et al. Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 2006; 111: 239-53.

Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? BioMetals 2008; 212: 211-17.

Su MY, Liu C, Qu CX, Zheng L, Chen L, Huang H, et al. Nano-anatase relieves the inhibition of electron transport caused by linolenic acid in chloroplasts of spinach. Biol Trace Elem Res 2008; 122: 73-81.

Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, et al. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. Biol Trace Elem Res 2008; 121: 69-79.

Lu CM, Zhang CY, Wen JQ, Wu GR. (in Chinese). Soybean Sci 2002; 21: 168-71.

Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985; 29: 211-4.

Ibáńez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram (-) bacteria. J Photochem Photobiol, A 2003; 157: 81-5.

Jang HD, Kim S-K, Kim S-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 2001; 3: 141-7.

Shang C, Cheung LM, Ho C-M, Zeng M. Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection. App Catal B 2009; 89: 536-42.

Khan U, Benabderrazik N, Bourdelais AJ, Baden DG, Rein K, Gardinali PR, et al. UV and solar TiO2 photocatalysis of brevetoxins (PbTxs). Toxicon 2010; 55: 1008-16.

Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011; 45: 1-16.

Lagopati N, Kitsiou PV, Kontos AI, Venieratos P, Kotsopoulou E, Kontos AG, et al. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol, A 2010; 214: 215-23.

Stefanou E, Eyangelou A, Falaras P. Effects of UV-irradiated titania nanoparticles on cell proliferation, cancer metastasis and promotion. Catal Today 2010; 151: 58-63.

Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 1992; 52: 2346-8.

Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications. Tokyo: BKC, Inc; 1999.

Fujishima A, Call RX, Otsuki J, Hashimoto K, Iron K, Yamashita T, et al. Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO2 powder. Electrochim Acta 1993; 38: 153-7.

Kalbacova M, Macak MJ, Schmidt-Stein F, Mierke CT, Schmuki P. Phys. Status Solidi (RRL). 2008; 2: 194-8.

Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R et al. Photokilling of T-24 Human Bladder-Cancer Cells with Titanium-Dioxide. Br J Cancer 1994; 70: 1107-11.

Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008; 43: 226-36.

Song M, Zhang RY, Dai YY, Gao F, Chi HM, Lv G, et al. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradition. Biomaterials 2006; 27: 4230-38.

Schmidt-Stein F, Hahn R, Gnichwitz JF, Song YY, Shrestha NK, Hirsch A, et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. Electrochem Commun 2009; 1111: 2077-80.

Matsui K, Segawa M, Tanaka T, Kondo A, Ogino C. Antibody-immobilized TiO2 nanoparticles for cancer therapy. J Biosci Bioeng 2009; 108: S36-S37.

Xu J, Sun Y, Huang JJ, Chen CM, Liu GY, Jiang Y et al. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochem 2007; 712: 217-22.

Lai T-Y, Lee W-C. Killing of cancer cell line by photoexcitation of folic acidmodified titanium dioxide nanoparticles. J Photochem Photobiol, A 2009; 204: 148-53.

Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease. Brit J Nutr 2004; 92: 947-55.

Radiology and Oncology

The Journal of Association of Radiology and Oncology

Journal Information

IMPACT FACTOR 2018: 1,846
5-year IMPACT FACTOR: 1,923

CiteScore 2018: 1.94

SCImago Journal Rank (SJR) 2018: 0.651
Source Normalized Impact per Paper (SNIP) 2018: 0.867

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1803 1296 67
PDF Downloads 727 641 33