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ABSTRACT 
The scaling of access control systems is usually done with respect to the life 

protection requirements regarding escape routes. At large headcount areas, the 

need for biometric identification arises from the security and business needs. 

Biometric systems can be characterized by probability variables, which can 

significantly affect the access process. Mathematically, access control is a discrete 

state space, stochastic process without memory, that can be described by a queue 

model. This study demonstrates the process model of access control systems and 

describes the mathematical model that allows for accurate planning and can ensure 

a successful introduction for access control systems. 
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1. Introduction

Waiting queues are found in every 

aspect of life. Waiting is a natural part of 

life – however unexpected or unreasonable 

queues can be a source of major discomfort 

for users. Parallelly to this, one of the most 

important tasks in creating a secure 

environment is to authenticate users for 

physical access into protected facilities and 

areas (Berek, 2014, pp. 19-24). Throughput 

calculations generally do not require serious 

mathematical modelling or designing – 

problems usually arise when either the 

access procedure is long due to the security 

level of the facility (metal detector gates, 

bag checking) or a large number of people 

arrive within a short timeframe. An increase 

in security level means a longer 

authentication time – which translates into 

an increased waiting time. The task of 

security experts is to find the optimal 

solution. Queue and mass serving models 

can serve as an adequate base to analyse 

access procedures and approximate their 

behavior thus making them plannable 

(Hillier & Lieberman, 2014). The purpose 

of this study is to create a MATAB 

program with which the properties of 

various scenarios can be examined, and also 

to analyse the results through a few 

examples. The study consists of the 

following parts: the 2. chapter describes the 

access process and its states. The 3. chapter 

introduces the queue model, and based on 

these, the 4. chapter develops the model of 

the access process. The 5. chapter details 

the mathematical model of the access 

process and demonstrates this through 

several calculation examples and the 

6. chapter will summarize the study.
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2. The Access Procedure 

The access control system according 

to Bunyitai is a: “Complex 

electromechanics-IT system, that – with the 

help of installed checkpoints – enables 

granting or denying personnel and vehicle 

access based on location, time and 

direction, while providing logging and 

tracking” (Bunyitai, 2011, p. 18). The task 

of an access control system is to: “Identify 

the person, determine the access right, 

document the event and control traffic” 

(Bunyitai, 2011). The general elements of 

an access control system are readers: 

identifies the user arriving to the 

checkpoint. It can be password, card or 

biometry based – or a combination of them, 

controllers: they determine whether a user 

is eligible to access based on the code 

identified by the readers, APAS: The 

physical restrictive and mechanical devices 

controlled by the system and sensors that 

provide feedback. The controlled devices 

can be magnetic locks, holding magnets, 

turnstiles, turning crosses, revolving doors, 

automatic doors, etc. Sensors can be, or 

example infra gates, opening detectors or 

movement detectors. Finally, supervision 

software: This application serves as a 

control and display interface to the system 

settings, logs and handles the incoming 

signals from the hardware elements. 

 

3. States of the Access Process 

 

Incoming requests
Positioning of the 

sample
Algorithmic 
processing

Outbound requests
Passing the physical 

barrier

 

Figure no. 1: The states of the access process 

 (Source: Otti, 2015) 

 
 

The states of the access process can 

be seen in the Figure no. 1. The properties 

of the individual stages are as such 

incoming requests: the employee or user 

arrives to the checkpoint and stands into the 

queue. Positioning the sample, when the 

user prepares for identification and presents 

their biometric sample to the sensor in order 

to gain access. An analogy to this for card-

based access control is to touch the card to 

the reader. Algorithmic processing when 

the reader processes the sample and 

provides a successful or unsuccessful 

feedback signal. This step is only applicable 

for biometric systems, and this is the point 

where the probability nature of biometrics 

manifests – as it is never 100 % that a 

person can pass through the access point at 

the first try. The other consequence of this 

property – that also carries a security risk – 

is that an ineligible person gaining access 

can also not be ruled out by 100 %. This 

probability factor does not exist with card 

and PIN based systems. Passing the 

physical barrier, after a successful 

identification, the controller will signal the 

physical barrier to grant access. Outbound 

requests, when the user leaves the 

checkpoint. In an ideal environment, 

eligible people can always pass through the 

checkpoint, while attackers are always 

denied access, and as such, one must know 

the points where the system, in reality, may 

work differently. Incoming requests may 

face a queue. Positioning the sample can be 

unsuccessful: for example, the user places 

their finger on the sensor improperly, or 

maybe grows a beard and facial recognition 

systems will not recognize them, or drops 

the card etc. Algorithmic processing returns 

a bad result and requires a new attempt.  

The physical barrier does not work 
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properly, the door jams, the turnstile stops 

turning or the user uses it improperly – for 

example, tries to pass through too fast, 

jamming the barrier which will warrant 

another attempt.  

 

4. Queue Model 

Queues appear in various aspects of 

life, where access to a distributed resource 

is being served. Any system, where the 

customer is served with a limited resource, 

can be considered a queue system 

(Kleinrock, 1975). Example for such a 

system is a line in order to get ice-cream, a 

queue in the bank, the landing and 

maintenance queue for aircraft, data 

processing in a computer processor or even 

the students waiting for an exam. 

According to Pokoradi “By queue, service 

systems, we mean a system where 

consumers arrive at random, the various 

requests wait for service, then depart” 

(Pokorádi, 2008, pp. 173-175). Queue 

systems are also called Mass Service 

Systems. Queuing problems can be 

estimated, analysed and evaluated by 

analytic modelling or simulations. The 

analytic methods can be used with simpler 

queues, where the equations of the model 

can be easily obtained by simplifying 

certain aspects of the real process. In 

reality, however, it is very hard to describe 

such a system, because not all factors can 

be considered, or the equations obtained 

have a non-polinomial algorithmic 

processing time (Lovász, 2009, pp. 42-43). 

In these cases, an efficient examination 

method is simulation. That is done by 

simulating the operation of the system with 

a large element number and we derive 

conclusions from the results (Szeidl, 2009, 

p. 78). These systems have the following in 

common: the architecture of the system, 

incoming requests, waiting queues, servers, 

services, outbound requests.  

Stochastic Process: It is not an 

uncommon issue in the technical sciences 

that the evolution of basic quantities 

required for analysis depends entirely on 

chance. These quantities typically describe 

the temporal and/or spatial changes of the 

analyzed factor. In this case, we can interpret 

quantities as a collective of probability 

variables belonging to the parameter. If the 

parameter set becomes a subset of the 

positive half-line, then can be considered as a 

time parameter or, in short, time. The set of 

real numbers is orderly, and as such the past 

and the future of the process can be 

interpreted. If we consider fixed value as 

present, then we can interpret as the future of 

the process, while is the past of the process 

(Pap & Szűcs, 2014, pp. 3-5). 

Markov Process: We can describe a 

stochastic process as a Markov process, if 

the future states of the process are only 

influenced by the past states through the 

present states – or in other words, the 

process is without memory. For example, if 

five people stand at a turnstile access point, 

it doesn‟t matter that this state occurred 

because originally there were six people but 

one passed through or originally there were 

only three people and two more arrived. 

The access process can be considered a 

continuous, discrete state space Markov 

process – or in other words, a Markov 

chain. Every state in the system shows the 

number of people in queue and being 

served. The increase of waiting elements in 

the system is described by λ – arrival 

intensity, the decrease is described by  

µ – serving intensity. The base state of the 

system is that it is empty. 

The Kendall Notation System: 

Kendall has published the general notations 

required to describe mass service systems 

in 1953. Based on this, the types of queue 

systems can be described if we know the 

incoming distribution, the properties of the 

queue and the service mechanism  

(Kendall, 1953, pp. 338-340). The purposes 

of this study are best served by the model of 

the book „Basis of queuing theory‟ by 
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Sztrik (2011). The notations used to 

describe queuing systems are: 

A / B / s / K / n / E 

where: 

‒ A = the distribution function of 

incoming request times. 

‒ B = the distribution function of service 

times. 

‒ s = the number of servers. 

‒ K = the capacity of the system, or, in 

other words, the maximum number of 

requests that can stand in line. 

‒ n = the amount of request sources. 

‒ E = the basis of service.  

The distribution functions (A, B) can 

be deterministic (D), exponential (M) or 

general (G). The capacity of the system (K) 

and the source of requests can be (n) finite 

or infinite – we generally use the latter. The 

basis of the service can be (E) FIFO (First 

In First Out), LIFO (Last In First Out), 

random or based on priority. 

Terminology and Notation:  

The state of the system = the number of 

waiting elements in the queue. 

‒ Queue length = the number of waiting 

elements that are waiting for the service 

to start. 

‒  = the number of elements waiting 

at t (t ≥ 0) point in time 

‒  = the probability of exactly n 

elements being present in the system at 

any given t moment. 

‒ s = the number of parallel servers in the 

system. 

‒  = incoming intensity per time unit. 

‒  = service intensity per time unit. 

‒  = utilisation factor. 

When a system is stable and set in (the 

queuing models – as this study does so as 

well – generally examine this state), then: 

‒  = is the probability, that exactly  

n elements are waiting in the system. 

‒  = the number of elements 

waiting in the system. 

‒  = expectable 

queue length. 

‒  = service time in the system with 

waiting time accounted for. 

‒  = time in the queue. 

The following equations provide the 

connection between the above notations: 

, called Little formula (Little, 1961, 

pp. 383-387), meaning: the average number 

of requests within the system is equal the 

incoming intensity times the average time 

spent in the system, where  and 

. 

 
5. Model of the Access Process 

Access control systems can be 

described as a multiple server, parallel 

service system. To further examine queue 

systems mathematically, we must put a 

number of restrictions in place in the 

conditions. These do not substantially 

influence the realisticity of the model, but if 

we must deviate from them, there are 

simulation methods to account for this 

(Law, 2015). The conditions will be 

accounted for using the Kendal notation. 

The distribution of the incoming requests is 

a Poisson distribution, the service time 

distribution is also exponential and the 

number of servers is m – a finite, natural 

number. The cardinality of the capacity of 

the system and the source of requests is 

infinite, the basis for service is FIFO. Based 

on this, the model of access control systems 

is: M/M/s/∞/∞/FIFO. In these cases, the last 

three parameters are usually not noted in 

writing – based on this, a one channel 

access control system is a M/M/1, a multi-

channel is a M/M/s model mass service 

system. With the general sense of safety 

decreasing in the world, an ever-increasing 

need for authentic identification of users 

arises. The only technology that allows for 

identifying personally unique and 

preferably unfalsifiable properties is 

biometric identification. The current 

systems are by no means invulnerable, 

however, due to constant development, they 

fit an ever-growing standard of security and 

167



convenience (Otti, 2016, pp. 251-253). 

Classification of biometric technologies: 

first of all, imaging-based technologies 

(fingerprint recognition, iris recognition, 

face recognition, vein recognition, hand 

geometry recognition, signature 

recognition), and also not (or not directly) 

imaging-based technologies (voice 

recognition, DNS test, behavior-based 

tests). The Figure no. 1 in chapter States of 

the access process shows “Positioning of 

the sample” and “Algorithmic processing” 

that are affected by biometric recognition. 

The queue model is modified by the service 

factor of the biometric devices. Service – in 

contrast to the traditional identification 

methods – is a probability variable, mostly 

affected by the FRR (False Rejection Rate) 

value of the system. ξ probability variable 

can be defined thusly: Let r be the number 

of users that within a given timeframe that 

are rejected by the system, if the enrolled 

number of users is n. If so, then ξ by 

definition has a binomial distribution: 
 

 
 

The relative probability stochastically 

converges on p probability, if the number of 

observations n is increasing beyond all 

limits. If we wish to estimate this 

parameter, then the best method is 

Maximum Likelihood, that, in our case, is 

equal to the FRR itself. A more detailed 

deduction can be found in Hanka‟s 

publication (Hanka, 2013). From this 

definition of FRR – which our 

measurements confirm – comes that the 

probable run time for the algorithm is the 

highest in this case compared to any 

successful identification, since to establish 

a false rejection, the entire database has to 

be checked against the present sample (in 

1:N identification, where no preselection 

exists with PIN or card), and the users must 

present the sample again, which means 

another full run of the identification cycle. 

These two factors increase the time required 

for a false rejection to around two- or 

threefold of a normal identification. This 

also means that the dispersion of service 

times is greatest for biometric 

identification, furthermore, FRR directly 

affects service performance, which is 

critical for access control and attendance 

tracking applications (Hanka & Werner, 

2015, pp. 209-216). 

The purpose of access control is 

typically tied to the operation of a physical 

barrier, however in high-security facilities, 

security methods beyond this are usually 

deployed. The Table no. 1 summarizes the 

typical elements and the service times given 

by the manufacturer versus the empirically 

obtained ones.  

Table no. 1 

The typical elements of an access process 

Name 
Service 

time (s) 
Average (s)  (service/minute) Notes 

Card based identification 1-2 1,5 40  

PIN code 1-4 2,5 24  

Biometric identification 1-9 5 12 
The large dispersion is due 

to FRR 

Door 0-2 1 60 
Magnetic lock, door 

holding magnet. 

Turnstile, turning cross, fast gate 2-3 2,5 24 
20-30 person/minute 

throughput 

Turnstile, one person 3-10 6,5 9,23  

Guest registration 30 – 180 105 0,57 

ID card checking, data 

recording, issuing the card, 

notifying escort. 

Bag x-ray 30 – 150 90 0,67  

Metal detector gate 10 – 30 20 3  

Body search 20 - 60 40 1,5  
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6. Mathematical Model of the 

System 

The mathematic model was mainly 

developed based on the work of Hillier and 

Lieberman: “Introduction to operations 

research”. Beyond this, we also utilized 

“The basis of queuing theory” from János 

Sztrik, “Queue Modelling and Simulation” 

from Fischwick, and “Development and 

introduction of access gate placement 

strategy demonstrated through a select 

number of metro stations” from József 

Lukács (Hillier & Lieberman, 2014; Sztrik, 

2011; Fishwick & Hyungwook, 2008; 

Lukács, 2014). In this article the access 

control system is considered as a queuing 

system. Customers are registered users in 

the system, and the service is the “access” 

it self. Consequently, the mathematical 

description of control system is given by 

the characteristic values of a queuing 

system. These essential values are the 

average number of customers in the system, 

expected queue length, the mean waiting 

time in the system, including service time, 

and the expected waiting time in the queue, 

denoted by L, Lq, W and Wq respectively. 

The value of these quantities is the most 

important question for the employer and for 

employees as well. These values depend on 

the mean arrival rate, and mean service rate, 

denoted by λ and μ respectively. These 

quantities are by definition the number of 

arrivals and the number of served customers 

per unit time respectively. The reciprocal of 

these values has illustrative meaning, these 

are mean interarrival time and mean service 

time respectively. In general, these rates 

may depend on the number of customers in 

the system, but it is acceptable, that 

considering an access control system, the 

arrival rate and the service rate is 

independent to the state of the system, in 

other words, to the number of customers, 

hence these quantities are constant. The 

following fundamental question is the 

number of channels in the system, which is 

denoted by s. Obviously, if the number of 

registered users is great enough, a single-

server system is not satisfactory, 

consequently a multiple-server system is 

necessary. The appropriate number of 

channels is the fundamental question of this 

article, and is discussed below. Moreover, 

since arrivals and services are independent, 

it is also obvious that the interarrival time 

distribution and the service time 

distribution can be given by exponential 

distribution, so the M/M/1 and the M/M/s 

model can be applied for the access control 

system. The state of the system is always 

given by the probability distribution Pn(t), 

which denotes the probability of the event, 

that there are n customers in the system at 

time t. This distribution depends on t in 

general, but if the utilization factor, 

s


 


is less than 1, the system can reach 

the steady state condition, therefore the 

distribution in this case is independent to 

time, and expected values can be calculated. 

L, Lq, W and Wq are the interested expected 

values. The relationships between these 

expected values, and the simplest 

mathematical formulas at the same time are 

Little‟s formulas: 

1
; ; .q q qL W L W W W     


 If at 

least one of the four quantities are known, 

every other can be calculated using these 

equations. The mathematical formulas are 

much simpler if the calling population, in 

other words the number of registered users 

is infinity. But apparently, the size of the 

population is always finite, therefore the 

difference between finite and infinite 

mathematical model must be studied for the 

first time. Due to Little's formulas, it is 

enough for example focusing on Lq. For the 

single-server system, if the size of the 

population is infinity, Lq can be calculated 

using the following formulas: 
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If the size of the population is finite, 

let it be N, then the difference is that the 

probability distribution Pn is obviously 

different and the sum in the definition of Lq 

is a finite sum: 

 

1
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n n
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   

 

But these results can be given by 

much complicated formulas. For the 

multiple-server system, if the size of the 

population is infinity, Lq can be calculated 

using the following formulas: 
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where in this case 
s


 


. If the size of the 

population is N, assuming that N > s, the 

difference is that the second term in the 

definition of P0 must be replaced by the 

sum 
 

!

s N
n s

n s

s

s






 , Pn can be calculated in 

the same way if n N , and the expected 

value of queue length is given by the 

following sum:   .
N

q n

n s

L n s P


   The 

outcome of the calculations for the finite 

case is also much complicated. Comparing 

finite and infinite model, let's consider a 

hypothetic situation. Assume for example, 

that 7, 10     and that the number of 

registered users is extremely low, for 

example N =10. It can be seen immediately, 

that difference between models is 

observable only if s =1. If 2s  then the 

curves are practically coincided. 

Remarkable difference can be observed 

only if the number of channels is s = 1.  

But if the number of registered users is a 

few hundred, the single-server case is not 

satisfactory at all. Taking into consideration 

a situation, when the size of the calling 

population is 500, the mean arrival rate and 

mean service rate for a particular unit time 

is λ = 50 and μ = 70, the corresponding 

expected values can be seen in Tables no. 2 

and no. 3. 

Table no. 2 

The expected values of customers in the system in case of infinite and finite model, if N = 500 

 L Lq 

channels infinite finite infinite finite 

1 

2 

3 

4 

5 
6 

7 

2.500000000000000   

0.818713450292398   

0.726443355119826   

0.715690500989644   

0.714433200854997   
0.714299566011384   

0.714286880352793 

2.500000000000001   

0.818713450292398   

0.726443355119826   

0.715690500989644   

0.714433200854997   
0.714299566011384   

0.714286880352793 

1.785714285714286   

0.104427736006683   

0.012157640834111   

0.001404786703930   

0.000147486569283   
0.000013851725669   

0.000001166067078 

1.785714285714286   

0.104427736006683   

0.012157640834111   

0.001404786703930   

0.000147486569283   
0.000013851725669   

0.000001166067078 
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Table no. 3 

The expected values of time in case of infinite and finite model, if N = 500 

 W Wq 

channels infinite finite infinite finite 

1 
2 

3 

4 
5 

6 

7 

0.050000000000000   
0.016374269005848   

0.014528867102397   

0.014313810019793   
0.014288664017100   

0.014285991320228   

0.014285737607056 

0.050000000000000   
0.016374269005848   

0.014528867102397   

0.014313810019793   
0.014288664017100   

0.014285991320228   

0.014285737607056 

0.035714285714286   
0.002088554720134   

0.000243152816682   

0.000028095734079   
0.000002949731386   

0.000000277034513   

0.000000023321342 

0.035714285714286   
0.002088554720134   

0.000243152816682   

0.000028095734079   
0.000002949731386   

0.000000277034513   

0.000000023321342 

 

Subsequently if the size of calling 

population is a few hundred and if the finite 

model is applied for modelling, the 

obtained data are exactly equal to 

corresponding data obtained in the infinite 

model. Therefore, the infinite queuing 

model can be applied for modelling an 

access control system in which there are 

finite number of registered users. 

Characteristic values of a queuing system 

depend on the utilization factor as well. 

Using formulas for Lq and applying Little‟s 

formulas, the correspondence can be 

illustrated. Figure 2 depicts the dependence 

of L and W on the utilization factor for 

various numbers of channels using 

logarithmic y-scale, for a particular value of 

mean arrival rate (λ = 10). 

 

 
Figure no. 2: The expected number of customers in the system (left) and the average waiting 

time in the system, including service time (right) 

(Source: own edit) 

 

 

Due to Little's formulas, W L  , 

hence the relationship between W and L only 

a constant factor, the shape of curves above 

are similar. These relationships can be used 

for planning an access control system. For 

example, if there is a requirement for the 

waiting time in the system, the planner can 

determine for instance the appropriate 

number of channels. Taking into 

consideration a real problem, assume that in a 

particular access control system, the average 

service time is 13s. The number of 

customers is known between 6:00 a.m. and 

7.00 a.m. According to observations, the 

average number of users between 6:00 to 

6:20 were 185, between 6:20 to 6:40 were 

275 and between 6:40 to 7:00 were 202. 

Therefore, the unit time in this case is 

20min. Since the average service time is 

13s, the mean service rate is 

1200
92.3

13
   . Since the system has 

steady state probability distribution only if 

the utilization factor is less than 1, taking 
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into account the maximal number of 

arriving customers, the number of channels 

must satisfy the following inequality:  

275
1 3

93.1
s

s s


     

   

Therefore at least 3 channels must be 

applied in the system. The requirement is 

that, the average waiting time must be less 

than 1 minute. Using these data, L, Lq, W 

and Wq can be computed if s is at least 3. 

The outcome of calculations can be seen on 

Figure no. 3. 

 
Figure no. 3: Characteristic values for the system given  

by parameters: λ =275, μ = 92.3, T = 20 min. 
 

It can be seen that if the number of 

channels is 3, then either the waiting time in 

the system or the waiting time in the queue 

is approximately 7 minutes, which is 

unacceptable for the employees. But if the 

number of channels is at least 4, these 

waiting times are less than 1 minute. 

Moreover, it is also obvious, that if s is at 

least 4 the time functions and the queue 

length function are approximately constant 

functions, consequently s = 4 the optimal 

decision. The growing number of channels 

won't improve the characteristic values, 

every expected value practically stays the 

same. Table no. 4 comprises the calculated 

data for this particular case. 
 

Table no. 4 

The characteristic values of the system for various channels if  λ =275, μ = 92.3, T = 20 min 

number of channels L (persons) Lq (persons) W (min) Wq (min) 

3 99.5432 96.5638 7.2395 7.0228 

4 4.9559 1.9765 0.3604 0.1437 

5 3.7471 0.7677 0.2725 0.0558 

6 3.3011 0.3217 0.2401 0.0234 

7 3.1072 0.1278 0.2260 0.0093 

8 3.0261 0.0466 0.2201 0.0034 

9 2.9950 0.0155 0.2178 0.0011 
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The remaining question can be the 

following. The actual number of customers 

is random; therefore, it can be described by 

a probability distribution. The average 

number of the customers can be seen in 

Table no. 4. But these data are “only” 

expected values of a probability 

distribution. The question can be the 

probability of the event, that there are a 

specified number of customers. Table no. 5 

comprises these probabilities and Figure no. 

4 illustrates these probabilities graphically. 

 

Table no.  5 

 The probability of the event that there are n customers in the s-server system 
      n = 0      n = 1      n = 2      n = 3       n = 4      n = 5      n = 6      n = 7      n = 8       n = 9     n = 10 

s = 3 
s = 4 

s = 5 

s = 6 
s = 7 

s = 8 

s = 9 

    0.0015    0.0046    0.0068    0.0068    0.0067    0.0067    0.0066    0.0066    0.0065    0.0065    0.0065 
    0.0389    0.1160    0.1727    0.1716    0.1278    0.0952    0.0709    0.0528    0.0393    0.0293    0.0218 

    0.0477    0.1422    0.2119    0.2104    0.1567    0.0934    0.0556    0.0332    0.0198    0.0118    0.0070 

    0.0500    0.1490    0.2220    0.2205    0.1642    0.0978    0.0486    0.0241    0.0120    0.0059    0.0030 
    0.0506    0.1508    0.2247    0.2231    0.1662    0.0990    0.0492    0.0209    0.0089    0.0038    0.0016 

    0.0508    0.1513    0.2253    0.2238    0.1667    0.0993    0.0493    0.0210    0.0078    0.0029    0.0011 

    0.0508    0.1514    0.2255    0.2240    0.1668    0.0994    0.0494    0.0210    0.0078    0.0026    0.0009 

 
 

Figure no. 4: The probability of the particular state of the system 

 

7. Summary 

The study demonstrated a useful 

method for constructing a stochastic model 

with a Markov chain for access control 

systems and new analysis methods based on 

said method. We can state, based on the 

results of this study, that this analysis 

method is suitable for ensuring quality and 

supporting business decisions through the 

design phase of biometric or generic access 

control systems. The goal of the authors is 

to ensure successful introduction of access 

control projects for high headcount 

facilities with respect to business and 

security requirements and standpoints, to 

create process- and system analysis 

methods through mathematical simulation, 

and – by using case studies – to 

demonstrate its practical usability. These 

goals are fulfilled, and in practice, the 

designing engineers of access control 

systems are given a new and powerful 

methodology that is useful in practice. 
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