

Land Forces Academy Review
Vol. XXIV, No 2 (94), 2019

STUDY OF PARALLEL ALGORITHMS FOR IP SWITCHES

Mhnd FARHAN
University of Baghdad, Iraq

mhndfarhan@yahoo.com

ABSTRACT
Owing to the increase in the internet traffic, any calculation that requires

more than linear time would be considered unreasonably moderate for constant
applications. One cure is to utilize numerous processors to build up associations in
parallel and the other is to construct low cost, high speed, large capacity non-
blocking switching architecture. In this paper, our focus is on developing parallel
algorithms for routing which will ensure high-speed internet connectivity and at the
same time making the system to be cost effective.

KEYWORDS: parallel algorithms, IP switch, Dijkstra algorithm, integrated

development environment

1. Introduction
In the previous years, we have seen the

Internet advancing from a niche network
associating scholastics and research
foundations to the fundamental worldwide
data and excitement network. This is because
of innovations that have encouraged generally
transmission capacity accessibility and
radically decreased expense of information
exchange, making a perfect situation for the
mass multiplication of the Internet. Because of
such sensational advancement, existing
applications, that have ordinarily been
conveyed over various systems, are being re-
created to be executed over the Internet (this is
the situation for Voice over Internet Protocol
(VoIP) and Internet Protocol Television
(IPTV), while new applications keep on
developing (peer-to-peer networking and
interactive gaming). The increasing
exploitation of the Internet has provoked an
exponential increase in the bandwidth
requirement on the underlying network
architecture, a trend which is further
emphasized by near-future applications (e.g.
high definition IPTV and e-science
applications) (Lee & Oruc, 1995).

Over the past decade, the increase in
bandwidth requirement has been tackled by
router vendors by increasing the speed of the

electronic processing units, following the
evolution predicted by Moore’s Law.
However, since the traffic exchanged in the
Internet has grown at a much higher pace,
there is a need to redesign the routing
algorithms and implement in a manner which will
facilitate reduction of internet traffic at no increase in
cost (Maleki et al., 2016).

2. Design Methodology
A pseudo code is used to come up

with a design of both a parallel and
sequential design of Dijkstra algorithm in
this section. In summary, to implement the
pseudo code and come up with the two
designs, a high level programming
language (java) is used. The developed
source code is run on Eclipse, an Integrated
Development Environment (IDE) for Java.
Note that the source code has classes for
drawing the graph, the edge and vertices of
sequential and parallel Dijkstra code (Singh
& Khar, 2016). The configuration for the
test code is then run and the output displays
through the graphical user interface the
shortest path between two vertices. In an
actual network, this represent the shortest
path between two nodes that is used by the
data packets. More detail of this design is
given in the sections below.

DOI: 10.2478/raft-2019-0019
© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

158

2.1. System Design
It is in the design step that we choose

how to partition the operations of our
program into classes, we choose how these
classes will cooperate, what information
each will store, and what activities each will
perform. The design solution of this paper
comprises of three separate tasks namely;
design of the sequential Dijkstra code,
design of the parallel Dijkstra code and
design of the graph to show case/display the
output after the execution of the code. Each
task is conceptually independent from the
others as they are found in different classes,
but each is necessary in order for the final
program to be executed.

2.1.1. Flow Charts
A characteristic method to arrange

different auxiliary segments of a software
package is in a progressive style, which
bunches comparative conceptual definitions
together in a level-by-level way that goes
from explicit to increasingly broad as one
navigates up the pecking order. A typical
utilization of such chains of command is in
a flow chart. This sort of order is helpful in
programming plan, for it bunches together
regular usefulness at the most broad
dimension, and perspectives particular
conduct as an expansion of the general one.
The flow charts in Figure no. 1 and Figure
no. 2 encompassing the pseudo codes
represent sequential and parallel Dijkstra
algorithm respectively.

Figure no.1: Flowchart for sequential Dijkstra algorithm

159

Figure no. 2: Flowchart for parallel Dijkstra algorithm

2.1.2. Programming
The programming language chosen to

implement the design is Java 8 since Java is
a concurrent programming language i.e. a
programming language that use language
constructs for concurrency. These
constructs may involve multi-threading,
support for distributed computing, message
passing, and shared resources. The design
of a Java program is determined by
characterizing the classes, together with
their instance variables and techniques. The
flow chart graphs are utilized to express the
association of the program; and the

utilization of pseudo-code to portray the
algorithms. These outlines are standard
visual documentation used to express
object-oriented software designs and act as
a guide in programming.

Actual coding on a computer begins
after decision has been made concerning the
classes for this program and their
responsibilities. For the Dijkstra algorithm,
the classes that are made included the edge,
vertex, graph, centre utility and a public
class for Dijkstra algorithm (Prasad,
Krishnamurthy & Kim, 2018). The actual
code for the above named classes can be

160

https://ieeexplore.ieee.org/author/37086362159
https://ieeexplore.ieee.org/author/37293234800

created in this program by using either an
independent text editor (such as emacs,
WordPad, or vi), or the editor embedded in
an IDE, such as Eclipse, Netbeans or
Borland JBuilder. In this case, Eclipse, an
integrated development environment is
used. In order to visualize or represent the
relationships between the different vertex
and edges, we use a library known as
jgraphx a java graph visualization library.
This clearly depicts the interconnections of
the network and allows one to set the
source and destination vertices. It also
contains a tab, ‖Get path‖ that allows the
program to be executed thereby giving the

shortest path between two vertices which is
displayed below it for the parallel and
sequential algorithm.

The design of the graph is as shown
in Figure no. 3. It comprises 7 nodes
(vertices) denoted by A, B, C, D, E & G.
Each of the vertices is linked to another
with edges that are weighted which can also
be used to represent the distance.
The Dijkstra algorithm embedded in the
program will look for the shortest distance
between two nodes and the time taken to
reach the destination. This occurs for both
the parallel and sequential execution.

Figure no. 3: Graphical representation of network design

3. Results
After the execution of the program

while interchanging the source and
destination nodes, the obtained data

detailing the source, destination, shortest
path and time taken in nanoseconds is
recorded as shown in Table no. 1.

161

Table no. 1
The Results

VERTICES (NODES) TIME TAKEN(nS)

SOURCE TO DESTINATION SHORTEST PATH SEQUENTIAL PARALLEL

A-TO -E A B E

B-TO-D B G D 3910201 1969536

A-TO-D A C D

C-TO-E C D E 1855012 659720

B-TO-D B G D

C-TO-E C D E 635179 295936

A-TO-E A B E

C-TO-B C A B 1453694 878665

D-TO-B D G B

E-TO-A E B A 1026873 296417

D-TO-A D C A

E-TO-C E D C 1202991 284868

The speed-up factor for each result of

the shortest path between two nodes is
calculated as follows:

Speed- up Factor = (serial execution

time/parallel execution time)
1. A-E & B-D S(p)= 3910201/1969536=

1.985341217
2. A-TO-D & C-TO-E S(p)=

1855012/659720=2.8118817135
3. B-TO-D & C-TO-E S(p)=

635179/295936=2.146363639073
4. A-TO-E & C-TO-B S(p)=

1453694/878665=1.654434853
5. D-TO-B & E-TO-A S(p)=

1026873/296417=3.464285112
6. D-TO-A & E-TO-C S(p)=

1202991/284868=4.222976958

4. Conclusion
Because of an expansion in

parallelization of present day equipment, it
is normal that parallel algorithms will
assume progressively increasingly

significant role in current processing.
Shortest path algorithms, for example, the
Dijkstra algorithm, assume a significant
role in numerous pragmatic applications
and enhancing it for different centers ought
to bring progressively more advantages.
This is the case especially in network
routing since there has been an increase in
demand for faster transmission rate and
faster switching technologies due to the
drive caused by an explosive growth of
internet and an increase in traffic. From the
foregoing, we have been able to achieve the
objectives of the paper. We have
investigated the use of parallel algorithms
in improving switch throughput and come
up with a suitable programming language
with which to embed Dijkstra algorithm.
Furthermore, as our experiment as
demonstrated, we have been able to show
comparison between parallel and standard
(sequential) Dijkstra algorithm verifying
the efficiency of the parallel one.

162

REFERENCES

Lee, C., & Oruc, A. (1995). A fast parallel algorithm for routing unicast assignments in

Benes networks. IEEE Transactions on Parallel and Distributed Systems, Vol. 6, Issue 3,
329-334.

Maleki, S., Nguyen, D., Lenharth, A., Garzarán, M., Padua, D., & Pingali, K. (2016).
DSMR: A parallel algorithm for single-source shortest path problem. Proceedings of the
International Conference on Supercomputing, Turkey.

Prasad, A., Krishnamurthy, S., & Kim, Y. (2018). Acceleration of Dijkstra’s algorithm
on multi-core processors. International Conference on Electronics, Information, and
Communication, USA.

Singh, D.,

& Khar, N. (2016). Modified Dijkstra’s algorithm for dense graphs on GPU

using CUDA. Indian Journal of Science and Technology, Vol. 9, Issue 33, 1-9.

163

https://ieeexplore.ieee.org/author/37292819900
https://ieeexplore.ieee.org/author/37295419400
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8536
https://ieeexplore.ieee.org/author/37086362776
https://ieeexplore.ieee.org/author/37086362159
https://ieeexplore.ieee.org/author/37293234800
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8326468
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8326468

	Lee, C., & Oruc, A. (1995). A fast parallel algorithm for routing unicast assignments in Benes networks. IEEE Transactions on Parallel and Distributed Systems, Vol. 6, Issue 3, 329-334.
	Maleki, S., Nguyen, D., Lenharth, A., Garzarán, M., Padua, D., & Pingali, K. (2016). DSMR: A parallel algorithm for single-source shortest path problem. Proceedings of the International Conference on Supercomputing, Turkey.
	Prasad, A., Krishnamurthy, S., & Kim, Y. (2018). Acceleration of Dijkstra’s algorithm on multi-core processors. International Conference on Electronics, Information, and Communication, USA.

