
Land Forces Academy Review
Vol. XXIV, No 1(93), 2019

GLANCE ON PARALLELIZATION
OF FFT ALGORITHMS

Mhnd FARHAN
University of Baghdad, Iraq

mhndfarhan@yahoo.com

ABSTRACT
This paper implores the parallelization of Fast Fourier Transform (FFT)

algorithms and evaluates the resultant parallelized source codes. The FFT
algorithm is considered to be among the most important algorithms in the digital
era. There are various FFT algorithms but just a few are considered in this paper.
The Cooley-Tukey FFT is the most widely known and used. With no exception, in
this paper, the radix-2 Decimation in Time (DIT) and Decimation in Frequency
(DIF) are studied and implemented. Another important FFT algorithm that is the
Goertzel is also considered in this paper.

KEYWORDS: parallelization, FFT, algorithms

1. Introduction
Algorithms play a very important role

in life in the computations of various data.
Hence it becomes crucial for the people
using those algorithms to get the most
efficient versions. One such algorithm is the
Fast Fourier Transform (FFT) algorithm
which computes the Discrete Fourier
Transform (DFT).

DFT is very useful in the aid of
analysis of many problems in engineering
that translate to real life such as signal
processing, speech and image processing
(Chu & George, 2000). The number of
computations done in the computation of
DFT using a direct approach is given by
O(n2). The FFT is basically any algorithm
that is used to compute the DFT with a
reduced number of computations that is
O(nlogn) (Chu & George, 2000; Cuixiang,
Guo-qiang & Minghe, 2005). In the ever
changing world of technology, the speed of
processing has always been an issue.
Ranging from the internet to image and data
processing to a load of other applications,
the goal has always been to increase the
speed (Li & Dong, 2010).

In the past, computers have had one
processor with a single processing core.
Such computers were only able to do one
task at a time only being able to switch
between tasks. With time, however,
multiprocessor computers and multi-core
processors were manufactured to improve
on the speed of processing via the hardware
concurrency which allowed for
parallelization. Parallelization is the ability
of a computer to do multiple tasks at the
same time independently (Morris,
Chowdhury & Deb, 2011; Zhang, Shen, Xu
& Wang, 2013; Takahashi, 2017).

In this paper, parallelization of FFT
algorithms is going to be done to compute
the DFT. The C++ programming language
is used to come up with the source codes.

2. Design and Methodology
A pseudo code is used to generate

both the sequential and parallel source
codes for the FFT algorithms. The C++
high level programming language is used in
the implementation of the designs.
The source codes are compiled and run
using the Microsoft Visual Studio 2017

DOI: 10.2478/raft-2019-0009
© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

77

https://ieeexplore.ieee.org/author/38365435100
https://ieeexplore.ieee.org/author/38365435100
https://ieeexplore.ieee.org/author/38365435100
https://ieeexplore.ieee.org/author/38269999400
https://ieeexplore.ieee.org/author/37854960500
https://ieeexplore.ieee.org/author/37850067700

software and output is displayed through
the graphic user interface. Analysis of the
programs is also achieved using the
diagnostic tools of the software.

2.1. Design Procedure
In the actual design, the decisions on

how the FFT algorithms are to be
implemented are made. The sequential
programs for the algorithms are first
implemented. The sequential programs are
then parallelized by the technique of
multithreading available in the C++

programming language. The Goertzel
algorithm is implemented in the signaling
system dual tone multi- frequency.
The Goertzel algorithm computes the kth
DFT coefficient of the input signal unlike
the other FFT algorithms which compute
the DFT for all the input samples.

The required programs are represented
within flow charts to give the visual
impression and a road map for the actual
implementations. The flow charts constructed
are shown in Figure no. 1 and Figure no. 2.

Figure no. 1: Flow chart for DIT FFT

78

Figure no. 2: Flow chart for DIF FFT

79

2.2. Methodology
The programming language used in

the implementation of the algorithms is the
high level language C++. This language is
chosen because of its object oriented
features as well as the fact that it supports
parallel programming.

Using the flow charts as reference,
the source codes are implemented in the
C++ programming language. The Goertzel
algorithm, as well as the naïve approach for
the DFT, is also implemented. Input
sequences to the algorithms are taken
arbitrarily whereas the focus is not entirely

on the output of the programs but rather the
performance.

Diagnostic tools in the Microsoft
Visual Studio 2017 are used to analyze the
performance of the programs.
Consequently, the results from the
implementations entail the time taken for
the programs to accomplish the given tasks.

3. Results
After the execution of the sequential

and parallel programs, the execution
durations obtained are recorded in the
Tables no. 1, 2, and 3.

Table no. 1
Time of execution for the sequential implementations

Table no. 2
Time of execution for the parallelized implementations

Table no. 3
Time of execution for the Goertzel algorithm

80

The execution time of the various
implementations is used to calculate the
speed-up factor, that is;

Speed-up factor = (serial execution
time)/(parallel execution time)

1- DFT

(i) Number of samples = 8
Speed-up factor = 178/136=1.31

(ii) Number of samples = 16
Speed-up factor = 231/164=1.41

2- DIT

(i) Number of samples = 8
Speed-up factor = 159/155=1.03

(ii) Number of samples = 16
Speed-up factor = 185/170=1.09

3- DIF

(i) Number of samples = 8
Speed-up factor = 161/150=1.07

(ii) Number of samples = 16
Speed-up factor = 202/166=1.22

4- Goertzel

Speed-up factor = 238/202=1.18

4. Discussion
In this paper, emphasis was on the

computation of the DFT. Due to the
shortcomings of the naïve approach in the
computation, FFT algorithms are employed
for to improve on the speed of computation
and reduce the time required for execution.
This is more evident with the increase in
number of samples for which the DFT is to

be computed. FFT algorithms take
advantage of a number of properties of the
general DFT equation in order to reduce
redundancy and improve on the constraints
of time and memory. Hence, for the same
amount of input and output samples, FFT
algorithms are faster and take less time to
execute in similar conditions.

Further optimization of the
computations is attained by the effective
utilization of the processor unit. Computers
have been sufficiently improved over time
to be able to have genuine hardware
concurrency made up of multi-processor
computer or multi-core processors. To be
able to utilize this hardware concurrency,
the program must be parallelized to allow
for different parts of the program being
executed on different processors/ processor
cores at the same time. Hence
parallelization of the programs also
improves the speed of execution. As
evidenced by the results, it is also more
economical when computing the DFT of
more samples.

It is thus evident that parallel FFT
algorithms are suitable for multi-processor
implementation to ensure efficiency of the
programs.

5. Conclusion
In this paper, computation of the DFT

was attained by the implementation of the
FFT algorithms in C++. Sequential
programs were first implemented and then
parallelized in the C++ language. The
parallelized programs were compared to the
corresponding sequential programs and
speed factor found to be more than one.
Hence the FFT algorithms were parallelized
and found to have improved performance
and suitable for multi-processor
implementation.

81

REFERENCES

Chu, E., & George, A. (2000). Inside the FFT black box: serial and parallel fast fourier
transform algorithms. Washington, D.C.: CRC Press.

Cuixiang, Z., Guo-qiang, H., & Minghe, H. (2005). Some new parallel fast fourier
transform algorithms. IEEE Sixth International Conference on Parallel and Distributed
Computing Applications and Technologies, China.

Li, P., & Dong, W. (2010). Computation oriented parallel FFT algorithms on distributed
computer. IEEE 3rd International Symposium on Parallel Architectures, Algorithms and
Programming, China.

Morris, P., Chowdhury, S., & Deb, D. (2011). An efficient methodology for realization
of parallel FFT for large data set. International Conference on Advances in Computing and
Communications, India.

Takahashi, D. (2017). An implementation of parallel 1-D real FFT on Intel Xeon Phi
processors. International Conference on Computational Science and Its Applications, Italy.

Zhang, X., Shen, K., Xu, C., & Wang, K. (2013). Design and implementation of parallel
FFT on CUDA. IEEE 11th International Conference on Dependable, Autonomic and Secure
Computing, China.

82

https://ieeexplore.ieee.org/author/38365435100
https://ieeexplore.ieee.org/author/38365435100
https://ieeexplore.ieee.org/author/38269999400
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10544
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10544
https://ieeexplore.ieee.org/author/37854960500
https://ieeexplore.ieee.org/author/37850067700
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714188
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714188
https://link.springer.com/conference/acc
https://link.springer.com/conference/acc
https://link.springer.com/conference/iccsa
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6843220
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6843220

	In the past, computers have had one processor with a single processing core. Such computers were only able to do one task at a time only being able to switch between tasks. With time, however, multiprocessor computers and multi-core processors were ma...
	Chu, E., & George, A. (2000). Inside the FFT black box: serial and parallel fast fourier transform algorithms. Washington, D.C.: CRC Press.
	Cuixiang, Z., Guo-qiang, H., & Minghe, H. (2005). Some new parallel fast fourier transform algorithms. IEEE Sixth International Conference on Parallel and Distributed Computing Applications and Technologies, China.
	Li, P., & Dong, W. (2010). Computation oriented parallel FFT algorithms on distributed computer. IEEE 3rd International Symposium on Parallel Architectures, Algorithms and Programming, China.
	Morris, P., Chowdhury, S., & Deb, D. (2011). An efficient methodology for realization of parallel FFT for large data set. International Conference on Advances in Computing and Communications, India.
	Takahashi, D. (2017). An implementation of parallel 1-D real FFT on Intel Xeon Phi processors. International Conference on Computational Science and Its Applications, Italy.

