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ABSTRACT 
Unmanned aerial vehicles are famous for their wide range of 

applications. In D3 (Dirty-Dull-Dangerous) UAV applications flight 
conditions may vary on large scale. External disturbances like 
atmospheric turbulences and gusts may be subjected to UAV, and as a 
result, UAV flight mission might be conducted with high level of the 
degradation of the accuracy. Sensor noises are also present, and 
theirs negligence might lead to improper dynamic performances of the 
closed loop control systems. Uncertainties of the control systems 
being structured or unstructured may tend the closed loop control 
system to stability bounds. In worst case, uncertainties may destabilize 
closed loop control systems. The purpose of the author is to present a 
robust controller design method called H2-optimal design ensuring 
stability of the closed loop control systems with simultaneous dynamic 
performances predefined for the closed loop control system. 
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1. Introduction 
The large scale variety of the 

unmanned aerial vehicle’s flights (UAV) 
predicts worst case flight scenarios when 
UAV may interrupt flight mission and may 
return home to avoid critical flight situations. 
The UAV may have autopilot aboard 
ensuring stability and dynamic performances 
in total match with those of predefined ones. 
Besides external disturbances and internal 
sensor noises uncertainties may bring closed 
loop control system of the UAV to stability 
bounds, and as the worst case, uncertainties 
may destabilize the UAV closed loop 
automatic flight control system. UAV flights 
in real physical environment require a robust 
control system able to minimize, or, able to 
eliminate unwanted effects from disturbances, 
sensor noises, or, uncertainties. 

The H2 controller design method is 
an extension of the LQG design procedure 
able to design state space controllers.  
The theoretical background and solution of 
theH2 controller design problem elaborated 
in the works of Bokor et al. (2014), 
Maciejowski (1989), Grimble (1994), 
Kwakernaak (2002), Dahleh et al. (1995), 
Vesely et al. (2015), and Weinmann (1991). 
Robust controller design applications are 
presented by Hartley (1990), Morari et al. 
(1991). Multivariable dynamical systems 
were investigated by Franklin et al. (1994), 
Friedland (1986), Golten el at. (1991), 
Ogata (1999), Skelton (1988). The aircraft 
spatial motion dynamics was exhaustively 
investigated by McLean (1990). The UAV 
longitudinal motion dynamics is presented 
by Szabolcsi (2016). The MATLAB 
R2017b (2017), and MATLAB Control 
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System Designer 10.3 (2017), and Robust 
Control Toolbox have been used for design 
and for simulation purposes. 

2. The LQG Control Problem 
Formulation 

The block diagram of the random 
system can be seen in Figure no. 1. 

 

 
 

Figure no. 1: Block diagram of the LQG optimization system 
 
The plant is derived by the state 

equation given below (Bokor, et al., 2014; 
Kwakernaak, 2002): 

 
(1) 

 
where w is the white noise model of the 
plant disturbance, u is the control input 
vector, y is the measured output vector.  
The regulated output vector z (tracking 
errors, control inputs, measured outputs, 
states) and the measured output vector y are 
defined as follows: 

 

                     (2) 

 
where  represents the white noise of the 
sensors applied for measurement purposes. 

The optimal LQG design allows 
findingclosed loop control system 
stabilizing controller Kthat will minimize 
the cost function of the form: 

 
     (3) 

 
where  is the expected value operator. 

Solution of this problem has been 
elaborated in the works of Bokor, et al. 
(2014), and Kwakernaak (2002). The basic 
idea of the solution to that problem is the 
well-known separation principle. In that 
framework, the optimal compensator is 
found in two steps, i.e. the stabilizing 
controller is the interconnection of the 
optimal Kalman filter, and, the optimal 
static state feedback. It means that 
controller synthesis requires solution to two 
algebraic Ricatti equations (ARE). The first 
ARE serves for the solution of the linear 
quadratic regulator problem, and, the 
second ARE is the one serving for the 
solution of the linear quadratic estimator 
problem. The solution of the LQG optimal 
controller problem requires a priori data 
about plant disturbances and sensor noises 
being considered. 

It is well-known that the LQG 
problem can be generalized to that of the 
so-called standard problem, and, the 
stochastic interpretations may be 
eliminated. The standard configuration of 
the closed loop control system can be seen 
in Figure no. 2. 
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Figure no. 2: Closed loop system standard configuration 

 
In Figure no. 2 P represents the  

so-called generalized plant model is as 
follows: 

 

(4

) 
 
where , , u is the 
control input vector, w is the vector of the 
exogenous inputs (fixed commands, 
unknown commands, disturbances, noises), 
z is the regulated output, and, finally, y is 
the measured output vector. Partitions in 
P(s) in equation (4) can be expressed as 
(Kwakernaak, 2002): 

 

 (5) 

 
The LQG system design problem can 

be solved if to minimize the steady-state 
value of the expected value of 

. Using Figure no. 2 closed 
loop system regulated output z can be 
expressed in the term of the Laplace-
transform given below: 

 
                                (6) 

 
where  is the closed loop control system 
transfer matrix defined as: 

 

                                                                  (7) 
 

If the sensor noise  represents the 
white noise with unit intensity matrix of I, 
and, if the closed loop control system is 
stable one, then the integral performance 
index used for the causal controller design 
of K(s) can be derived using Parseval’s 
formula as follows: 

 

                                                          (8) 
 
The right-hand side of the equation 

(8) can be rewritten as the square of the 
second norm of the closed loop control 
system stable transfer matrix : 

 

                                                          (9) 
 
Summing up previous statements, 

solution of the LQG optimization problem 
outlined above represents the minimization 
of the second norm of the closed loop stable 
transfer matrix . 

Solution of the problem outlined 
previously in time domain is more 
convenient. For further discussions it is 
assumed that the plant dynamics P(s) is 
expressed with the following state space 
representationelaborated and shown by 
Kwakernaak (2002): 
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 (10) 

 
The plant dynamics P(s) can be 

represented by the following matrix 
partitions: 

 

      (11) 

 
In equation (11) in order to 

obtain a finite second norm defined by 
equation (9), and  because real 
physical systems always have a zero gain at 
infinite frequency. System matrices in 
equation (10) are supposed to meet 
following assumptions: 

1. the pair of matrices ( ) is 
stabilizable one; 

2.  is invertible one; 
3. ; 
4. the pair of matrices ( ) has no 

unobservable modes on the complex plain 
imaginary axis; 

5. The pair of matrices ( ) is 
detectable; 

 

6.  is invertible; 
7. ; 
8. the pair of matrices ( ) has no 

uncontrollable modes on the complex plain 
imaginary axis. 

 
The assumptions of (1-4) stand for the 

solution of the optimal state feedback 
problem, whilst assumptions (5-8) are 
related to the solution of the optimal state 
estimation problem. 

 
3. The -Optimization Problem 
The -optimization method removes 

the stochastics from the LQG optimization 
technique. The formulation and solution of 
the -optimization problem replaces the 
stochastic dynamical system LQG 
optimization with minimization of the 
second norm of the closed loop control 
system transfer matrix .  
The conventional LQG optimization can be 
considered for the special case of the 

-optimization problem. 
The conventional LQG problem is the 

special case of the generalized LQG 
problem outlined and discussed using 
Figure no. 3. 

 

 
Figure no. 3: The generalized LQG problem – the  mixed sensitivity problem 
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The colored disturbance , and 

the measurement noise  are passed 
through the shaping filters of  and 

 to determine theirs frequency content. 
The frequency domain weighting of the 
controlled output  and input  are 
determined by weighting functions of 

, and , respectively. 
The control system design based upon 

-optimization technique aimed at 
achieving following set of the criteria: 

1. closed-loop system stability; 
2. closed-loop system dynamic 

performances; 
3. closed-loop system robustness. 
 
To fulfill simultaneously system of 

criteria defined above the controller must 
ensure: 

1. large open loop gains at low 
frequencies; 

2. small open loop gains at high 
frequencies; 

3. open loop gain is kept away from 
the critical point of  at the 
crossover frequencies. 

 
For closed loop control system the 

sensitivity function of S, and, the 
complementary sensitivity functions of T(s) 
can be expressed using following equations: 

 

                        (12) 

 
In equation (12) the sensitivity 

function of S(s) determines how the 
disturbance effects on the closed loop 
control system output. The complementary 
sensitivity function of T(s) determines the 
closed loop system response. From 
equation it is easy to find out that: 

 
                           (13) 

 

Using functions S(s) and T(s) the 
design criteria explained above can be 
redefined as follows: 

1. sensitivity function S(s) must be 
small at low frequencies; 

2. complementary sensitivity function 
T(s) must be small at high frequencies; 

3. avoid peaks in S(s) and T(s) at 
crossover frequencies. 

 
To achieve those targets defined 

above let us select  Thus, we 
have: 

 

                                           (14) 
 

where R is the input sensitivity function and 
it is expressed as: 

 
   (15) 

 
If the closed loop control system id 

the SISO one, minimization of the second 
norm of the system transfer matrix (closed 
loop complementary sensitivity function) 

 means: 
 

     (16) 
 
To achieve design goals suitable 

selection of weights of , and 
 is required, and for that numerous 

considerations are available and widely 
applied in control engineering. The latter 
discussion will be about weight selection 
for the SISO control system case. 

The choice of the filter  is often 
conducted leaning on LQG design problem, 
and we have: 

 
                 (17) 
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If to set F=B, we have: 
 

    (18) 
 

where P(s) represents the open-loop plant 
transfer function. 

The choice of the filter  can be 
rephrased as it will shape the frequency 
content of the disturbance according to the 
open-loop frequency response function.  
The filter  is often chosen to be 
(Kwakernaak, 2002): 

 
                          (19) 

 
In equation  is the design parameter. 

The pole at 0 in ensures , 
and, it will lead to the finite second norm 
defined by equation (16). 

If weighting function  is chosen 
to have integral action (pole at 0) filter 

 may serve for fine tuning. The safe 
initial selection is . 

Selection of the filter must 
have a zero at 0 so as to cancel 
corresponding pole of the filter . 
There are two widely applied transfer 
functions of the filter as follows: 

 
                                 (20) 

where filter parameters  and  are used for 
fine tuning, and, U(s) is expected to have at 
least zero roll-off. 

 
                   (21) 

 
where U(s) has minimal roll-off at  
1 dB/dec. 

 
4. A Numerical Example for the 

UAV  Optimal Control System Design 
The broader range of the UAS is 

available the broader scale of the possible 
application is accessible. The UAV as a part 
of the UAS is becoming more and more 
complex. To ensure flight safety of the 
UAV equivalent or higher to that of the 
manned aircraft criteria the automatic flight 
control system or autopilot must be 
implemented aboard. 

The UAV spatial motion can be 
modelled using MIMO, or SISO-approach. 
The MIMO dynamical model of the aircraft 
is given by McLean (1990).  
The Boomerang-60 Trainer small UAV 
lateral/directional motion MIMO dynamical 
model is given by P. Eng (2011) and by 
Szabolcsi (2016) and is as follows: 

 

22) 
 
Where v is the lateral speed, p is the 

roll rate, r is the yaw rate,  is the roll 
angle,  is the aileron deflection,  is the 
rudder deflection, respectively. 

The single degree-of-freedom 
approximation of the UAV rolling motion 
can be deduced from equation (22) to be 
(Szabolcsi, 2016): 

 
23) 

 

 

156



 
The transfer function of the 

Boomerang-60 UAV is as follows: 
24) 

where A=1,1965, T=0,0502 s. 
 
The roll rate stability augmentation 

system is often serves as inner loop in the 
roll angle stabilization of the UAV, and it 
can be seen in Figure no. 4. 

The corresponding plant equations are 
as follows: 

           (25) 

 
 

 
Figure no. 4: The roll rate stability augmentation system of the UAV 

 
Using equation (25) the plant 

matrices defined by equation (11) can be 
derived as follows: 

 

   

(26) 
 
The TITO (Two inputs – Two 

outputs) closed loop system (Figure no. 2) 
plant dynamics has been constructed using 
mktito.m embedded function of MATLAB. 

The optimal H2 state space controller K(s)  
has been designed using MATLAB and its 
toolboxes via minimizing the closed loop 
control system stable transfer matrix  
using integral performance index defined 
by equation (8). The h2syn.m embedded 
function of MATLAB will find: 

K – LTI optimal controller; 
CL = lft(P,K) – LTI closed loop 

control system transfer function  
Gam = norm (CL) – H2 optimal cost 

. 
Results of the H2 optimal controller 

synthesis are as follows below: 
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                 (27) 

 

                                   (28) 

 

                           (29) 
 
The UAV roll rate stability augmentation system has been tested in time domain. 

Results of the computer simulation can be seen in Figure no. 5. 
 

 
Figure no. 5: Time domain behavior of the UAV 

 
From Figure no. 5 it is evident that 

UAV closed loop roll rate stability 
augmentation system has very fast response 
to the unit step change in the roll rate. There 
is no overshoot in the normalized step 

response, i.e., the entire closed loop control 
system behaves with non-oscillatory 
feature. 
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5. Conclusions 
The H2 optimal controller synthesis 

method is used long time very intensively. 
The controller design is supported by 
MATLAB, and the simulation is also  
easy-to-conduct using MATLAB toolboxes. 
The robustness of the UAV roll rate 
stability augmentation system is ensured. 

The fast response in roll rate means 
ability of the UAV to change bank angle 
very fast, too. This will allow use very 
effectively the roll control channel if to 
conduct collision avoidance missions, or, if 
to execute emergency landing being 
powered or unpowered. 
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