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ABSTRACT 
Unmanned aerial vehicles are widely spread and intensively 

used ones both in governmental and in private applications.  
The standard arrangements of the commercial-off-the-shelves 
unmanned aerial vehicles sometimes neglect application of the 
automatic flight control system onboard. However, there are many 
initiatives to ensure autonomous flights of the unmanned aerial 
vehicles via pre-programmed flight paths. Moreover, automatic flight 
control system can ensure necessary level of the flight safety both in 
VFR and IFR flights. The aim of this study is to guide UAV users in set 
up commercial onboard autopilots available on the market. On the 
contrary, fitness of the autopilot to a given type of the air robot is not 
guaranteed, and, an extra load on users can appear in controller 
settings. The proposed pole placement technique is one of the proper 
methods eliminating difficulties, and, computer aided gain selection 
using MATLAB will be presented. 
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1. Introduction 
Unmanned aerial vehicles (UAV) are 

widely spread ones both in military and 
civil applications. Some UAVs famous for 
its robust automatic flight control systems 
ensuring appropriate level of the flight 
safety comparable to that of the manned 
aircraft. Regarding national regulations, 
there is a general rule that not necessary to 
apply autopilot on the board. However, if to 
implement, the onboard autopilot can 
support UAV operators in execution of the 
flight missions, regulating appropriate flight 
parameters, ensuring automation of the safe 
return to home, and, in case of necessity, 
the automated emergency landing also can 
be executed autonomous way. There are 
many sellers, trading with universal 

autopilots, like MP2028, MP2028g, or, 
Paparazzi. The universal feature of the 
autopilots is an advantage, i.e. they can be 
implemented on the board of the wide  
range of the different UAV types.  
The universality means and requires high 
level of skills whilst to schedule and fit it to 
the given UAV type. This study proposes 
an analytic method of gain scheduling of 
the autopilots, as the first steps in setting 
and defining PID-controllers’ parameters. 
Thus, importance of the heuristic gain 
selection is reduced and replaced by the 
analytic one of the pole placement 
technique. This analytic controller design 
method and, computer simulation can 
support UAV users in gain fitting and 
scheduling. 
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2. Preliminaries and Literature 

Review 
Pole placement technique applied to 

design control law of the closed loop 
control systems have a long history. Many 
scholars, mathematicians and academicians 
were on the design of the closed loop 
control systems ensuring closed loop poles 
at predefined places on the complex plain, 
i.e. dynamic performances were ensured via 
closed loop poles locations. Bokor et al. 
(2014) deals with classical and modern 
control engineering. The pole placement 
design method is outlined in Franklin et al. 
(1994), in Friedland (1986), in McLean 
(1990), in Golten and Verwer (1991), in 
Ogata (1999), and, in Skelton (1988). 
Article of Szabolcsi (2014), deals with 
dynamic performances of the UAV 
longitudinal motion, and sets many criteria 
applicable during design of the autopilots. 
Szabolcsi (2011), gives MATLAB scripts 
to solve problems in modern control 
engineering, including gain selection for 
aircraft autopilots. Szabolcsi (2016), 
explained spatial motion dynamics model 
of the UAV being considered for the 
numerical example. The MATLAB R 
2017b (2017), and MATLAB Control 
System Designer 10.3 (2017) computer 
packages have been used for design and for 
simulation purposes. 

 
3. Controller Design using Pole 

Placement Method 
The pole placement technique is 

based upon an idea that closed loop 
automatic flight control systems’ pre-
defined dynamic performances can be 
ensured by appropriate selection of the 
closed loop poles (Bokor et al., 2014), in 
other words, by selection of the state 

feedback gain matrix, say, K. The full state 
feedback gain matrix K of the closed loop 
control system defines closed loop control 
system poles. 

The dynamical system being 
considered is supposed to be completely 
state controllable, the state variables being 
manipulated are measurable ones and 
supposed to be available for feedback.  
The same fashion, the observability of the 
state variables is supposed. Finally, the 
control input is supposed to be 
unconstrained. 

The dynamics of the multivariable 
control system can be defined using state 
and output equations (McLean, 1990; 
Szabolcsi, 2016): 

 
 ,        (1) 

 
where x is a column state vector of 

length n, u is the control input vector of 
length r, A is an (n×n) square state matrix 
of constant coefficients, B is an (n×r) input 
matrix of the constant coefficients that 
weight input variables, y is a column vector 
of the output variables, C is an (m×n) the 
output matrix of the constant coefficients 
that weight the state variables, and finally, 
D is an (m×r) direct feedforward matrix of 
the constant coefficients that weight the 
system outputs. For many physical systems 
the matrix D is a null matrix. Thus, the 
system state and output equations can be 
represented in the following notation: 

 
                   (2) 

 
Block diagram of the closed loop 

system built by equation (2) can be seen in 
Figure no. 1. 
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Figure no. 1: Block diagram of the closed loop control system (Ogata, 1999) 

 
The closed loop control system is of 

two main parts, say, the plant to be 
controlled, and controller represented by the 
full state feedback gain matrix K. 

Unmanned aerial vehicles designed 
by classical approaches to have 
conventional aerodynamic control surfaces 
are controlled by using one of the four 
control channels of elevator, ailerons, 
rudder, and thrust (McLean, 1990; 

Szabolcsi, 2016). In that sense the general 
equations of (1) can be rewritten as follows: 

 
                   (3) 

 
The characteristic polynomial of the 

open loop control system defined by 
equation (3) can be derived as (Ogata, 
1999; Bokor et al., 2014): 

 
+  ,                         (4) 

 
where I is an (n×n) identity matrix. 
Using Figure no. 1 the control law of 

the closed loop control system affecting 
closed loop poles can be derived as: 

 
,                                   (5) 

 
where r represents the reference input 

signal of the closed loop control system, 
and, the state feedback gain matrix K can 
be represented as follows: 

 
                    (6) 

Substituting control law of (5) into 
state equation of (3) yields to the closed 
loop control system state equation as it 
defined below: 

 
      (7) 

 
The characteristic polynomial of the 

closed loop control system defined by 
equation (7) is as follows by (): 
 

 
+  ,              (8) 

 
where  coefficients of the original 

characteristic polynomial. If the dynamical 
system defined by matrices of A, B, and C 
is controllable, characteristic polynomial 
equation of the closed loop control system 
can be set using state feedback matrix of K. 

It is well-known that all the 
controllable state space dynamical models 

can be expressed in the controllable 
canonical form, i.e.:  

 ,            (9) 
 

where , , and,  are matrices of the 
transformed system to the controllable 
canonical form, i.e.: 
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                               (10) 

 
                                                                                          (11) 

 
In this case, the closed loop control system state matrix can be calculated as follows: 

 
 

The closed loop control system characteristic polynomial will have a form of: 
 

  
(12) 

 
Let us denote the closed loop control system poles as . Using closed loop 
poles the characteristic polynomial can be calculated as: 

 
 , (13) 

 
 
where  are constant coefficients of 

the modified characteristic polynomial. 
 
The relationship between coefficients 

of , , and  is as follows below: 
 

      (14) 
 
From equation (14) elements of the 

state feedback gain matrix K can be 
calculated using following formula: 

 
      (15) 

 
If the dynamical system is the 

controllable one, however, it is represented 
not in the first companion form, the 
dynamical system model can be expressed 
in the controllable canonical form using 
nonsingular transformation matrix of T.  
Let us introduce the following Bass-Gura 
transformation (Ogata, 1999): 

                                          (16) 
 

                                   (17) 
 

                     (18) 
 

        (19) 
 
Using Bass-Gura approach the 

transformation matrix T must be chosen 
such that matrix  will be given in the 
first companion form, or, in the controllable 
canonical form. For that select following 
form of the transformation matrix T: 

 
 ,                                     (20) 

 
where M represents the controllability 

matrix of the form: 
       (21) 

 
 
 

 

91



 
and W is as follows: 

 

         (22) 

 
The control law of the closed loop 

control system, for r = 0, can be defined as: 
 

          (23) 
 
The control law synthesis consists of 

the following steps (Bokor et al., 2014): 
‒ using dynamical system state space 

model defined by equation (3) check 
the open loop system controllabity: 
find controllability matrix M; 

‒ using equation (4) find coefficients 
 of the original dynamical system; 

‒ find transformation matrix T defined 
by equation (20); 

‒ find coefficients,  of the 
characteristic polynomial of the 
transformed system, using equation 
(13); 

‒ using equation (15) find elements of 
the full static feedback gain matrix K. 
Summing up main results of this 

chapter it is easy to agree that finding full 
state feedback gain matrix K is based upon 
mathematical operations executed over 
matrices. Computer packages like 

MATLAB supports solution of such 
problems. 

The advantage of the closed loop 
system analytical design that the closed 
loop control system will be stable.  
The disadvantage of the pole placement 
method is that location of the closed loop 
poles on the complex plain is quiet difficult, 
and requires high level of skills in 
establishing relationship between poles and 
dynamic performances of the closed loop 
control system, and often the heuristic 
setting of poles is implemented. 

 
4. Allocation of the Closed Loop 

Poles 
The transfer function of the nth order 

dynamical system can be derived as 
follows: 

 

 (24) 
 
where, for the proper systems takes 

place . 
 
The behavior of the dynamical system 

described by equation (24) can be evaluated 
in time domain. It there are no multiply 
roots of the characteristic polynomial, the 
impulse response function of the dynamical 
system is as follows: 

 
 ,                     (25) 

 
where ’s coefficients are calculated 

regarding initial conditions, and ’s are 
solutions of the characteristic polynomial. 
From equation it is easy to conclude that 
the system response is the algebraic sum of 
time responses derived by the roots of the 
characteristic polynomial. 

For higher order systems, say, , 
using Galois-theorem, there is no closed 
formula to find roots of the polynomials.  
It means that the impulse response function 

of the dynamical system, mostly used to 
evaluate stability of the dynamical  
system, cannot be derived directly,  
i.e. approximated roots must be calculated 
and used latter. 

In some control applications, the nth 
order dynamical system is represented with 
its second order approximation. It means 
that nth order s-polynomial of the 
denominator of equation (24) is reduced to 
that of the second order one. 
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In many control applications, like in 

electrical systems, the R-L-C circuits, and, 
in mechanical systems the spring-mass-
damper system can be described by the 
second order ordinary differential 
equations.  

If to find Laplace-transforms of those 
systems described above, one can get the 
model of the second order dynamical 
systems, with two energy storages. 

 
4.1. Dominant Pole Approximation 

This method proposes approximation 
of the nth order dynamical system with the 
most important two roots, which are mostly 
complex conjugates ones. The remaining 
roots are supposed to be located at large 
distances from the pair of complex 
conjugate roots, i.e. theirs contribution to 
building up system responses is neglected. 

The following expression of the 
second order system’s simplified model is 
used: 

 
 ,             (26) 

 
where , and, . 
 
Finding roots of the characteristic polynomial of the system defined by equation (26) will 
give: 

,                                                                                (27) 

 

where  is the natural frequency, , , and, . 

 
The allocation of the roots defined by equation (27) on the complex plain can be seen in 
Figure no. 2. 

 
Figure no. 2: Block diagram of the closed loop control system 

 
Using formulas defined above, the 

second order dynamical system transfer 
function can be represented as follows 
below: 

 
                                                          (28) 
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Dynamic performances derived using second order system model are as follows: 
 

                                                                                                              (29) 

 
damping ratio:                                                                                                         (30) 
 
peak time:                                                                                                 (31) 

 
settling time:                                                                                                     (32) 
 

Dynamic performances introduced 
above are very important in solution of the 
controller synthesis problems. In spite of 
lack of the dynamic performances of the 
UAV automatic flight control systems, 
often the general set of performance criteria 
is implemented. 

 
4.2. General Case of the Closed Loop 

Poles 
Eliminating transients derived by 

poles of the characteristic polynomial can 
lead to more simple dynamical system as 
defined by equation (26). If such 
simplification results in meaningful errors 

in system responses this method of 
approximation of more complex system 
must be avoided, and, all roots of the 
system must be considered. It the closed 
loop system is designed using pole 
placement techniques the s-plane 
techniques is available to lean on. 

 
5. Design of the Closed Loop 

Control System of the Unmanned Aerial 
Vehicle Using Pole Placement Technique 

The short period longitudinal motion 
of the Boomerang-60 UAV can be derived 
as follows below (Szabolcsi, R.c., 2016): 

 

 ,                             (33) 

 
where w is the vertical speed, q is the 

pitch rate, and  is the elevator deflection. 
 
The model represented by equation (33) 

is changed to that of able to represent pitch 
angle control system. For that one can 
define kinematic relationship between pitch 
rate, and pitch angle using Euler-formula as 
follows below: 

 
                                           (34) 

 
Using equations (33) and (34) one can 

set up the UAV longitudinal short period 
rotational motion state equation in the 
following form: 

 
                        (35) 

 
The poles of the dynamical system 

defined by equation (35) have been 
calculated and they are represented in 
Figure no. 3 (MATLAB, 2017). 
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Extending order of the dynamical 

system with the Euler-formula defined by 
equation (34) leads to the introduction of 
the pole located in the origin of the 

complex plain. The system has a pair of 
complex conjugate roots providing 
overshoot of 3,05 %. 

 

 
Figure no 3: Poles of the dynamical model of the Boomerang-60 UAV  

(MATLAB script: author) 
 

The open loop dynamical model of 
the Boomerang-60 UAV has been tested in 
time domain. The impulse response 

function of the UAV dynamics can be seen 
in Figure no. 4. 

 
Figure no. 4: Impulse response of the UAV (MATLAB script: author) 
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From Figure no. 4 it is easily can be 

determined that the open loop system is the 
stable one, i.e. all transients will die out as 

. 

The UAV time domain behavior was 
tested using unit step input. Results of the 
computer simulation can be seen in Figure 
no. 5. 

 

 
Figure no. 5: Step response of the UAV (MATLAB script: author) 

 
From Figure no. 5 it can be deduced 

that two state variables, say, the vertical 
speed and the pitch rate, have bounded 
response to the bounded unit step input. 
The pitch angle behaves as integral of the 
pitch rate, defined by equation (34). 

Let us find control vector, in other 
words, find the full state feedback gain 
matrix using pole placement method 
ensuring closed loop control system 
properties as follows: 
damping ratio:  

36) 
settling time:       (37) 

 
The roots for the first trial have been 

chosen to be: 
                          (38) 

39) 
 
Using MATLAB and Control System 

Toolbox for gain selection result in the 
following full state feedback gain matrix 
(MATLAB Control System Designer, 
2017): 

 

) 
 
The closed loop system time domain 

behavior was tested to evaluate dynamic 
performances during stabilizing unit step 
function of . Results of 
the computer simulation can be seen in 
Figure no. 6. 
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Figure no 6: Step responses of the UAV Closed loop control system (MATLAB script: author) 
 

The closed loop control system poles 
derived by the static gain matrix K defined 
by equation (40) can be seen in Figure no. 7. 

 
Figure no. 7: UAV flight control system closed loop poles (MATLAB script: author) 

 
From Figure no. 7 it is easy determine 

that control strategy expressed in dynamic 
performances of the closed loop control 
system is met. If dynamic performances 
unconsidered still are important and, there 
is a need to calculate with, the roots must 
be replaced on the complex plain such that 
the set of performance criteria will be met. 
So as to minimize energy needed for the 
control process, it is proposed to select 

closed loop poles close to those of the open 
loop uncontrolled dynamical system’s 
poles. 

 
6. Conclusions 
The pole placement technique applied 

to select static gains of the full state 
feedback gain matrix is able to reduce 
workload of the designers setting closed 
loop system parameters. This analytic 
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approach can minimize needs in heuristic 
setting of the closed loop poles, which is an 
old-fashion method, however, still 
engineering experiences, skills and 
knowledges can support that activity. 

The computer aided gain selection of 
the static feedback gain matrix will ensure 

fast and attractive solutions, and, if the 
heuristic setting of the closed loop poles is 
still applied, it will accelerate finding 
proper solution to a given UAV automatic 
flight control system control law design. 
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