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ruggedness of a region.
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Introduction

Mountain terrain is more impressive than low, 
rolling hills or a flat plain. Much of that impres-
siveness is personal and subjective, but there are 
commonalities as well. In particular, large relief 
and steep drops correlate strongly with most 
people’s idea of visual impressiveness. In this pa-
per, we introduce three measures1 of mountain 
terrain based on the idea of relief and steepness. 
Constructing such a measure turns out to be a bit 
tricky. Mountains are often measured by their 
absolute elevation (i.e. above sea level), but that 
is not directly material to the visual impressive-
ness of a mountain. A gentle 1000 meter hill high 

1	 We use the word “measure” throughout in the sense 
of a  measurement of terrain, not in the mathemati-
cian’s sense of the term.

on the Tibetan Plateau could have a summit ele-
vation of well over 6000 meters, higher than any-
thing in North America, but not appear at all im-
pressive. Mathematically, the opposite extreme 
to looking simply at elevation (i.e. the values of 
the height function of a  landscape) is to look at 
the derivative of the height function. However, 
that is not appropriate either, as it focuses only 
on steepness and not on total relief. In fact, since 
real terrain has a roughly fractal structure, taking 
a derivative will measure the variation in slope 
on the smallest scales. For example, an ordinary 
curb at the edge of a sidewalk would yield an in-
finite value for the derivative of the height func-
tion, reflecting its vertical nature, but ignoring its 
tiny overall relief.

Hence we seek measures that simultaneous-
ly capture relief and steepness. The first measure 
we introduce assigns a number to any point on 
a landscape that captures how highly and steep-
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ly that point rises above surrounding terrain. By 
using the integral of a  certain function, it auto-
matically incorporates both relief and steepness 
information, averaged over all directions around 
the given point. We call this measure (or more 
pretentiously, this topographic functional) om-
nidirectional relief and steepness (ORS); it was first 
introduced in Earl and Metzler (2013), and is the 
foundation for the other two measures intro-
duced in this paper. The first of those is reduced 
ORS (RORS), which is a modification of ORS that 
addresses the desire to create a ranked list of rel-
atively “independent” impressive peaks, disre-
garding minor subpeaks. The second is domain 
relief and steepness (DRS), which does not assign 
a number to a specific feature, but to a whole re-
gion; it is essentially an average of ORS for all 
points in the region, and is a measure of the rug-
gedness of that region, in a way that automatical-
ly takes into account the overall relief involved 
and the steepness of the slopes in the region. 
A typical application is to compare the rugged-
ness of different mountain ranges.

In the body of the article we give the basic 
definitions of each measure, and various illus-
trative examples, applied to real topography. In 
the appendix we give a more precise definition of 
RORS and prove certain important mathematical 
properties of DRS, continuing the work begun 
in the first article (Earl, Metzler 2013) on these 
measures.

ORS

Let h(x, y) be a bounded function of two vari-
ables, thought of as the height function of a land-
scape. (We do not require h to be continuous, to 
permit the presence of vertical cliffs2.) Consider 
a point P on this landscape (usually, the summit 
or another high point on a peak), described by its 
horizontal (map) location p = (x0,y0) and height 
h(p). We want to assign a number, which we will 
call the omnidirectional relief and steepness (ORS), 

2	 We could in principle take into account the curvature 
of the Earth, but we will see that all of the calculations 
localize strongly, making it a very good approxima-
tion to think of the terrain as rising from a flat plane. 
Also, we do not treat overhanging cliffs in any special 
way, since that would vastly complicate the mathe-
matical model.

that measures how highly and steeply this point 
rises above the surrounding terrain. It should 
give a larger number to a larger peak if the two 
peaks are comparable in steepness, and it should 
give a larger number to a steeper peak if the two 
are comparable in height.

So for example, consider a  perfectly conical 
peak of height H, rising from a flat plain with an-
gle of elevation θ. The simplest measure we could 
define for such a peak would simply be the prod-
uct of the height and the angle3. For simplicity, 
we actually divide the angle by 90°:

ORS(cone) = H • θ/90°

In particular, a  “flagpole” (the limit of the 
cone shape as θ approaches 90°) of height H gets 
an ORS value of exactly H, and that is the highest 
possible value of ORS for a feature of total height 
H. A more topographically realistic cone of angle 
45° gets an ORS value of H/2, which is a good 
benchmark to remember in looking at specific 
examples.

For a  general, not perfectly conical feature, 
we can still define ORS by capturing a  kind of 
sum of how highly and steeply P rises above 
every other point in its surroundings. Like any 
continuous sum, it is calculated using an integral 
over all those surrounding points. It turns out to 
be best-behaved if we actually calculate it as the 
square root of the integral4 of a certain quantity. 
The formula that we give below involves a com-
plicated-looking function, but that function is 
present in order to guarantee the simple result 
given above for the perfect cone; see Earl and 
Metzler (2013).

Definition 1. Let h(x, y) be the height func-
tion for a  landscape, let p = (x0,y0) be a point in 
the plane, and let h0 = h (x0,y0). Let r be the radi-
al coordinate based at P, i.e. r(x,y) measures the 

3	 Note that we should not use the slope of the side of 
the peak since that would be unbounded as the sides 
approached vertical. While such perfect “flagpole” 
features do not exist in nature, any vertical cliff has at 
least one such side, and using the slope would cause 
ORS to become infinite in such cases. The angle is the 
simplest bounded quantity that measures the steep-
ness of the sides of the cone.

4	 This is analogous to taking the root-mean-square 
(RMS) average of a quantity, as is often done in signal 
processing and other situations. Here the integral is 
not truly an average, but the idea is the same.



	 CLOUD-CAPPED TOWERS: CAPTURING TERRAIN CHARACTERISTICS USING TOPOGRAPHIC FUNCTIONALS	 9

(horizontal) distance from (x,y) to (x0,y0), and let 
u(x,y) = (h0 – h(x,y))/r. The omnidirectional relief 
and steepness (ORS) of the point P relative to the 
landscape h is5 

where f is the function given by6 f(u) = 0 for u 
< 0, and for u > 0,

The function f is monotonically increasing, 
with graph shown in Fig. 1. It does not do too 
much violence to the spirit of ORS to think of f(u) 
as very roughly behaving like u itself7.

In Fig. 2, we indicate the picture to have in 
mind when thinking about ORS. One can think 
of drawing a line from (p, h0) to every point in the 
surrounding landscape, calculating an “impres-
siveness” rating f(u) based on the slope u of the 
line, and then doing an RMS-type sum of those 
ratings. A  larger peak (such as Mount Rainier, 
shown in the picture) will get substantial values 
for the slope u, and hence f(u), over a large area, 
giving a high ORS value. A steep but small peak 

5	 We use single integral signs throughout this paper, in 
contrast to our use of double integrals for subsets of 
R2 in the previous paper. This is to avoid cumbersome 
quadruple integral notation for DRS.

6	 You may wonder why f is defined with a square root, 
which we immediately square away in the integral. 
That is to present ORS explicitly as an RMS average, 
which is useful for a theoretical analysis of its prop-
erties. The function f also appears in the definition of 
RORS below, in a  way where it is not immediately 
squared.

7	 However, it is crucial that f(u) is of the order of u2 and 
not u for small slopes, or else the integral will not con-
verge.

will not get high slope values over such a large 
area, but it will get very high slopes near the 
peak, and hence will also get a high ORS value.

In Earl and Metzler (2013) we gave a mathe-
matical analysis of the properties of ORS. Here 
we will just mention some real-world calcula-
tions. For example, the summit of Mount Elbert 
(Fig. 4), the highest point in the Rocky Moun-
tains, is 4401 meters above sea level [1], while 
Devils Thumb8 (Fig. 3), a  striking rock spire on 
the border between Alaska and British Columbia, 
rises only to 2767 meters [3]. Based on pure eleva-
tion, Elbert far surpasses Devils Thumb. Howev-
er, Mount Elbert rises from a high base in central 
Colorado, so its local relief is not nearly as great 
as its elevation would indicate; nor is it a particu-
larly steep peak. For example, Elbert rises about 
1600 meters (one mile) over a horizontal distance 
of 6.5 kilometers on its southeast flank9 – which is 
not unimpressive. However, the northwest face 
of Devils Thumb soars an amazing 2000 meters in 
only 1.6 km, and it is similarly steep in other di-
rections. To get 2000 meters of vertical relief from 
the summit of Mount Elbert, one has to go about 
30 km away, to the town of Aspen; if one goes 
30 km from Devils Thumb, one gets to tidewater, 
yielding 2767 meters of relief. It is instructive to 
peruse the topographical maps for Mount Elbert 
[2] and for Devils Thumb [4]10. Mount Elbert has 

8	 There is no apostrophe in the official spelling of the 
name of this peak.

9	 One can verify these numbers using the public-do-
main mapping website map – per.acme.com, among 
others.

10	 Google Earth produces a good virtual tour of Mount 
Elbert. However, it has very inaccurate (and mislead-
ingly smoothed-out) elevation data for Devils Thumb. 
Getting accurate elevation data for steep features in 
obscure locations, such as Devils Thumb, is one of the 
challenges of this research.

Fig. 1. Plot of f (solid) and f2 (dashed)

Fig. 2. ORS illustrated by Mount Rainier
Source: Wikimedia Commons.
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an ORS of 237 meters, while Devils Thumbs’ is 
828 meters, corresponding to their dramatically 
different profiles. These values show that a com-
parison between these two peaks based on ORS 
gives the opposite result from the comparison 
suggested by their absolute elevations.

Table 1 lists the six US states with the highest 
maximum ORS value. Not surprisingly, Alas-
ka tops the list, although Mount McKinley (GE) 
(ORS = 1243 m, elev = 6194 m) is not the best point 
in Alaska. The lower Mount Saint Elias (GE) is 
very close to tidewater (about 10 km away, see 
Fig. 5), and is comparably steep, so it gets a high-
er ORS value. Most of the other peaks are well-
known, except perhaps Mount Cleveland (GE), 
the high point of Glacier National Park. (The gla-
ciers there are fast disappearing, but they have 
carved a  number of exceptionally steep peaks.) 
It is interesting to also compare Mount Whitney 
(GE), the high point of the contiguous US (ORS = 
418 m, elev = 4421 m); note that it is bested with-

in California not only by the huge stratovolcano 
Mount Shasta (GE), but also by Yosemite’s El 
Capitan (575 m) and Half Dome (580 m), among 
others. As in the case of Mount Elbert, simply be-
ing the best in terms of absolute elevation does 
not guarantee a high rating in terms of ORS.

Worldwide, we have Table 211, which lists the 
top five independent12 peaks in the world. Four, 
including the overall winner Nanga Parbat (Fig. 
6), are in the Himalayas, while Rakaposhi is in 
the nearby Karakoram range. While three of 
these peaks are in the famed group of fourteen 
“eight-thousanders” (with elevation over 8000 
meters), two are not; in fact Machhapuchhare 
(Fig. 7) is not even in the top 300 peaks in the 
world by elevation. (It is a  tremendously steep 
peak, near low terrain, in the Annapurna region 
of Nepal; it is highly sacred and is off-limits to 
climbing.) For comparison, Mount Everest, eleva-
tion 8848 m, gets a very respectable ORS value of 
1302 m. Also note the dramatic difference in scale 

11	 Since uniform topographic mapping is not available 
for these peaks, the links are to Google Earth tours. 
They give the general impression, but be aware that 
they are not always highly accurate.

12	 This list was actually generated by taking the five 
highest points as ranked by reduced ORS, as in Sec-
tion 3, to ensure five truly independent peaks.

Fig. 3. Devils Thumb, Alaska
Source: Wikipedia.

Fig. 4. Mount Elbert, Colorado
Source: Wikipedia.

Table 1. State best points by ORS
Peak ORS Elev State

Mount Saint Elias (GE) 1334 5489 Alaska
Mount Rainier (GE)   827 4392 Washington
Grand Teton (GE)   683 4197 Wyoming
Mount Shasta (GE)   675 4317 California
Mount Cleveland (GE)   672 3190 Montana
Mount Hood (GE)   649 3452 Oregon

Fig. 5. Mount Saint Elias from Icy Bay
Source: Wikimedia Commons.
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between these peaks and peaks in the contiguous 
US (Mount Saint Elias does, however, come close 
to the top five, and actually beats Everest, despite 
being over 3000 meters lower.)

Reduced ORS (RORS)

It is common to see a  list of the highest N 
peaks in a region, for example, the top 5313 peaks 
in Colorado, known as the “fourteeners” – the 
peaks exceeding 14,000 feet. Such a  list is of-
ten interpreted as comprising the “best”, “most 
impressive”, or most desirable (for a  climber) 
peaks in the region. We would like to make such 

13	 The exact number depends on exactly what list is 
used; see [8].

a  list using ORS, which would give more cred-
it to locally high and steep peaks, not simply 
the highest ones above sea level. However, we 
need something more than ORS to do so. Note 
that even standard height-based lists must in-
clude some sort of cutoff criterion, to avoid list-
ing trivial subpeaks (or, in the logical extreme, 
an infinity of points surrounding the summit of 
the highest peak on the list). Some measures, no-
tably topographic prominence [5], need no such 
cutoff; such a  measure automatically factors in 
the independence of a summit, meaning that no 
trivial subpeak will get a high value. We creat-
ed reduced ORS (RORS) to have this feature: it 
is a measure of a summit’s14 independent impres-
siveness. In particular, its most important prop-
erty is that it is automatically discrete: informally, 
if a point P gets a high value for RORS, then all 
nearby points will get a  low value. However, 
our particular definition of RORS involves more 
choices than we made for ORS, some of which 
are justified more on aesthetic than mathematical 
grounds.

To fix ideas and motivate the definition of 
RORS, consider the Teton Range in Wyoming. 
It is dominated by the Cathedral Group, with 
highest point the summit of the Grand Teton 
(4197 m), shown in Fig. 8 and mapped in Fig. 9. 
There are other massifs in this small range, most 
notably that of Mount Moran, a few miles north 
of the Grand Teton; see Fig. 10.

14	 Actually, RORS, like ORS, can be applied to any point 
on a landscape. However, the points with large RORS 
values tend to be (but are not always) summits.

Table 2. World’s top five independent peaks by ORS
Peak ORS Elev State

Nanga Parbat 1740 8125 Pakistan
Dhaulagiri 1680 8167 Nepal
Rakaposhi 1628 7788 Pakistan
Machhapuchhare 1596 6993 Nepal
Manaslu 1550 8163 Nepal

Fig. 6. The southern “Rupal” face of Nanga Parbat, one of 
the largest mountain faces in the world

Source: Wikimedia Commons.

Fig. 7. The sacred “Fishtail” mountain Machhapuchhare, 
Nepal Himalaya

Source: Wikimedia Commons.

Fig. 8. The Cathedral Group, Grand Teton on the left, 
Mount Owen center, Teewinot Mountain right

Source: Wikimedia Commons.
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The point with the highest ORS value (ORS 
= 683 m) is the summit of the Grand Teton. See 
the topographic map (Fig. 9), or better, view the 
range in Google Earth. Hence, if we were to make 
a list of the “best” points in the range as judged 
by ORS, that summit would clearly top the list. 
But what should be number two? Certainly not 
the second-highest boulder on the same sum-
mit, and perhaps not even nearby peaks such as 
Mount Owen (3940 m, just north of the Grand Te-
ton, in the center of Fig. 8), or Teewinot Mountain 
(3758 m, on the right in the same picture), which 
are overshadowed significantly by their neigh-

bor, and which could reasonably be considered 
subsidiary points on the same massif. We would 
like the RORS value of Mount Owen, for exam-
ple, to be substantially reduced, compared to its 
ORS value of 581 m, by the presence of the Grand 
Teton nearby. One way to say this is that, given 
that the Grand Teton has a high ORS value, the 
fact that Mount Owen also has a high ORS val-
ue does not convey that much new information, 
since Mount Owen is part of the same massif. The 
RORS value of Mount Owen is supposed to re-
flect, roughly, the relief and steepness that it has 
apart from its being a  part of the Grand Teton 
massif. The same is true of Teewinot Mountain 
(ORS = 552 m), although since it is substantially 
more separate from the Grand Teton than Mount 
Owen is, it should be less reduced by the presence 
of the Grand Teton. In fact, the number two on 
the RORS-ranked list (explained in detail below) 
for the Teton Range (and for all of Wyoming) is 
Mount Moran, which is significantly more inde-
pendent than Mount Owen or Teewinot Moun-
tain (see Fig. 10).

To explain RORS in more detail, we continue 
with the example of the Teton Range. There are 
a  few steps to get to our goal of a measure that 
will produce the kind of ranked list of independ-
ent peaks that we want. First we define relative 
RORS as follows (details in the appendix). Sup-
pose we want to consider a  subpeak of Mount 
Moran, say Thor Peak (see Fig. 10), and calculate 
its RORS value considering its proximity only to 
Mount Moran, which we will call the “reduc-
ing” peak in this situation. We denote that value 
by RORS(Thor; Moran). To calculate it, roughly 
speaking, for every point in the surrounding ter-
rain, we calculate how impressive the summit of 
Thor looks from that point, then subtract the im-
pressiveness of Moran from that number (floor-
ing at zero), and then sum to get RORS(Thor; 
Moran). We could also reduce Thor by both the 
Grand Teton and Moran to get a  smaller value, 
RORS(Thor; Grand, Moran). In fact, given any 
chosen collection of reducers, say p1, ..., pn, we can 
define the relative RORS of a peak p0, reduced by 
p1, ..., pn, and denote it by RORS(p0; p1, ..., pn). This 
number measures the impressiveness that p0 has 
independent of its association with p1, ..., pn. Sim-
ilarly, we could calculate RORS(Owen; Grand), 
RORS(Teewinot; Grand), RORS(Owen; Teewinot, 
Grand) or RORS (Teewinot; Owen, Grand).

Fig. 9. Topographic map of the Cathedral Group, including 
the Grand Teton and Mount Owen

Source: USGS.

Fig. 10. Zoomed-out map of the Teton range, Mount Moran 
near the top
Source: USGS.
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Relative RORS leads to a wealth of numbers 
measuring relative impressiveness. However, the 
most common use we have for RORS is to create 
a ranked list of peaks15 in a region, which we do 
as follows. We first find the peak with the highest 
ORS value; call it p1. That will be number one on 
the list. Then we re-scan the region, evaluating 
RORS(p0; p1) for all points p0. The peak with the 
highest value becomes the second peak on the 
list; call it p2. We again scan the region, calculat-
ing RORS(p0; p1, p2) for all p0; the best peak found 
becomes p3, and so on. This yields a list with the 
property that the nth entry is the best among 
all points in the region when considered rela-
tive to the points above it on the list. We denote 
the resulting RORS values simply by RORS(p1), 
RORS(p2), etc., suppressing the dependence on 
the reducing peaks, since they are implied by 
the ordering of the list. This “absolute” version 
of RORS is what we have calculated numerous 
examples of on our website [7].

As an example of a RORS-ranked list, Table 3 
shows the top 10 peaks in Wyoming, headed by 
the Grand Teton. Here ORS, RORS, and elevation 
are in meters. Note that Teewinot Mountain ap-
pears at the bottom of the list, drastically reduced 
by the Grand Teton, but not so drastically as the 
higher (but much closer to the Grand) Mount 
Owen. The RORS value for Mount Owen is in 
fact under 150 m, well off the list. It is so low part-
ly because Mount Owen is reduced not only by 
the Grand Teton but also by Teewinot Mountain; 
together they reduce the relative impressiveness 
of Mount Owen in almost all directions. A KML 
file for this list is available at www.peaklist.org.

15	 Or features; sometimes (such as with El Capitan) the 
best points are not summits. However, for simplicity 
we will speak of “peaks”.

If done by the letter, this procedure is obvi-
ously cumbersome, especially if we want a long 
list of best peaks. However, it is easy to make ap-
proximations and simplifications that reduce the 
time required to compute RORS significantly.

First, since RORS ≤ ORS, one need not consid-
er points that do not have a relatively high ORS 
value. Second, since the effect of reduction falls 
off relatively quickly with distance, one need not 
include far-away peaks as potential reducers. 
Third, reducing by many points almost never 
produces much more reduction than reducing by 
the most “powerful” (usually the closest) two or 
three reducing points.

Nonetheless, calculating the top 50 points by 
RORS in a US state, for example, is a compute-in-
tensive process. It is also somewhat sensitive to 
small errors in the data, but that is unavoidable 
for a measure of this type – RORS is a “winner-
takes-all” measure, where two peaks that are 
close to being tied (and close physically to each 
other) can get forcibly separated on the list, with 
one being declared the winner, and the other get-
ting drastically reduced by the winner (as in the 
case with the Grand Teton and Mount Owen). In 
the appendix we discuss how this type of sensi-
tivity is unavoidable.

Table 4 shows the top 10 peaks in the Contig-
uous US, ranked by RORS. Note the mixture of 
Cascade stratovolcanoes (large relief, not very 
steep) with rock peaks (smaller but steeper) in the 
Rockies (mostly Glacier National Park), North 
Cascades (e.g. Hozomeen Mountain, Fig. 11), and 
Sierra Nevada (just Half Dome, a classic example 
of a feature rewarded by ORS/RORS). Mount In-
dex (Fig. 12), also in the North Cascades, is par-
ticular striking in terms of its ratio of RORS to 
elevation; it rises extremely steeply from close to 
the flatland around Puget Sound. It is a famous 

Table 3. Top 10 peaks in Wyoming by RORS
Peak ORS RORS Elev Lat Long

Grand Teton 683 683 4197 43.7413 –110.8024
Mount Moran 570 531 3842 43.8379 –110.7729
Squaretop Mountain 445 444 3565 43.2246 –109.7899
P11445 353 347 3489 43.2032 –109.7301
Mount Woodring 389 326 3533 43.8038 –110.7935
Temple Peak 315 314 3954 42.6985 –109.1710
Fremont Peak 313 308 4190 43.1263 –109.6213
Forlorn Pinnacle 311 308 3548 43.3201 –109.7735
Lizard Head Peak 316 307 3914 42.7901 –109.1976
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technical climb, but no listing of peaks by eleva-
tion (even just in Washington State) would ever 
include it.

Note that for most of these peaks RORS is very 
close to ORS, since they are the best peak in their 
neighborhood. This may seem to make RORS 
pointless in this situation, but remember that 

a list purporting to show the “top 10 by ORS” in 
the Contiguous US would be nonsense; it would 
be 10 points on Mount Rainier. Also note that by 
ORS, Mount Owen would (just barely) make this 
list, while by RORS it is not even close.

Domain relief and steepness (DRS)

Since ORS is based on a combination of relief 
and steepness, it is very well adapted to be the 
basis of a  measure of ruggedness. We call this 
measure domain relief and steepness (DRS). The 
DRS of a region, let’s say a bounded domain K, 
is actually quite a bit simpler to define precisely 
than RORS. Essentially, it is the RMS average of 
the ORS value for every point in K. There are two 
modifications to that statement: first, we redefine 
ORS to integrate over only K, since the rugged-
ness of a given region should not depend on how 
it sits relative to its surroundings; it is a purely 
internal measurement. Second, instead of declar-
ing our modified slope integrand f from equation 
(1) to have f (u) = 0 for u < 0, we extend it as an 
even function.16

Denoting this modification of ORS by ORS(p; 
h, K) we define

where A(K) is the area of K. (If A(K) = 0, we define 
DRS(h, K) = 0; we will justify this in the appen-
dix.) This can be expressed directly in terms of 

16	 This second change is not essential, but it does make 
the resulting formula more symmetric. It is easy to 
verify that using the original convention for f instead 
results in a definition of DRS that is 1/ √2 times that 
given here.

Table 4. Top 10 peaks in Contiguous US by RORS
Rank Peak Region ORS RORS Elev

1 Mount Rainier Cascade 827 827 4301
2 Grand Teton Teton 683 683 4197
3 Mount Shasta Cascade 675 675 4317
4 Mount Cleveland Glacier NP 672 672 3190
5 Mount Hood Cascade 649 649 3452
6 Hozomeen Mountain N Cascade 643 642 2440
7 Kinnerly Peak Glacier NP 612 605 3035
8 Mount Stimson Glacier NP 590 588 3069
9 Mount Index N Cascade 588 583 1598

10 Half Dome Sierra Nevada 580 580 2692

Fig. 11. Hozomeen Mountain, North Cascades, Washington
Source: Wikipedia.

Fig. 12. Mount Index, North Cascades, Washington
Source: Wikipedia.
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the (new) modified slope integrand f as follows. 
Abusing notation slightly, let u(p, x) = (h (p) – h 
(x)) / ║p – x║ be the slope between the points p 
and x. Then 

Note that this (quadruple) integral is sym-
metric in the variables p and x, and that it has 
units of length, just as ORS does (recall that f is 
dimensionless).

As with RORS, this version of DRS is not 
exactly what we are most interested in. Given 
a mountain range, it is not usually clear what its 
exact “natural” boundaries are, so the region K 
is not usually given to us from the start (unless 
we specify it to be some adjudicated region such 
as a state or county). What could presumably be 
more interesting is to let DRS itself define a kind 
of natural boundary, by starting with a large re-
gion K0 that clearly includes the whole range and 
looking for the region K inside K0 with the largest 
DRS value. We have not proved rigorously that 
such a region exists, although all of our computer 
calculations, with various grid sizes, suggest that 
it does. However, the more serious issue is that 
the resulting region K tends to be quite small, and 
actually picks out the most rugged single feature 
or massif, or at most a small range of peaks. The 
reason is that DRS (h, K) tends to be maximized 
when the size of K (say, a rough diameter) is not 
a lot larger than the typical scale of relief of h in 
K (see the Wasatch Range analysis below for an 
explicit example of this phenomenon.)

Hence we introduce one more parameter, 
a  fixed area k, and find the region K within K0 
that maximizes DRS (h, K) subject to the con-
straint A(K) = k17. Increasing k yields an expand-
ing sequence of regions that go from focusing on 
the most rugged massif, to capturing the rugged 
“heart” of the range, to covering the whole range. 
At each stage the optimal region gives the most 
rugged terrain encompassable by a region of the 
chosen size. If desired, one can then choose a val-
ue for k that corresponds to one’s notion of where 
the whole range ends. Making comparisons be-
tween ranges requires comparing DRS values 

17	 Again, using “maximize” in an empirical sense, since 
we lack a precise, rigorous maximization theorem.

calculated for regions of similar size: one range 
may have a very rugged massif inside it and yet 
be comparatively tame otherwise (such as, for ex-
ample, the Washington Cascades around Mount 
Rainier), while another range may be moderately 
rugged over a much larger area. Better, a graph of 
the optimal DRS values for a range as a function 
of k captures at a glance both the ruggedness and 
scale of the range as in the following example.

Our main example is the Wasatch Range in 
Utah, summarized by Table 5 and Fig. 13. The 
first entry in the table is (a good approxima-
tion of) the overall maximizer for DRS, not con-
strained to have a particular area value. (Hence if 
we continued the graph in Fig. 13 further to the 
left, it would decrease again.) Note that it focuses 
on less than one whole mountain (Fig. 14). The 
other entries are optimal for their given areas18, 
and they gradually encompass more and more of 

18	 To see an explanation of the area values chosen, see 
the Appendix.

Table 5. Optimally rugged regions in the Wasatch Range

Description Size 
(km2)

DRS 
(m) Figure

North Face Cascade 
Mountain 10.9 160 14

Timpanogos/ Cascade 
Mountain 31.8 155 15

Above plus Little 
Cottonwood 141.0 136 16

Above plus Big 
Cottonwood, Mount Nebo 613.0 121 17

Wasatch Front, Mill Creek 
to Mount Nebo 1390.0 109 18

Wasatch Front, Wellsville 
Mountains to Mount Nebo 3440.0   89 19

Fig. 13. Graph of optimal DRS values as a function of area, 
for the Wasatch Range in Utah
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the range, always focusing on the most rugged 
parts.

In Fig. 20, we show a  comparison of graphs 
of DRS versus area for some of the world’s most 
rugged ranges. Remember that a  rough way to 

think about a DRS value is as the average ORS 
value over the given region, and that an ORS of 
400, say, is achieved by a 45° cone of height 800 
meters (or to use a  real-world example, Mount 
Nebo in the Wasatch Mountains). So the Nepal 
Himalaya and the Karakoram, when restricted to 
their best 10,000 square kilometers, have an “av-
erage impressiveness” equivalent to the summit 
of such a peak.19

Note that the Nepal Himalaya and the Kar-
akoram are very comparable in ruggedness, over 
the same range of sizes, and are substantially 
more rugged than the other three ranges shown. 
The Pamir Range is superior to the Alps and the 
Canadian Coast Mountains at the smaller scale, 
19	 Due to using the even extension of the function f in the 

definition of DRS, we count valley terrain that looks 
up at nearby steep peaks as impressive, along with 
peaks that look down at nearby valleys.

Fig. 14. Wasatch Range, overall maximizer for DRS
Basemap: Google Earth.

Fig. 15. Wasatch Range, maximizer for 31.8 sq km
Basemap: Google Earth.

Fig. 16. Wasatch Range, maximizer for 141 sq km
Basemap: Google Earth.

Fig. 17. Wasatch Range, maximizer for 613 sq km
Basemap: Google Earth.
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but is quite comparable to those two when the 
whole range is taken into account, even though 
the Pamir Mountains reach over 7000 meters, 
while the Coast Mountains have very few sum-
mits over 3000 meters.

Recent advances in digital mapping will make 
it possible to eventually calculate reasonably ac-
curate ORS, RORS, and DRS values for any re-
gion on the planet (except perhaps the polar re-
gions). We look forward to sharing the resulting 
comparisons, and use the values to identify inter-
esting mountain terrain.

Appendix: Precise definitions and proofs 
of properties of RORS and DRS

RORS

We first define RORS of a  reference point p0 
relative to a  specific set of points pi ..., pn, and 
a landscape function h. One should think of p0 as 

Fig. 18. Wasatch Range, maximizer for 1390 sq km
Basemap: Google Earth.

Fig. 19. Wasatch Range, maximizer for 3440 sq km
Basemap: Google Earth.

Fig. 20. Ruggedness curves for selected world ranges



18	 Edward Earl, David Metzler

a summit to be evaluated, and p1, ..., pn as near-
by, more impressive summits. To obtain RORS, 
we modify the integrand in the definition of ORS 
so that each sample point contributes only to the 
extent that “viewing” p0 from x is “more impres-
sive” than viewing p1, ..., pn. Precisely, we set

and
vi(x) = f (ui(x))

where 

is the modified slope function used in ORS. 
Then for each i = 1, ..., n, v0(x) – vi(x) is a meas-
ure of the “impressiveness” of the reference 
point p0 as seen from sample point x, masked, 
or reduced, by the impressiveness of the point 
p1. Hence a simple candidate for the new 
integrand is

min {max (v0 (x) – vi (x), 0)} : i = 1,..., n

Note that taking the max with zero prevents 
negative contributions; once a  nearby peak has 
stolen all of a certain sample point’s contribution 
to RORS(p0), it can’t do any more damage. Sim-
ilarly, using min (instead of, for example, sub-
tracting the sum of the vi ) lets only the most sig-
nificant detractor act at each sample point. These 
are choices we make on empirical and practical 
grounds; one could use other conventions.

We actually perform one more modification 
on the functions vi before collecting them to build 
the RORS integrand. To explain this, consider 
two scenarios. In the first, p0 lies directly between 
the sample point x and a better peak p1 (Fig. 21); 
one can think, for example, of p0 as a subpeak on 
a  ridge of p1, with the sample point at the base 
of the ridge. In the second scenario, p0 and p1 are 
diametrically opposed as viewed from x (Fig. 
22); for example, they could be on opposite sides 
of a valley, with the sample point on the valley 
floor. In the latter scenario, it is plausible to con-
sider p0 as more independent of p1 than it is in 

the former, due to the relative position of the two 
peaks as viewed from the sample point.

Fig. 21. Scenario 1

Fig. 22. Scenario 2

You can see these two scenarios in the Swiss 
Alps in Google Earth: Scenario 1, Scenario 2. To 
distinguish these situations, we introduce an an-
gle weighting, as follows. For i = 1, ..., n, we let 
i(x) be the angle between the rays xp0 and xpi, 
and we let 

Note that wi varies from 1, in the ridge scena
rio, down to 0, in the valley scenario. We then de-
fine the RORS integrand g to be

g(x) = min {max(v0(x) – wi(x) vi(x), 0) : i = 1,..., n}

and we define

This defines the relative version of RORS; 
the absolute, list-generating version of RORS 
is described in the main body of the paper. We 
denote the absolute RORS of a peak p simply by 
RORS(p).

The one property of RORS that we want to em-
phasize is that it is automatically discrete: given 
any cutoff value C, the set of points p in a region 
with RORS(p) > C is finite, and the higher C is, 
the farther these points tend to be from each oth-
er. This is in sharp contrast to ORS, which assigns 
a number to every point of the terrain in a con-
tinuous fashion. So, for example, all points near 
the summit of a large peak will get similarly high 
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values of ORS. The drawback of the automatic 
discreteness of RORS is that it makes it highly 
sensitive to ties: if two nearby peaks have very 
similar ORS values (perhaps too close to tell, with 
the available accuracy, which one is truly better), 
the RORS ranking procedure will pick one to be 
the winner, and the other will be drastically re-
duced. Since this can easily be shown to be the 
case for any automatically discrete measure, it 
is a price one has to pay; however it is an impe-
tus to make the RORS calculations as accurate as 
possible.

DRS

We first look at some optimization problems 
for DRS, which inform the discussion in the main 
body of the paper, but for which we do not yet 
have rigorous results.

Problem 1: Given a  fixed landscape h and 
a  set K0, find a  subset K ⊂ K0 which maximizes 
DRS (h, K).

Problem 2: Given a fixed landscape h, a set K0, 
and k > 0, find a subset K ⊂ K0 which maximizes 
DRS (h, K) subject to the constraint A(K) = k.

Problem 1 is a  little more natural than Prob-
lem 2, since it lacks the area parameter. Note that 
the fact that DRS (h, K) → 0 as A(K) → 0 (shown 
below) means that this problem will avoid a sim-
ple pathology that is found in most problems of 
the form “find the region with the greatest aver-
age X” – usually, a search for such a region will 
simply converge on the maximum of X on the 
region. The superadditivity of DRS (also shown 
below) avoids such a pathology – a small region 
will always have a small DRS simply because it 
includes very few sample points. As we noted 
above, the optimal region does tend to be fairly 
small – not surprisingly, the horizontal scale of 
the optimal region approaches (in order of mag-
nitude, at least) the vertical scale.

However, beyond this simple, avoided pathol-
ogy, there is a much larger problem of whether 
a minimizing region exists at all, even in Problem 
2, with a fixed area. It is unclear whether, with-
out further assumptions on K or h, we will get 
a sequence of progressively better regions which 
has no limit (in an appropriate topology). This 
is of course a classic situation in the calculus of 
variations, and we have not yet investigated this 

problem thoroughly. We can lay out a modified 
problem, as follows.

First, recall the definitions of the Lp norms and 
Lp spaces.

Definition 1. Given a (Lebesgue measurable) 
function f: R2 → R and p ≥ 1, we define the Lp 

norm of f by

and we define Lp {f : R2 → R: ║ f ║∞}. We also 
define

║ f ║∞ = inf { M : m { │f(x) │> M } = 0 }

where m denotes Lebesgue measure, and 
L∞ = { f : R2 → R: ║ f ║∞ < ∞ } . Note that for a con-
tinuous function f, ║ f ║∞ is just the maximum 
value of f.

Problem 3: Given a fixed landscape h, in some 
class C ∈ L∞, a  class K of allowed regions, and 
a  set K0 ∈ K, find a  subset K ⊂ K0, with K ∈ K 
which maximizes DRS (h, K).

We hope that the classes C and K need not be 
too restrictive to guarantee a solution. Two exam-
ples of our vague thinking along these lines:

Questions: (1) If h is smooth (say C1, i.e. con-
tinuously differentiable) then can we guarantee 
a solution to Problem 3, with no a priori restric-
tion on K? Will the optimal K have a  relatively 
nice boundary? Must we make explicit assump-
tions about the niceness of the set of critical points 
of h? (2) For an arbitrary h ∈ L∞, if we require K to 
be convex, can we guarantee a solution to Prob-
lem 3?

Note that even if one or both of these ques-
tions has a positive answer, neither is particular-
ly satisfactory, since both restrictions are rather 
severe for our setting. Mountain ranges have ver-
tical cliffs, so h is typically not even continuous 
(although it usually isn’t a  horribly discontinu-
ous function, so perhaps some sort of piecewise 
smoothness is an appropriate assumption). And 
the shape one would expect to get “naturally” 
(without a  priori restriction on K) for a  maxi-
mizer would not usually be convex (picture the 
contours of a  mountain range). Our numerical 
results indicate that without a constraint on the 
shape of K, the optimal region will not necessari-
ly even be connected, much less convex. But both 
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questions are reasonable starting points for fur-
ther investigation.

However, turning from the pure approach to 
a more applied, numerical approach, we see no 
signs of any major practical obstacle to solving 
(approximately) Problems 1 and 2. Coarse-grid-
ded numerical approximations to this problem 
yield stable results. For example, our calculations 
indicate that the most rugged region in the con-
tiguous 48 states is the Picket Range of the North 
Cascades, in Washington State [7].

We will mention one practical note about how 
we actually proceed with Problem 2 to produce 
results such as the ones in the main body of this 
paper. We actually consider a slightly more gen-
eral form of DRS, namely

Note that the ordinary case is when q = 1, and 
if q = 0 then we get the “total” L2 norm, instead of 
the “average”. So clearly the analog of Problem 1 
is silly for the case q = 0, as the optimal region will 
always be all of K0. But for 0 < q < 1, the analog of 
Problem 1 is just as well-defined as it is for q = 1, 
and it will tend to give larger and larger optimal 
regions as q decreases. It is not much harder to 
see that adjusting q gives an alternate parametri-
zation to using A(K) = k for Problem 2. This has 
proved convenient, as it avoids having to deal 
with the fixed-area constraint in that problem. So 
in our calculations presented on the peaklist.org 
website, we have actually looked for overall max-
imizers of DRSq for various q, to indirectly solve 
Problem 2.

It may also very well be the case that some 
DRSq with q ≠ 1 is of as much or more interest 
in its own right than DRS = DRS1. It has an extra 
arbitrary parameter, and we see no clear reason 
to pick some particular q ≠ 1, which is why we 
prefer DRS1. But further investigation may make 
us prefer some other choice of q.

Now we turn to careful proofs of some desira-
ble properties of DRS. First, we note that DRS sat-
isfies obvious scaling and invariance properties 
akin to those satisfied by ORS (see Earl and Met-
zler 2013). We won’t write them down explicitly. 
Next, we want to give a simple property of DRS 
which clarifies exactly how much it is like, and 
how much it is unlike, an ordinary RMS average. 

The difference comes from taking sample points 
only from the region K. For an ordinary average, 
the following inequality would be an equality.

Lemma 1. Let the landscape function h be 
fixed and suppose K = K1 U K2 with K1, K2 disjoint. 
Then

Proof. Let g(K) = A(K)DRS2 (h, K). Then

which is what we wanted to show.
We refer to this property as the “superadditiv-

ity” of DRS (although more properly it is g which 
is superadditive).

Proposition 1. DRS is continuous as a  func-
tion of h in the L∞ norm.

Proof. This is clear since DRS is (the square 
root of) an integral of ORS2, which is continuous 
in L∞ (Earl, Metzler 2013) 

In fact, DRS is substantially better than this 
simple proposition indicates, since it averages 
out the variation in ORS. Hence a  tall but skin-
ny feature will contribute only a  small amount 
to DRS. First we prove a useful lemma about the 
behavior of ORS for a tall feature (in the extreme 
case, a flagpole) on a region of finite area.

Lemma 2. Fix a  region K with A  (K) finite, 
a landscape h ∈ L∞ (K), and a point p ∈ K. Then 
ORS (p, h0; h, K) is 0 (√h0) as h0 → 1.

Proof. Without loss of generality we can as-
sume that p is the origin. By adding a constant to 
both h0 and h we can assume that h (x) ≥ 0 for all 
x ∈ K. Then
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So

ORS (0, h0; h, K) ≤ √C √h0

Proposition 2. DRS is continuous as a  func-
tion of h in the L1 norm, for a fixed region K.

Proof. Let h1 ∈ L∞ (K) be a fixed landscape and 
let h2 ∈ L∞ (K) with ║ h2 ║K,1 < δ for a small δ with 
0 < δ < 1. Let h = h1 + h2. Let K0 = {p ∈ K: ║ h2(p) 
║ < √δ }, K1 = K – K0. Note that A (K1) < √δ by the 
condition on the 1-norm of h2. So K0 is the bulk 
of K, on which h2 is actually L∞-small, and K1 is 
a small region on which h2 can have large values. 
We have, once again using the notation u (p, x) = 
│h(p) – h (x)│/║p – x║,

Let the three integrals in this expression be 
denoted Ik (h2), k = 1, 2, 3. The bulk of the contri-
bution will be from I1. We will show that I1 (h2) is 
close to I1 (0), and that I2 (h2) and I3 (h3) are small, 
when δ is small. First, we have

and, as in the previous proposition, ORS2 is 
L∞-continuous in h, h is L∞-close to h1 on K0, and 
A (K0) is bounded by the fixed finite A (K). Hence 
I1 (h2) is close to I1 (0).  

Second, note that on K0, 

so

which is small when δ is small.

Third, for a small a > 0 to be determined later, 
let S1 = {(x, p) ∈ K1 x K1 : │x – p|| > a} and let 
S2 = K1 x K1 – S1. This separates things into the 
close-interaction regime and the distant regime. 
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Then

which is small when δ is small. This completes 
the proof.

Remark. (1) Note that the L1-continuity of 
DRS, which is usually defined only on landscapes 
in L∞, means that it can be extended to landscapes 

in L1. However we won’t make use of that fact. 
(2) Note that the bounds obtained in the proof are 
of the form √δ (or better), which is not enough to 
show Lipschitz (or similar) behavior. However, 
we made some fairly drastic approximations in 
the proof. It may be possible with more finesse 
to prove that DRS is L1-Lipschitz, or at least has 
good Gateaux derivative behavior with respect to 
L1. (3) Whatever the optimal result may be, even 
L∞ continuity of DRS is significant, since DRS is 
a measure of ruggedness, which would ordinari-
ly be calculated with derivatives.

We can also look at continuity in the region K. 
We define a metric on the set of bounded meas-
urable regions K by taking the area (Lebesgue 
measure) of the symmetric difference:

There is another way to write this metric. Let 
χK be the characteristic function of K. This is in L1 
exactly when K has finite area. Then it is easy to 
see that

In other words, taking the characteristic func-
tion embeds the set of bounded measurable re-
gions isometrically into L1. 

Proposition 3. Fix a landscape h. Then DRS(h, 
K) is continuous as a function of K with respect to 
the metric d.

Proof. If we do not approach regions with 
zero area, it is enough to show that the function 
g(K) = A(K)DRS2 (h, K) is continuous. Note that in 
general,

Hence we can assume without loss of general-
ity that K ⊂ K’, and we let L = K’ – K. We have
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so

using the flagpole bound on ORS. Hence g is ac-
tually Lipschitz, and DRS is continuous.

Now we just need to show that as K shrinks 
to zero area, its DRS value (not just g(K)) goes to 
zero. We have

Now, in polar coordinates centered at x,

(a.e.). Hence we need to bound

which, for a fixed area A(K) = k, is clearly max-
imized in the case where K is a  disc of radius 
a = √k/π centered at x, in which case

and this is independent of x, so

which clearly shows continuity as A(K) → 0. 
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