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Abstract. This paper discusses, first, the concepts of fractals and power laws in relation to the street patterns of 
the city of Dundee, East Scotland and, second, the results of the measurement of 6,004 street segments in the city. 
The trends of the street segments are presented through rose diagrams and show that there are two main street 
trends in the city: one is parallel with the coast, the other is roughly perpendicular to the coast. It is clear that the 
coastline largely regulates the street trend, because both the main street trends change along the city so as to be 
nearly coast-perpendicular and coast-parallel everywhere. The lengths of the street segments follow power laws. 
When presented on log-log plots, however, the result is not a single straight line but two straight lines. At the 
break in line slope, the fractal dimension changes from 0.88 to 2.20. The change occurs at the step length of about 
100 m, indicating that the short streets belong to a population that is different from that of the longer streets. 
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1. Introduction

Fractals are commonly used to describe the 
complexity of natural patterns. They do not only 
describe the underlying order of natural patterns, 
but also many man-made and human phenom-
ena, such as cities. Fractal theory makes it pos-
sible to advance our knowledge about the future 
of dynamic complex systems, such as cities, and 
also enables urban systems to be modelled as re-
gards growth processes. Since a city is a complex 
system with a complex shape, this theory can be 
used to develop a better understanding of urban 
systems, in particular as regards geometric com-
plexities and urban morphology. 

The complex geometric patterns of many cit-
ies have been subject to intensive studies in recent 
decades, as they offer a way of understanding the 

evolution of cities, using a variety of techniques. 
Among the best known techniques for analysing 
city structures and their functionality are the con-
cepts of fractals and complexity (Batty & Longley 
1994, Ratajczak 1998, Batty 2005). These concepts 
are well known and useful in analysing certain 
geometric patterns, particularly as regards con-
nectivity and integration of spaces in cities.

After a brief review of the city geometry, we 
mainly focus here on street patterns so as to 
quantify the variations of street patterns within 
cities, in particular those cities that have been af-
fected by different landscape constraints (valleys, 
rivers, the sea, mountains). By using the fractal 
analysis, we show here that, as regards length, 
street patterns have fractal characteristics and fol-
low power-law relations. We also show that, as 
regards trend, the street patterns reflect the over-
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all city shape and external landscape constraints, 
such as the sea (the coastline). The main focus is 
on the street patterns in the city of Dundee, East 
Scotland (Fig. 1), which has crudely a semi-ellip-
tical boundary, part of which is determined by 
the coastline (a landscape boundary).

2. Background

2.1 City geometry: from the organic (natural) 
to planned geometry of cities

Table 1 presents several characteristics of 
a city geometry, from the rectangular and regu-
lar patterns, to the organic, and finally to the new 
geometries. According to these categories, the 
morphology of many old cities seems to have 
a  very complex structure, which is manifest in 
characteristics such as the complex borders, in-
tricate street networks, the characteristic dis-
tribution of functions, and the connectivity be-
tween different parts of the city (Batty & Longley 
1994, Bovill 1996, Hillier 1999, Alexander 2000, 
Salingaros 2003, 2005, Wolfgang 2003). The ge-
ometries of these cities show that not only at the 
macro-scale are there underlying patterns, but 
also at the micro-scale. The cities have developed 
gradually and organised their structures, which 
has affected parts at the macro-scales. Thus, the 

whole structure of a typical city has been devel-
oped gradually with a high level of connectivity 
between different parts from the bottom up and 
from small to large scale. 

Batty & Longley (1994) suggested a  new ge-
ometry of city that arises out of interconnections 
and hierarchical principles. This geometry is 
looking for a  deep meaning of spatial ordering 
in the city so as to organise the spatial structure 
efficiently, whereas the rectangular geometry 
hardly ever links cities to the process of evolu-
tion. Thus, according to the new geometry, which 
is the geometry of connectivity, interactions, and 
hierarchy, cities tend to be complex and disor-
dered; however, there is a hidden order behind 
this irregularity. This new geometry does not try 
to describe the shape of cities but rather tries to 
provide the link between form and function; and 
also form and process. Batty & Longley (1994) 
proposed that the new geometry of cities is the 
geometry of form, the geometry of order at dif-
ferent scales, and the geometry of hierarchy and 
connectivity.

2.2 The emergence of complexity in cities

The recognition of the city as a complex sys-
tem was first made by Jacob (1961). She likened 
the city to a living organism with a complex be-

Fig. 1. Location and overview of the city of Dundee, East Scotland. The city has an overall shape crudely similar to that of 
half an ellipse, where the major axis coincides with the northern coastline of the Firth of Tay. The longitude and latitude of 

the city are also given.
Source: Google Earth.
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haviour, and which is potentially able to evolve 
in a coherent and consistent way. One common 
feature of cities, which is an indication of a living 
city, is thus organised complexity (Jacob 1961). 
This is resonant of an earlier notion of biologi-
cal analogy to understand city growth, initiated 
by Geddes (1915). Further developments in this 
direction, particularly as regards city planning, 
were made by Alexander (1964). In recent decades 
developments in this field have used results from 
complexity theory (Batty & Longley 1994, Batty 
2005). Alexander (1964) suggests that organic city 
growth is the product of unselfconscious design. 
With the emphasis on form and context, and their 
relationship, he argues that cities are adaptive 
syntheses of many actions.

Batty & Longley (1994) show how the devel-
opment and use of fractal geometry is useful for 
understanding the physical form of cities. Fractal 
geometry enables cities to be simulated through 
computer graphics and also helps us to explain 
how the structures of cities evolve. At first glance 
they may appear irregular, but when understood 
in terms of fractals, they reveal a complex and di-
verse underlying order. 

2.3 Fractal definition

Fractals are irregular shapes with geometries 
that are scale-invariant. At every scale, the degree 
of irregularity which characterises the geometry 
appears to be the same, this being referred to as 
self-similarity. Coastlines are appropriate exam-

ples of self-similarity: the length of a rocky coast-
line is obtained using a measuring rod of a speci-
fied length. The length of coastline increases, 
because of scale invariance, as the length of meas-
uring rod decreases according to a  power law 
(Turcotte 1997). The power exponent determines 
the fractal dimension of the coastline. However, 
it was Richardson (1961) who was the first to 
formalise the phenomenon of scale-dependent 
length, and later on Mandelbrot (1967) recon-
ceptualised it as fractal geometry. Since fractal 
geometry is the study of form and structure of 
rough and irregular phenomena, three related 
principles of self-similarity, scale invariance and 
power-law relations help us to understand if the 
geometric patterns of certain phenomena follow 
fractal (Brown & Liebovitch 2010). 

2.4 Self-similarity, scale invariance, 
and power-law relations

A self-similar object is composed of copies of 
itself at every scale and it looks similar at every 
scale of observation. The word ’similar’ carries 
a geometric meaning: objects that have the same 
form but may be different in size (Batty & Longley 
1994, Bovill 1996, Wolfgang 2003, Brown & Lie-
bovitch 2010). Branching structures such as trees, 
in which the construction process repeats itself at 
each scale, are amongst the best examples of frac-
tal structures. Small branches have essentially 
the same structure as large branches, except for 
differences in size. Therefore they are self-similar 

Table 1. A comparison between different characteristics of city geometry, from the pure and rectangular to the 
organic and new geometry of cities

Characteristics of different city geometries
Pure and rectangular geometry Organic geometry New geometry, fractal geometry

Planned and designed cities Unselfconscious and intuitive design Design of complex dynamic cities 
using modelling

Fast and regular growth Irregular and slow growth Hierarchical and complex configura-
tion

Rapid and geographically extensive 
change in city structure

Incremental change in city structure 
over long time periods

From bottom up across a range of 
scales

Control of development by few 
decision-makers Residents decide by trial and error Local residents, city experts and 

politicians
Process of urban development with-

out dissolution Development and dissolution Dynamic and complex approach to 
city development

Rectangular and regular patterns Organic patterns Underlying and complex patterns
Development without considering 

neighbouring regions
Co-evolution and interaction with 

surroundings Sustainable development
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because the statistics of the small branches copy 
those of large branches.

An object is scale-invariant when it has the 
same characteristics at every scale of observation. 
As a result, if you zoom in on a fractal object ob-
serving it at ever-increasing magnification, it still 
looks the same (Brown & Liebovitch 2010).

Power-law distributions are very common in 
artificial (’man-made’) and natural phenomena. 
The populations of cities, the sizes (intensities) 
of earthquakes, word frequencies in literature, 
and the frequencies of family names all give rise 
to power-law distributions (e.g., Newman 2005, 
2010). Power-law distributions imply that there 
are a large number of small events, processes, or 
objects of a particular type, and a small number 
of large events, processes, or objects of the same 
type. More specifically, power laws are scale free; 
in contrast to, say, normal (Gaussian) distribu-
tions, there are no objects (or events or process-
es) that are typical of the distribution as a whole 
(Barabási & Bonabeau 2003). Following early pio-
neering studies (Zipf 1949, Stewart 1950), inter-
est in and research on power laws have increased 
considerably during the last decades, with a large 
number of papers and many popular books being 
published on the topic (Turcotte 1997, Batty 2005, 
Sornette 2006, Newman 2005, Clauset et al. 2009, 
Schroeder 2009). 

2.5 Deterministic/theoretical and statistical 
fractals

Since its original introduction by Mandelbrot 
(1967), the concept of fractals has found wide ap-
plicability, from pure mathematics to the most em-
pirical aspects of engineering and social science. 
Given a  deterministic fractal such as the Cantor 
set, Sierpinski carpet and triadic Koch island, or 
a statistical fractal such as a rocky coastline, a sin-
gle mathematical equation is defined according to

	 P(x) = Cx-D 	 (1)

where P(x) is the number or frequency of objects 
(in this paper, the number of streets), C is a con-
stant of proportionality, and D (the minus sign is 
optional) is variously known as the exponent of 
the power law, its scaling exponent, or its fractal 
dimension.

The fractal dimension can be an integer, in 
which case it is equivalent to a Euclidean dimen-
sion. The Euclidean dimension of a point is zero, 
of a line is one, of a square is two, and of a cube 
is three. In general, the fractal dimension is not 
an integer but a fractional dimension; this is the 
origin of the term fractal (Batty & Longley 1994, 
Turcotte 1997). 

There are some differences between the deter-
ministic fractals, Koch island, and statistical frac-
tals such as a rocky coastline. While the perimeter 
of a Koch island is identically scale-invariant at 
all scales, the perimeter of a rocky coastline will 
be statistically different at different scales, but 
the differences do not allow the scale to be deter-
mined. Thus a rocky coastline is a statistical frac-
tal. A second difference between the triadic Koch 
island and a rocky coastline is the range of scales 
over which scale invariance (fractal behaviour) 
extends. The Koch island has the maximum scale 
of the origin triangle and the minimum can be 
extended over an infinite range of scales. A rocky 
coastline has both a maximum and a minimum 
scale. In addition, the scale invariance of a coast-
line will be only approximately scale-invariant 
(fractal), and there will be statistical fluctuations 
in any measure of fractality. However, the triadic 
Koch island is exactly scale-invariant (fractal; see 
Turcotte 1997).

The term ’fractal’ self-evidently denotes ’frac-
tal dimension’ in deterministic (perfectly self 
replicating) objects such as the Cantor set, Sier-
pinski carpet and triadic Koch island. However, 
the meaning may be less clear in statistical pow-
er-law distributions. Some statistical power-law 
distributions have fractal dimensions within the 
range of fractional dimensions, that is, 0 < D < 3, 
but others do not (Turcotte 1997).

3. Generation of power-law 
distributions 

The concept of a fractal, based on self-similari-
ty where the shapes or geometric patterns do not 
change when observed at different scales, reveals 
itself in a power law. Power-law distributions are 
scale-invariant because the shape of the function 
is the same at every magnitude. When applied to 
a  frequency (probability) distribution, a  power 
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law of the form P(x) = Cx-D (equation 1) in general 
is a fractal distribution. 

To determine whether a distribution is really 
power-law, the standard procedure is to plot the 
logarithms of the values x and its probability 
P(x), that is, log P(x) = log C – D log x. A straight 
line on the log-log plot is then a general indica-
tion that it is a power law (Fig. 4). In reality, how-
ever, a straight line is hardly ever observed over 
the entire range of the values or sizes of x; there is 
normally a cut-off at the smallest perceivable size 
(Newman 2005, 2010). Thus, the distribution fol-
lows a power law only over a certain range.

For power laws based on histograms with 
certain bin widths or class limits, the fractal di-
mension depends on the chosen class limits (their 
widths). Also, there is commonly considerable 
’noise’ at the lower end (tail) of the straight line 
because there each class has few, sometimes no, 
observations, so that there are large fractional 
fluctuations in the counts. These problems are 
partly solved by using cumulative frequency dis-
tributions, that is, rank/frequency plots, rather 
than histograms. Instead of plotting a simple his-
togram of the data, we then plot the probability 
P(X≥x) that the value of the variable X (for exam-
ple, the length of fractures or streets) is greater 
than or equal to x:

	  	
(2)

If the cumulative distribution follows a power 
law P(x) = Cx-D, then:

	 	
(3)

The main difference between power laws 
based on histograms and those based on cumula-
tive plots is that cumulative plots have shallower 
slopes since their exponents have values that are 
one less than the values of the exponents in pow-
er laws based on histograms (Section 6).

4. Methods of street measurement

To obtain quantitative data on street lengths 
and trends, we use Dundee, an old city with 
a  current population of about 150,000, located 
along the north coast of a  fjord named Firth of 
Tay in East Scotland (Fig. 1). This city was se-
lected for several reasons. One is that it has clear 

boundaries. A  second reason is that the overall 
shape of the city is partly controlled by external 
constraints, primarily the coastline of the Firth of 
Tay. A third reason is the availability of GIS da-
tasets, making it possible to carry out a detailed 
analysis of the street network of the city. A fourth 
reason is that the settlement has existed at least 
from medieval times, and is historically and mor-
phologically interesting. In particular, it is poten-
tially possible, in a future extension of the present 
work, to compare the medieval part of the city 
with its more recent parts. The focus here is on 
the lengths and trends (orientation or azimuth) 
of street segments. A street segment is normally 
just a part of a named street and is defined as the 
distance from one junction to the next one. 

In this paper, the main method for analysing 
the trend in street patterns is directional analy-
sis. Directional analysis, which primarily deals 
with the analysis of lineaments, identifies the di-
rectional trend of patterns. We can either use full 
rose diagrams or half (180 degrees) for the ease 
of visualisation and clarity of presentation (Fig. 
2). Rose diagrams are very simple (Smith et al. 
2009). They simply show the trend of either a cer-
tain process, like wind direction, or the trend of 
certain lineaments, like streets, such as we ana-
lyse in this paper.

When analysing lineament trends, there are 
two types of data: directional and oriented. In 
directional data we can distinguish one end of 
a lineament from the other, or left from right, such 
as in the flow in a river or a prevailing wind di-
rection. Oriented data, by contrast, relate to phe-
nomena without a directional distinction, such as 
streets in a city (Swan & Sandilands 1995). Thus, 
if the data are directional, then the rose diagram 
shows a unidirectional or asymmetric trend dis-
tribution; if the data are oriented, the rose dia-
gram shows a bidirectional or symmetrical trend 
distribution. For directional data the measured 
data azimuths range from 0 to 360°. For orient-
ed data, however, the opposite directions, 180° 
apart, are equivalent. Thus, for oriented data the 
graphical portrayal should either be restricted 
to half of a complete circle, or have a rotational 
symmetry, so that opposite classes or sectors in 
the rose have the same frequency (Swan & Sandi-
lands 1995). In this paper, the data presented are 
oriented (streets), so that the rose diagrams show 
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a  bidirectional or symmetric trend distribution 
on a half circle (0–180 degrees).

We make statistical analysis to measure the 
variation in street lengths. We use standard re-
gression methods for calculating the power laws 
in ordinary plots as well as in log-log plots. The 
Gaussian distribution is used to show the distri-
bution of orientation of patterns, and cumulative 
distributions (equations 2, 3) are used to show 
the power-law properties of street lengths. From 
the slope of the straight lines on the log-log plots, 
we calculate the exponents or fractal dimensions 
of the power laws. 

5. Variation in street-segment trends 
within Dundee

We analyse the street trends from Dundee 
through GIS, using rose diagrams for visualisa-
tion. Here we focus on the margin of the city along 
the coast so as to present the street trends (Fig. 3). 
The trends are shown by rose diagrams, each of 
which depicts the orientation of street segments 
within a 500-m-radius circle using 10-degree ag-
gregations (classes). We consider for each circle 
(subset) a  certain number of data between 500-
700, a  total of 6,004 street segments, and 0–180° 
azimuth, and then plot the trends of the main seg-
ments within the circle. We choose the subsets ac-
cording to three criteria: (1) the number of streets 

should be similar in all the sub-areas (for each 
subset, the average number of measured street-
segments is 600); (2) all the sub-areas should be 
of a similar size; and (3) the subsets should reflect 
the changes in trend of the coastline. 

Thus, there are obviously two main trends, 
north-south and roughly east-west along the 
coast, which is gradually changing. The north-
south trend is coast-perpendicular, the east-west 
trend coast-parallel. It is clear that the coastline 
determines the trend of the coast-parallel streets; 
in particular, when the coastline changes to more 
north-east or east-northeast, then one of the street 
trends follows that and changes the direction. 
For example, the coastline and the coast-parallel 
street segments become east-northeast trending 
towards the eastern part of the city (Fig. 3). At the 
same time, the northerly trending streets remain 
orthogonal. There are also very significant chang-
es at the lateral ends of the city (Fig. 3, rose 1 and 
10) as well as in the city centre (rose 5), where the 
street trend changes from two main orthogonal 
trends towards much more uniform trend vari-
ations. This change in trend towards the lateral 
(east-west) ends of the city is partly attributable 
to many streets in these parts being roughly per-
pendicular to the curved boundary of the city at 
these localities. The change in trend towards the 
city centre is presumably because this is the old-
est part, where the city originated and where the 
segments tend to be more irregular. These results 

Fig. 2. A simple rose diagram showing the frequencies of lineaments with different trends: we show a full rose (left) and 
a half (northern 180-degrees) rose diagram (right).

Source: Google.
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show the coastal effects or landscape constraints 
on the street patterns of Dundee, which are thus 
very clear as regards two factors. First, one of 
the two dominating street trends coincides with 
the coastline of the Firth of Tay. This street trend 
follows the coastline very closely and is clearly 
controlled by it as a landscape factor. Second, the 
overall shape of the city is largely controlled by 
the coastline, which has acted as a  major land-
scape factor or external constraint on the city 
shape.

6. Variation in street-segment lengths 
within Dundee

The frequency distribution of the lengths of 
all the measured streets in Dundee is shown in 
Fig. 4a. For the 6,004 street segments the mini-
mum length is 3 m and the maximum 2,249 m. 
The street segments show general power-law fre-
quency distributions, in accordance with equa-
tion 1. To test how well the data actually follow 
power laws, we made log-log plots of the data. 
The results (Fig. 4b) show that the power laws 
extend over considerable ranges, but that there 

are cut-offs at certain critical street lengths below 
which the linear trend on the log-log plot (the 
power law) is not followed. 

The length distribution (Fig. 4a) for street seg-
ments approximates a power law. When present-
ed on log-log plots (Fig. 4b), however, the length 
distributions do not fit well with single straight 
lines over the entire length ranges. In fact, the de-
viations from the straight line are so large as to 
indicate that the data may follow different power 
laws within different length ranges. To test this 
idea, we made log-log plots where two straight 
lines were fitted to the data. The results (Fig. 5) 
give much better fits than a  single power law 
(Fig. 4b) and suggest that the street lengths fol-
low power laws that have different slopes, fractal 
dimensions, for different street-length ranges.

Therefore, the power law shows that: (i) Short 
streets are very common whereas long streets 
are rare. (ii) Street-length distributions are scale-
free. This property means that there is no typical 
length value. (iii) The break in the slopes of the 
straight lines on the log-log plots of the streets 
may refer to different street populations as re-
gards their function (Fig. 5). The street segments 
show a change in the slope of the straight line on 

Fig. 3. Trend distribution of street patterns along the coast in Dundee (using rose diagram for visualisation) 
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the log-log plot at a length of about 100 m. Seg-
ments that are shorter than about 100 m have 
a much shallower straight-line slope than those 
that exceed this length. It is clear that there is 
a break, and the slopes of the lines and their frac-
tal dimensions change from 0.88 to 2.20. 

7. Results and conclusions 

Power-law frequency distributions have re-
ceived much attention in recent decades in a vari-
ety of scientific fields. This follows partly because 
power laws are very common in many natural 

and man-made processes and structures. Power 
laws represent scale-free frequency distributions, 
whereby there are no typical values in the dis-
tribution. This is in contrast to normal distribu-
tions, where the most common values, the mean 
value, may be regarded as typical of the distri-
bution. When applied to the length distributions 
of streets, being scale-free means that there is no 
typical lineament length. For example, the cal-
culated average lengths of the street lineaments 
discussed in the paper are certainly not typical in 
the sense of being the most frequent lengths. This 
is in contrast to normal distributions, where the 
typical values are the mean values.

The paper presents the results of trend and 
length measurements of a total of 6,004 street seg-
ments in the city of Dundee located in East Scot-
land on the coast of the Firth of Tay. The street 
segments show two main trends: one roughly 
parallel to the coast and another roughly perpen-
dicular to it. Within each of these main trends, 
the mean trends for the coast-parallel streets are 
in the range of 80-90 degrees, and for the coast-
perpendicular trends, 160–170 degrees. The main 
trends are thus roughly orthogonal. 

The current street patterns of most cities are 
the result of a  long-term evolution. Only rarely 
are they the result of a clearly laid-out plan; more 
commonly, the pattern is the result of interactions 
between various human activities (internal con-
straints) and natural (external) constrains, par-
ticularly landscape factors. Here, it is proposed 
that the street patterns in Dundee are partly de-
termined by external landscape constraints. 

Fig. 4a. Power-law frequency plot of all street-segment 
lengths (6,004) measured in Dundee.

Fig. 5. Log-log plot of the length distributions of the seg-
ments selected in Fig. 4, but fitted to two straight lines. The 
different slopes of the fitted straight lines imply different 

fractal dimensions and different street populations.

Fig. 4b. Log-log plot of the length distributions of the seg-
ments which clearly shows that the data set does not fit well 

with a single straight line.
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