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Abstract

This paper deals with the problem of the optimal rate of return to be
paid by a defined contribution pension system to its participants’ savings,
namely the rate that achieves the goal of the most favorable returns on
their contributions jointly with the sustainability of the pension system.

We consider defined contribution pension systems provided with a
funded component, and for their study we use the “theory of the logical
sustainability of pension systems” already developed in several previous

∗e-mail: massimo.angrisani@uniroma1.it
†e-mail: giovannidinella@libero.it
‡e-mail: c.dipalo@unicas.it
§e-mail: pianese@unicas.it

81

http://www.degruyter.com/view/j/puma
https://doi.org/10.1515/puma-2015-0023


82 ANGRISANI, ET AL.

works. In this paper, we focus on pension systems in a demographically
stable state, whereas the productivity of the active participants and the
financial rate of return on the pension system’s fund, rates that consti-
tute the “ingredients” of the optimal rate of return on contributions, are
modeled by two stochastic processes.

We show that the decisional rule defining the optimal rate of return
on contributions is optimal in the sense that it is effective in terms of
sustainability, and also efficient in the sense that if the system pays to
its participants’ contributions a rate of return that is either higher or
lower than the one provided by the rule, then the pension system becomes
unsustainable or overcapitalized, respectively.

Mathematics Subject Classifications (2015). 91B15.

Keywords. defined contribution pension system; logical sustainability model;
stochastic rates; optimal rate of return.

1 Introduction

In most of the developed countries, pay-as-you-go (PAYG) pension systems,
where pensions are paid from the actual contribution of the active population,
face up with serious problems of sustainability due to financial, economic, and
demographic uncertainties, see e.g. [1], [2], [3], [4], and [5]. Many countries
tried to solve this problem introducing the Defined Contribution (DC) formula,
according to which contributions are fixed and benefits depend on the value
of assets and returns accumulated. In some countries, like Sweden or Italy for
example, pension reforms moved towards new Notional Defined Contribution
(NDC) schemes, in which contributions are virtually saved in individual ac-
counts and, differently from conventional funded DC schemes, they are used to
finance current pension benefits as in any PAYG scheme. In this regard, for
an international review about NDC schemes, see e.g. [6], and refer to [7] for a
more recent assessment of strengths and limitations on the application of the
NDC model. In addition, for a potential implementation of NDC schemes in
countries like China, Singapore, and South Korea, which are currently facing
rapid population aging and rapidly increasing rates in the old-age dependency
ratio, refer to [8].

Furthermore, it is worth mentioning that Sweden, which is the most well-
known example of country implementing the NDC scheme, supported its pension
reform also by the introduction of the so-called automatic balancing mechanism
(ABM). This can be broadly defined as a measure that has to be applied as
required according to the value of a sustainability indicator with the goal to
maintain the system’s financial equilibrium in response either to short-term
economic and financial fluctuations and to long-term demographic changes. On
the design of the ABM in the new Swedish PAYG pension system, see [9],
whereas on the broader usefulness of ABMs for countries like Canada, Germany,
Japan and Finland as well as Sweden, see [10], where the issue of a possible
introduction of ABM into the Spanish state pension system is also discussed.
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However, the approaches above described cannot guarantee the financial
sustainability in contexts of financial, economic, and demographic instability.
One of the most relevant issues concerns the choice of a rule for the rate of
return to be paid on the pension liability in order to achieve the sustainability
jointly with the most favourable returns on the pension liability of participants.
It goes without saying that a considerable attention has been drawn to address
this problem for PAYG pension systems in a steady state context; see, first of
all, the pioneering works of Samuelson ([11]) and Aaron ([12]), or refer to the
more recent work [13], where the complete set of factors, which determine the
rate of return for a PAYG system, is identified.

Agreeing with Lee ([14]), who highlighted that most literature “... takes a
comparative steady state approach and does not deal with nosteady situations
and none of it addresses the specific problem of how to measure the rate of
return to a non-steady state PAYG pension system...” (p. 147), it should be
noted that the issue is mostly addressed by means of theoretical models, where
the assumptions can significantly affect the evaluation of the pension system’s
state, see e.g. [15], or by proposing sophisticated forecasting models, see e.g.
[16], which deeply explores the issue using eight different versions of the Swedish
pension system. By means of stochastic numerical simulation, the authors in
[16] found that pension systems equipped with a rate of return equal to the
total growth of wages are inherently more stable than systems equipped with
a rate of return equal to the average wage growth rate. Furthermore, they
found that asymmetric “brake mechanisms”, like the Swedish one, leads to an
excessive undistributed asset accumulation. In other words the pension system
inefficiently recapitalises itself over time.

In general, limited effort has been devoted to setting a rule for the rate of
return on the pension liability, which could be systematically used by pension
schemes in a non-steady state framework. The aim of this paper is to cover this
gap.

In this regard, we basically refer to Angrisani ([17, 18]), who set up the
basics of the logical sustainability model. Developed in a non-steady state con-
text, it is based on a mathematical formalization of pension systems rather than
on actuarial forecasting, and, owing to this feature, it is able to provide logi-
cal rules leading to the financial sustainability. It substantially refers to DC
pension systems with a structural funded component, where “structural” does
not mean a buffer reserve, like in the Swedish system, but refers to a funded
component organically inserted in the pension scheme and whose financial re-
turns are redistributed to contributions and benefits, either in a steady state of
general stability (see [19, 20]) or in a stable state temporarily disrupted by a
demographic and/or economic wave (see [21, 22]). For the described features,
the logical sustainability approach designs a consistent mathematical model to
be used in order to support decisions for the proper choice of the sustainable
rate of return on the pension liability in a non-steady state.

Specifically, in this paper we focus on the specific rule (in the following
referred to as the rule for the β(t) stabilisation) that allows the system to avoid
the uncontrolled expansion of the unfunded pension liability in relation to wages,
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which is one of the main causes of unsustainability. We demonstrate that this
rule holds even in the stochastic framework, and provide numerical illustration
of its application under the assumption that both the financial rate and the
growth rate of wages are modeled by stochastic processes. By means of the
numerical simulation, we show that the choice of the rate of return on the
pension liability based on the proposed rule is also optimal, in the sense that
if we consider two different cases, an upward or a downward change (as small
as desired) that makes the rate of return systematically either higher or lower
than the one provided by the rule, then the pension system becomes either
unsustainable or overcapitalised.

This paper is structured as follows. In Section 2, the definitions of variables
and indicators of the logical sustainability model used in this paper are extended
from the continuous to the discrete framework. It is also proved that the rule
for the β(t) stabilisation holds in the discrete case, and hence holds also in the
case that the financial rate and the growth rate of wages are both modeled by
stochastic processes. Section 3 provides a brief description of the stochastic
simulation model we use to represent the dynamics of the financial rate and
the growth rate of wages. In Section 4, the optimality of the rule for the β(t)
stabilisation is numerically illustrated. Section 5 contains our main concluding
comments.

2 The logical sustainability model and the rule
for the β(t) stabilisation in the discrete case

The main objective of this section is to prove that the rule for the stabilisation
of the level of the unfunded pension liability in relation to wages, named rule
for the β(t) stabilisation (see [18]), also continues to be valid in relation to the
sustainability in a stochastic framework. To achieve this goal, first we consider
the logical sustainability model in the discrete case, providing the definitions of
variables and indicators we use in this paper, and then we prove that the β(t)
stabilisation rule is valid in this context too. Hence, we can conclude that the
rule holds even in the case that the values of both the financial rate of return on
the fund and the growth rate of wages are outcomes determined by stochastic
processes.

2.1 Basics of the logical sustainability model

In what follows, for the sake of brevity, we review only those pension system
functions and indicators that are relevant for the purposes of this paper. For a
deeper understanding of their meanings, as well as for a complete description of
the other functions of the logical sustainability model, one can refer to [18] and
[20], where the logical sustainability model is exhaustively illustrated.
We use the notations indicated in the following list:
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- t time unit variable (integer), i.e. the year beginning in t− 1 and ending
in t;

- t∗ year preceding the start of the time interval considered;

- t∗ + 1 first year of the time interval;

- tf last year of the time interval; it could be also equal to +∞.

For any year t ≥ t∗, the following functions are defined:

α (t) is the contribution rate, with α(t) ≥ 0;

W (t), C(t), and P (t) are the wages, the pension contributions, and the
pension disbursements, respectively, with W (t) > 0, C(t) ≥ 0, and P (t) >
0; naturally, it is C(t) =α(t)W (t).

Each one of the following functions is defined at the end of year t, immediately
after that the annual contribution revenues have been paid in and the annual
pension expenditure payments have been made.

F (t) is the pension system fund, that is the aggregate value of the assets;

LA(t) is the pension liability to contributors (defined as the latent pension
liability), with LA(t) ≥ 0;

LP (t) is the pension liability to retirees (defined as the current pension
liability), with LP (t) > 0;

LT (t) is the total pension liability, with LT (t) > 0 and LT (t) = LA(t) +
LP (t).

Lastly, the interest rates of return on the fund and on the pension liability in
year t are denoted respectively by r(t) and rL(t).
Furthermore, we assume that the initial values for year t∗ are known for all
functions above defined.
The following definitions are given.

Definition 1 A pension system is sustainable in time interval [t∗, tf ] if and
only if F (t) ≥ 0 for each t = t∗, t∗ + 1, t∗ + 2, ...tf .

Definition 2 For each year t such that t = t∗, t∗ + 1, t∗ + 2, . . . the unfunded
pension liability is LUN (t) = LT (t)− F (t).

For each year t such that t = t∗, t∗+1, t∗+2 . . . , it is assumed that LT (t) ≥ F (t);
hence, the unfunded pension liability is subjected to LUN (t) ≥ 0.
For any year t such that t = t∗ + 1, t∗ + 2 . . . , the evolution equations of the
fund, the pension liability, and the unfunded pension liability are respectively

F (t) = F (t− 1)(1 + r(t)) + C(t)− P (t), (1)
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LT (t) = LT (t− 1)(1 + rL(t)) + C(t)− P (t), (2)

LUN (t) = LUN (t− 1) + LT (t− 1)rL(t)− F (t− 1)r(t) (3)

The evolution equation of wages is given by

W (t) = W (t− 1)(1 + σ(t)) for t = t∗ + 1, t∗ + 2 . . . (4)

where σ(t) is the wage growth rate in year t. Relationship (4) holds under the
constraint, largely satisfied, that 1 + σ(t) ≥ 0 for t = t∗ + 1, t∗ + 2, . . . The
solution of (4) is given by

W (t) = W (t∗)

t∏
s=t∗+1

(1 + σ(s)). (5)

Assuming that the active population is constant, then σ(t) = g(t), where g(t)
is the growth rate of the productivity.
Furthermore, for any year t = t∗, t∗ + 1, t∗ + 2 . . . , we consider the definitions of
the following indicators.

Function β(t) = LUN (t)
W (t) is the level of the unfunded pension liability in

relation to wages.

Function Dc(t) = F (t)
LT (t)

, with 0 ≤ Dc(t) ≤ 1, is the degree of funding of
the pension liability.

2.2 The rule for the stabilisation of the level of the un-
funded pension liability in relation to wages

In this paper, we focus only on the proof of the β(t) stabilisation rule for the
and we develop a complete extension of the logical sustainability model to the
discrete framework in a forthcoming paper.

Proposition 1 (The rule for the β(t) stabilisation) Let us assume that
0 ≤ F (t∗) ≤ L(t∗).
For each t = t∗ + 1, t∗ + 2..., it is

β(t)− β(t− 1) = 0, and hence β(t) = β(t∗),

if and only if

rL(t) =
F (t− 1)

LT (t− 1)
r(t) +

LT (t− 1)− F (t− 1)

LT (t− 1)
σ(t) (6)

Proof. For each t = t∗ + 1, t∗ + 2..., we calculate the difference in the level of
the unfunded pension liability in relation to wages, β(t), between t and t− 1

β(t)− β(t− 1) =
LUN (t)

W (t)
− LUN (t− 1)

W (t− 1)
.
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By substituting in the previous formula the expressions of LUN (t) and W (t),
given by (3) and (4) respectively, we obtain

β(t)− β(t− 1) =
LUN (t− 1) + LT (t− 1)rL(t)− F (t− 1)r(t)

W (t− 1)(1 + σ(t))
+

− LUN (t− 1)(1 + σ(t))

W (t− 1)(1 + σ(t))
=

=
LT (t− 1)rL(t)− F (t− 1)r(t)− LUN (t− 1)σ(t)

W (t− 1)(1 + σ(t))
.

(7)

Then β(t)− β(t− 1) = 0 if and only if

rL(t) =
F (t− 1)

LT (t− 1)
r(t) +

LUN (t− 1)

LT (t− 1)
σ(t) =

=
F (t− 1)

LT (t− 1)
r(t) +

LT (t− 1)− F (t− 1)

LT (t− 1)
σ(t).

�

Remark 1 As we proved that the rule for the β(t) stabilisation holds in the
discrete case too, we can say that the β(t) stabilisation rule also holds in the
case that r(t) and σ(t) are outcomes determined by stochastic processes.

3 The stochastic model for the financial rate and
the growth rate of wages

In this section, we focus on the stochastic process we use in order to describe the
behaviour of the financial rate, r(t), and the wage growth rate, σ(t). For both
of them, given the probability space (Ω, F, P ), we assume the rate dynamics to
follow the stochastic differential equation (SDE)

dX(t) = θV as(µV as −X(t))dt+ σV asdW (t), X(0) = x0 (8)

where X(t) represents either r(t) or σ(t), and θV as, µV as, σV as are positive
constants and W (t), with t ≥ 0, is a Wiener process1 under the risk-neutral
probability measure (see [23]).
SDE (8) is known as a mean-reverting Ornstein-Uhlenbeck process, because

1Recall that a stochastic a process W (t), t ≥ 0, is called a Wiener process if:

• W (0) = 0

• W (t)−W (s) ∼ N(0, t− s)

• the increments W (tn) −W (tn−1),W (tn−1) −W (tn−2) . . . ,W (t2) −W (t1) are inde-
pendent for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn

• the paths of the process are continuous.



88 ANGRISANI, ET AL.

when X(t) is below µV as the positive drift pulls it back up towards µV as,
whereas the opposite occurs when X(t) is above µV as. Therefore, µV as may be
interpreted as the “long run mean” of the process (E[X(t)] → µV as as t → ∞)
and the coefficient θV as is the speed of adjustment of X(t) towards its long run
level; letting θV as → 0+ it corresponds to “turn off” the mean reversion effect.
Stochastic term σV asdW (t) captures the instantaneous volatility, i.e. constant
instantaneous variance σ2

V as, which ensures that the process erratically and con-
tinuously fluctuates around the level µV as.

Figure 1 shows three sample paths of equation (8) for σV as = 0.05, µV as = 1,
and for increasing values of θV as. It can be seen that the smaller θV as, the more
X(t) drifts away from µV as. For θV as = 2, X(t) displays only small and short-
lived deviations from µV as.
The main features of the process are:

• the rate X(t), for each time t, can be negative with positive probability;

• a closed form solution for X(t) is available, see [23]; it is

X(t) = X(s)e−θV as(t−s)+µV as(1−e−θV as(t−s))+σV as

∫ t

s

e−θV as(t−u) dW (u)

where s ≤ t.

In particular, as in [24], X(t) is a Gaussian process with mean and variance
given respectively by

E[X(t)|X(s)] = µV as + (X(s)− µV as)e−θV as(t−s)

V ar[X(t)|X(s)] =
σ2
V as

2θV as
(1− e−2θV as(t−s)).

For simulation purpose, we need to discretize the stochastic differential equa-
tion (8), which turns out to be the limiting case as ti − ti−1 → 0 of the discrete
first order auto-regressive process (see [24])

X(ti) = X(ti−1)e−θV as(ti−ti−1)+

+ µV as(1− e−θV as(ti−ti−1)) + σV as

√
(1− e−2θV as(ti−ti−1)

2θV as
N0,1.

(9)

4 The optimality of the β(t) stabilisation rule in
a stochastic framework

In this section, we numerically show the optimality of the β(t) stabilisation rule,
in the sense that it is effective and efficient in terms of sustainability under the
assumption that rates r(t) and σ(t) are stochastic.

Specifically, we show that paying the rate of return on the pension liability
according to this rule is an efficient choice in the meaning that if the rate of



THE OPTIMAL RATE OF RETURN FOR DEFINED . . . 89

Figure 1: Three sample paths of the mean-reverting Ornstein-Uhlenbeck pro-
cess.

return on the pension liability is systematically higher (even if only by a quantity
as small as desired) than that set by the rule, then the pension system does not
remain sustainable over time. Differently, if the rate of return on the pension
liability is systematically lower (even if only by a quantity as small as desired)
than that set by the rule, then the pension system is overcapitalised, namely it
accumulates more resources than it actually needs, without there being a proper
redistribution of the system’s returns to the participants’ pension credit.

Despite being fully aware of the relevance of the demographic aspects, in our
numerical simulation we consider a stable demographic structure solely for sake
of simplicity and also because this is not the goal of our work. On the other
hand, it is worth highlighting that this simplifying assumption does not affect
the validity, analytically proved, of the rule for the β(t) stabilisation.

4.1 The model and its assumptions

In our numerical illustrations, in order to simulate the dynamics of a DC pension
system in a discrete time context, we consider the actuarially-consistent model
already developed in an earlier work, see [20], whose assumptions are as follows:

- the discrete time unit is one year;

- the pension system is considered starting from the year of first entries in
the pension system;

- the time interval is [0,+∞); we observe the first 300 years;
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- the number of new entries (in our example, only male gender) in the
pension system is constant over time and is put equal to 1,000 units per
year;

- each new member joins the scheme at age 25 and works until age 65;

- at age 65 the member retires and receives a pension until he/she is alive;
there is a maximum age, ω, up to which it is possible to survive; no
survivor pension is considered;

- mortality rates are assumed to be constant over time; these values are
those of the Life Table for Italy, Males, Last Modified March 2011, down-
loaded from the HMD ([25]); according to this Life Table, ω is equal to
110 years;

- at the initial year, the “wage step”, namely the ratio of the average wage
at age x to the average wage at age x − 1, is constant and equal to 2%.
The productivity rate, g, which is evaluated on a yearly basis and is used
to annually increase the average wage for each age group x, is constant in
relation to age and time; therefore, the wage-pattern is stable over time;

- contribution amounts paid in by workers who die during their active lives
are redistributed to survivors of the same age group;

- for each member, his/her pension is calculated dividing the individual to-
tal pension credit by the annuity divisor at the retirement age, i.e. 65
years (in the annuity divisor the technical rate is set equal to zero, hence,
the annuity divisor coincides with life expectancy at retirement age); as a
result of the assumption on mortality rates, the annuity divisor at retire-
ment age remains unchanged over time; pensions are paid at the end of
the year; pensions are revalued each year according to the rate of return
on the pension liability, rL (it is evaluated on a yearly basis);

- rate rL is equally returned to pension liability both for workers and for
pensioners;

- the fund is revalued each year according to the rate of return, r (it is
evaluated on a yearly basis).

As a result of the previous assumptions, the pension system achieves a demo-
graphic stabilisation. Specifically, as a consequence of the assumptions about a
constant number of entries, constant mortality rates, and constant age of both
entry and retirement, the number of workers becomes stable after forty years
and the number of pensioners also becomes stable after a pension system life-
cycle. Hence, the ratio of workers to pensioners is also stable and it is equal
to about 2.4. After the first forty years, the rate of growth of the contribution
base, σ(t), coincides with the productivity growth rate, g(t), since the number
of workers is constant over time.
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r(t) σ(t)

θ̂V as 2.6246 0.7342
µ̂V as 0.0322 0.0171
σ̂V as 0.1626 0.0289

Table 1: Values of the stochastic process parameters for r(t) and σ(t).

4.2 Economical and financial assumptions
In order to model the dynamics of both the financial rate and the growth rate
of productivity, we use the stochastic process provided by equation (9).

For sake of reality, we estimated the values of the process parameters, re-
spectively θ̂V as, µ̂V as and σ̂V as both for r(t) and σ(t), by fitting the data of
the real return on the Buffer Fund and the real growth in earnings for Sweden
for years 1960-2012, as in the Orange Report for 2013, see [26], p. 69. On the
other hand, this choice derives from the fact that, to our knowledge, the Swedish
pension system is the only one providing these data.

The estimated values of the stochastic process parameters for r(t) and σ(t),
respectively, are reported in Table 1. In Figures 2 and 3, the historical trend,
as in the Orange Report for 2013, and three trajectories, based on equation (9),
are graphed for r(t) and σ(t), respectively.

As expected, the long term average values of the two processes for r(t) and
σ(t), which are equal to 3.22% and 1.71% respectively, are very closed to the
constant values used in the base projection scenario of the Swedish pension
system, which respectively are 3.25% and 1.8%, see [26], p. 65.

On the basis of the actuarial model used in [20] to simulate the pension sys-
tem evolution, 20,000 possible development scenarios, each of which is 300 years
length, are simulated. Every development scenario is described, year by year,
using the whole of the variables representing the system itself. Specifically, in
every development scenario, despite the fact that the long-term average value
for r(t), the financial rate of return on the fund, is equal to 3.22%, see Table
1, the rate of return on the pension liability is set to 4% per year, namely the
rate paid on the pension liability is higher than the average financial rate. This
assumption generally determines a pension liability higher than the coverage
provided by the fund and, hence, determines a degree of covering that progres-
sively reduces. The rate of return on the pension liability, initially set to 4% per
year, remains unchanged as long as Dc(t) ≥ 50%, whereas it is constrained to
follow the β(t) stabilisation rule starting from the first year when Dc(t) < 50%.
As a result of the numerical simulation, it is found that Dc(t) falls below the
50% level in 18,903 out of the 20,000 scenarios considered, namely in more than
90 percent (94.52%) of the total scenarios. Hence, as a consequence of the ap-
plication of the rule, β(t) is found to be blocked up to year 300 in all these
scenarios. Referring only to the 18,903 scenarios with β(t) blocked, it is found
that Dc(t) has been non-negative, namely the fund has been non-negative, up
to year 300 in 17,876 scenarios, namely in about 95% (94.57%) of the 18,903
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Figure 2: Graph of r(t): in black, the historical trend as in the Orange Report
for year 2013; in other colors, three trajectories simulated by our model.
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Figure 3: Graph of σ(t): in black, the historical trend as in the Orange Report
for year 2013; in colors, three trajectories simulated by our model.
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Figure 4: β(t) distribution at t = 300 for all the 18,903 scenarios considered.

scenarios considered. In the 1,027 remaining scenarios, Dc(t), and namely the
fund, is found to be negative for at least one year. For the extension of the
logical sustainability model in the case of the negative fund, see [21]. However,
it should be noted that rule 6 also holds in order to stabilise β(t) in the case of
the negative fund, as can be easily verified.
In Figures 4 and 5 the β(t) distribution and the Dc(t) distribution at t = 300
are shown for all the 18,903 scenarios, respectively.

4.3 The optimality of the β(t) stabilisation rule
As regards the empirical test on the optimality of the rule for the β(t) stabilisa-
tion, we consider only the 17,876 scenarios where the pension system has both
β(t) blocked and the fund non-negative up to year 300. In each one of these
scenarios, starting from the year in which Dc(t) falls below the 50% level, with
regards to the rate of return on the pension liability, the system applies rule (6)
modified solely by an additional term, set equal to 0.3% in absolute value. We
consider two different cases:

(a) the system applies the rule

rL(t) =
F (t− 1)

LT (t− 1)
r(t) +

LT (t− 1)− F (t− 1)

LT (t− 1)
σ(t) + 0.003 (10)

in this case, the system applies rule (6) slightly increased by 0.3%; in about all
the scenarios considered the fund becomes negative;

(b) the system applies the rule

rL(t) =
F (t− 1)

LT (t− 1)
r(t) +

LT (t− 1)− F (t− 1)

LT (t− 1)
σ(t)− 0.003 (11)
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Figure 5: Dc(t) distribution at t = 300 for all the 18,903 scenarios considered.

in this case, the system applies rule (6) slightly decreased by 0.3%; in all the
scenarios considered, the fund remains non-negative and an overcapitalisation
of the system itself is occurred.

In both cases, in relation to the 17,876 scenarios modified, we analyse the
sustainability of the pension system by testing either the fund non-negativity or,
equivalently, the non-negativity of the degree of funding of the pension liability,
Dc(t), considering the development of these 17,876 scenarios modified up to year
300.

4.3.1 Case (a): the pension system is unsustainable

It is found that the number of the modified scenarios with the non-negative
fund up to year 300 dramatically decreases over time moving from 17,876 to
310. Hence, given that the system has systematically recognised on the pension
liability a rate of return that has been slightly higher than that provided by
rule (6), then this has entailed the fund being non-negative up to year 300 only
in 1.73% of the scenarios, versus the 17,876 scenarios where the fund has been
non-negative up to year 300 by the effect of the rule tout court, Indeed, the
application of a higher rate of return (even only a slightly higher one) than that
provided by (6), determines a systematic expansion of β(t), which makes the
pension system not sustainable under a fixed contribution rate.
The three panels of Figure 6 and Figure 7 show the β(t) distribution and the
Dc(t) distribution, respectively, at years 100, 200, and 300, for the scenarios
having the fund non-negative up to the corresponding year. It is worth noting
that as time increases the number of the scenarios having the fund non-negative
decreases whereas the average value of the β(t) distribution increases.
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Figure 6: β(t) distribution for the scenarios with the fund non-negative up to
the corresponding year.
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Figure 7: Dc(t) distribution for the scenarios with the fund non-negative up to
the corresponding year.
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Figure 8: β(t) distribution for all the scenarios considered.

4.3.2 Case (b): the pension system overcapitalises

Always referring to the set of the 17,876 scenarios with both β(t) blocked and
a non-negative fund up to year 300, we check the sustainability of the pension
system in the corresponding scenarios modified looking at the fund, or equiva-
lently at the degree of funding of the pension liability, Dc(t), up to year 300. In
particular, it should be noticed that the non-application of the β(t) stabilisation
rule involves the β(t) not remaining stable over time, and, as the rate of return
paid on the pension liability is systematically lower than that fixed by the rule,
we can notice a progressive reduction in the β(t) value, see Figure 8. In this case,
it is found that in all the modified scenarios the fund has been systematically
non-negative up to year 100, 200, and 300, and that the average value of the
Dc(t) distribution has been increasing over time, see Figure 9, where the Dc(t)
distribution is shown for years 100, 200, and 300. This result proves that the
pension system recognises an inefficient rate of return as it redistributes a return
less than what it could have actually returned thereby causing an unnecessary
overcapitalisation of the system itself.

5 Conclusions
The choice of the rate of return on the pension liability is a crucial issue very
difficult to carry out because of the intrinsic stochastic and dynamic nature of
the problem. Although in literature a significant effort has been devoted to
address this issue by proposing sophisticated projections models, the existing
approaches cannot be logically used in practice because they do not provide a
rule able to ensure the financial sustainability in a logical mathematical key,
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Figure 9: Dc(t) distribution for all the scenarios considered.

whichever the uncertainty is.
In pursuing this goal, this paper focuses on a rule of choice for the rate of re-

turn on the pension liability, already introduced in the deterministic framework
of the logical sustainability model for pension systems, see [17, 18], where it is
proved that the application of this rule allows the system to control the level of
the unfunded pension liability. In this paper it is proved that this rule maintains
its validity in relation to sustainability even in the stochastic framework, and a
numerical exemplification of the application of this rule is provided in the case
that both the financial rate and the wage growth rate are modeled by stochastic
processes. The numerical simulation illustrates also the performance in terms of
optimality of this decisional rule, whose application allows the pension system
to avoid either an uncontrolled expansion of the unfunded pension liability or
an accumulation of undistributed assets.

Finally, it is worth noting that the proposed rule on the rate of return on
the pension liability systematically follows the actual dynamics of the financial
and wage growth rates with no need to activate balance mechanisms a posteriori
to restore the financial equilibrium. For this reason, the proposed rule, jointly
with a proper choice of the contribution rate, can be considered as a main tool
for a more general support to the pension system management in order to the
sustainability.
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