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Abstract

We provide a two good model of oligopolistic production and trade
with one good being commodity money. There is the usual demand
function of the consumers for the produced good that producer-sellers
face. Each seller is a budget constrained preference maximizer and de-
rives utility (or satisfaction) from consuming bundles comprising commod-
ity money and the produced good. We define a competitive equilibrium
strategy profile and a Cournotian equilibrium and show that under our as-
sumptions both exist. We further show that at a competitive equilibrium
strategy profile, each seller maximizes profits given his own consumption
of the produced good and the price of the produced good, the latter be-
ing determined by the inverse demand function. Similarly we show that
at a Cournotian the sellers are at a Cournot equilibrium given their own
consumption of the produced good. Assuming sufficient differentiability
of the cost functions we show that at a competitive equilibrium each seller
either sets price equal to marginal cost or exhausts his capacity of produc-
tion; at a Cournotian equilibrium each seller either sets marginal revenue
equal to marginal cost or exhausts his capacity of production. We also
study the evolution of Cournotian strategies as the sellers and buyers are
replicated. As the number of buyers and sellers go to infinity any sequence
of interior symmetric Cournotian equilibrium strategies admits a conver-
gent subsequence, which converges to an interior symmetric competitive
equilibrium strategy. In a final section we discuss the Bertrand Edgeworth
price setting game and show that a Bertrand Edgeworth equilibrium must
be a derived from a competitive equilibrium price. Here we show that if at
a symmetric competitive equilibrium, the sellers consume positive quan-
tities of the produced good then the competitive equilibrium cannot be
a Bertrand Edgeworth equilibrium. Thus, if at all symmetric competi-
tive equilibria the sellers consume positive amounts of the produced good,
then a Bertrand Edgeworth equilibrium simply does not exist.
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1 Introduction

The conventional model of oligopoly with production, whether it be that of
Cournot or that of Bertrand is one where there are profit maximizing firms facing
a Marshallian demand or inverse demand curve. In this context a Cournot-Nash
equilibrium is a list of quantities supplied by each firm such that given what
other firms are supplying each firm chooses its profit maximizing output if it
adheres to the recommendations in the list. This is the model that is used to
study oligopoly in the industrial organization literature right from the beginning
and it continues to be the framework in which oligopoly with production is
investigated even now. A reasonably up-to-date survey of the literature relating
to the Cournot solution in this simple model and its myriad properties can be
found in [18].

There is an alternative literature concerning oligopolistic markets that has
grown in recent times. In this model there is no production but only trade.
Some traders own a non-monetary good and others are initially endowed with
commodity money. In this game each owner of the non-monetary good chooses
to supply a quantity of the good. The total amount of the non-monetary good
supplied determines its market price. Each seller chooses a quantity to sell
in such a way that the resulting consumption bundle consisting of the non-
monetary good that he retains with him and the amount of money that he
earns by selling the good maximizes his utility. A Nash equilibrium of this game
played by all the sellers of the non-monetary is what is expected to materialize
in this trading economy. Contributions in this line of research are available in
[7][10][11] and a few others.

The motivation behind this paper is slightly different. Consider the market
for fish. As in the simple oligopoly model there is an inverse demand function
for fish which the sellers in the market face. However do the sellers of fish har-
vest only that amount which they sell on the market? Don’t they themselves
consume some of the fish that they catch? The literature on oligopolistic mod-
els for a homogeneous good with production is silent on this issue. There are
other more “newsworthy” markets, for which the same question applies. Take
for instance the international market for “crude oil” which is usually modeled
as an oligopoly (see [5]). In this market there are a few producers of crude oil
and the rest are consumers. The producers of crude oil earn profits by selling
crude oil on the market. At the same time they themselves consume crude oil
for their daily needs and other industrial activity. A case in point is Saudi Ara-
bia, a major producer of crude oil that suddenly decided to reduce oil exports
and domestic consumption of the same, simply because oil is an exhaustible
resource and accelerated depletion of the resource could one day lead to dire
consequences for them. If they did not care about domestic consumption of
oil, then they would manage oil supplies in the same way that they were doing
till date, factoring in as always the oligopolistic nature of the market and the
possibilities of cartel formation. Clearly, that does not seem to be the case.
Sellers also consume the good that they sell in the market. This is amply taken
care of in oligopolistic models of pure exchange. In oligopolistic markets with
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production this phenomena is not given importance at all.

To take care of such possibilities, general equilibrium models of oligopolis-
tic markets have been suggested, most notably that of Gabszewicz and Vial in
[8]. This model is analogous to the Arrow-Debreu general equilibrium model
with production, with utility maximizing consumers behaving like price takers
and firms transferring their outputs to the consumers. Each consumer gets the
fraction of the total output of a firm in proportion to its share in the firm.
With these as initial endowments, the consumers trade to an Arrow-Debreu
equilibrium. It is assumed that there is a unique Arrow-Debreu price vector
corresponding to an aggregate output produced by firms. This is the inverse
demand function faced by the firms, who subsequently use this inverse demand
function to arrive ata Cournot equilibrium. Elegant as the story might be, this
model is beleagured with existence of equilibrium problems and the problem
of the equilibrium (if it exists at all!) depending on the choice of numeraire.
The work in [8] has proved very useful in providing a host of examples (and
some counter examples) relating to the behavior of an economy. However, it
has been found wanting in providing a solid theoretical foundation for further
research in the area. There is an alternative model of production and trade with
all consumers and firms behaving strategically due to Dubey and Shubik in [6].
The interactions between agents take place over two periods and is based on
bids and offers that each individual agent makes. The model considered by in
[6] is closer in spirit to the work done in [16][14][15] and not to the models we
consider here.

With this is mind we provide a two good model of oligopolistic production
and trade as a compromise between the classical partial equilibrium model of
profit maximizing firms facing an inverse demand function and the full blown
general equilibrium model in [8]. In our model there is commodity money which
is consumed and at the same time used as a means of payment. At the same time
there is a good for which there is the usual demand function of the consumers
that producer-sellers face. Each seller is a budget constrained preference max-
imizer and derives utility (or satisfaction) from consuming bundles comprising
commodity money and the produced good. The producers incur costs to pro-
duce the latter type of good part of which they sell to the consumers and part
of which they consume themselves. The profits measured in units of commodity
money that the sellers earn by selling the produced good on the market is con-
sumed by the sellers. While the revenue that a seller earns is the payment that
he receives from selling the produced good in the market to the consumers, the
cost of producing the produced good is based on the total amount produced by
him part of which he sells on the market and part of which he himself consumes.
No seller sells the produced good to any other seller; sellers only sell to buyers
whose inverse demand function they are aware of.

Our assumptions on the inverse demand function and the utility functions
of the sellers is quite standard and in the initial stages quite general as well. We
assume each seller faces a finite capacity constraint, beyond which he cannot
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produce any amount at all. This may or may not be a standard assumption,
but it is definitely very realistic. Throughout the paper we invoke a Positiv-
ity Assumption on the cost functions and the inverse demand function which
appears to be of a technical nature but is satisfied by almost all kinds of cost
functions and inverse demand functions. We define a competitive equilibrium
strategy profile and a Cournotian equilibrium and show that under our assump-
tions both exist. We further show that at a competitive equilibrium strategy
profile, each seller maximizes profits given his own consumption of the produced
good and the price of the produced good, the latter being determined by the
inverse demand function. Similarly we show that at a Cournotian the sellers
are at a Cournot equilibrium given their own consumption of the produced
good. Assuming sufficient differentiability of the cost functions we show that
at a competitive equilibrium each seller either sets price equal to marginal cost
or exhausts his capacity of production; at a Cournotian equilibrium each seller
either sets marginal revenue equal to marginal cost or exhausts his capacity of
production. All this follows from and in spite of sellers being assumed to be
budget constrained utility maximizers.

Subsequently we study the evolution of Cournotian strategies as the sellers
and buyers are replicated. Similar analysis in a trading economy has been carried
out in [10]. Novshek in [13] studies the asymptotic convergence of Counot equi-
librium strategies to competitive equilibrium strategies in the classical model
of oligopoly. In this section we assume twice continuous differentiability of the
cost and utility functions and also assume that they are “well behaved”. Each
seller is a replica of any other and a similar assumption is made for the buyers.
Under these conditions it is natural to look for symmetric competitive equilib-
rium strategies and symmetric Cournotian equilibrium strategies. Further these
strategies are interior symmetric equilibrium strategies when they satisfy their
respective marginal conditions. The possibility of there being more than one in-
terior symmetric competitive equilibrium strategies is noted. Further given any
two interior symmetric competitive equilibrium strategies, at one the sellers con-
sume more of both goods and are all better off than at the other. At the better
strategy they sell less on the market though they produce more of the produced
good. As the number of buyers and sellers go to infinity any sequence of interior
symmetric Cournotian equilibrium strategies admits a convergent subsequence,
which converges to an interior symmetric competitive equilibrium strategy. If
there is a unique interior symmetric competitive equilibrium strategy, then the
sequence itself converges to it.

In a final section of this paper we turn to the price setting game due to
Bertrand and Edgeworth but incorporating the fact that our sellers are utility
maximizers and not profit maximizers as is assumed in the existing literature.
To keep matters simple we assume all sellers are identical in every respect and
the cost function is linear with a capacity constraint as before. In the absence of
capacity constraints it is well known that price competition game (known as the
Bertrand competition) among profit maximizing sellers results in price being set
equal to unit costs. However when we have capacity constraints which “bite”
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as happens for instance if we assume the Positivity Assumption, then there is
no way in which market prices can come down to unit costs without leaving
some of the buyers unsatisfied. In this kind of a game it is usually assumed that
there is some kind of a rationing rule by which selling in the presence of excess
demand is met. There are two types of rationing rules that are prominent in
the literature: proportional and surplus maximizing. Beckmann in [2] discusses
the first rule and Levitan and Shubik in [12] discuss the second. What we use
here is a version of the surplus maximizing rationing rule, since that appears to
be the natural way a decentralized market would function.

As in the case of a profit-maximizing oligopoly, there is a problem concerning
the existence of pure strategy equilibrium in our model. [19] provides a lucid
discussion of problems relating to existence of pure strategy equilibrium and
conditions under which existence of such equilibrium may be possible in the
profit maximizing model. Tasnadi in [17] shows that for profit maximizing
sellers with zero unit cost of production, a Bertrand Edgeworth equilibrium
exists if the price elasticity of demand is greater than one whenever aggregate
demand does not exceed the total output capacity of the sellers.

We show here that pure strategy equilibrium of the Bertrand Edgeworth
game must of necessity be derived from a competitive equilibrium price. If at
a symmetric competitive equilibrium, the sellers consume positive quantities of
the produced good then the competitive equilibrium cannot be a Bertrand Edge-
worth equilibrium. Thus, if at all symmetric competitive equilibria the sellers
consume positive amounts of the produced good, then a Bertrand Edgeworth
equilibrium simply does not exist.

Some of the results reported here echo the results in oligopoly theory when
sellers are profit maximizers and some do not. Often additional conditions
require to be imposed in our model so as to obtain the desired results. These
conditions sometimes reduce to familiar conditions if we assume that sellers
do not care about their own consumption of the produced good. Thus our
approach may be viewed as an attempt towards generalization of the model in
which oligopoly theory is usually discussed.

2 The Model

In this section we develop a two good model in which there is commodity money
and another good that is produced using money. There are H > 1 sellers of
the produced commodity and we use h = 1, ..., H to denote a seller who also
produces the produced good from commodity money. The H sellers sell the
produced good in a market and the inverse demand function for the good is
given by p : R+ → R+. Here R denotes the set of real numbers,R+ denotes the
set of nonnegative real numbers and R++ denotes the set of strictly positive real
numbers. We use R∗+ to denote the set R+ ∪ {+∞} of extended real numbers.

Each seller h has a cost function ch : R+ → R∗+ such that to produce η units
of the produced good seller h has to use ch(η) units of money. The preferences
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of seller h are given by a utility function uh : R2
+ → R. The utility derived

by seller h from consuming ξ ≥ 0 units of the produced good and α ≥ 0 units
of money is given by uh(α, ξ).

If the total amount of the produced good sold on the market by all the sellers
is y and if seller h sells an amount yh on the market, then the amount of money
earned by seller h is p (y) yh. If in addition seller h wants to consume xh units
of the produced good, then the total amount of the produced good that seller h
needs to produce is xh + yh and for that he needs to spend ch(xh + yh) units
of commodity money. In such a situation the commodity bundle consumed by
seller h is (p (y) yh − ch(xh + yh), xh) if p (y) yh − ch(xh + yh) ≥ 0. He thus
derives a utility of uh

(
p (y) yh − ch

(
xh + yh

)
, xh
)
if p (y) yh− ch(xh + yh) ≥ 0.

In what follows we assume that each seller h has a productive capacity
x̄h > 0, such that ch(ξ) ∈ R+ if and only if 0 ≤ ξ ≤ x̄h. Thus, ch(ξ) = +∞
if ξ > x̄h. In the rest of the paper when we use ch we will (unless otherwise
mentioned) assume that it is a function from the closed interval [0, x̄h] to R+.

Example:For all h = 1, ...,H, ch = 0 if 0 ≤ ξ ≤ x̄h.
This is the simple pure trade model, where seller h is endowed with x̄h > 0 of
the produced good.

A strategy for player ‘h′ is an ordered pair (xh, yh) ∈ R2
+ with xh+yh ≤ x̄h.

Here xh denotes the amount of the produced good that h consumes and yh de-
notes the amount of the produced good that h sells on the market. Let Sh
denote the strategy set of seller h.

A strategy profile is a list < (xh, yh)|h = 1, . . . , H > such that (xh, yh) is
a strategy for seller h. Let S =

∏H
h=1 S

h denote the set of strategy profiles.

For all α ≥ 0, define the function Rα : R+ → R+by Rα(y) = yp(y + α) for
y ≥ 0.

We now make the following assumptions about the inverse demand func-
tion p : R+ → R+ (i)p(0) > 0.
(ii)p is continuous .
(iii)p is twice continuously differentiable with p′ ≤ 0 on the set {y ∈ R++|p(y) >
0} and limy→0 yp

′(y) = 0.
(iv) For all α ≥ 0, the function Rα : R+ → R+ is continuous, concave on
y ∈ R+|p(y + α) > 0 and has non-positive second derivative on {y ∈ R+|y+α >
0 and p(y + α) > 0}.
About ch, h = 1, . . . , H, we make the following assumptions:
(i)ch(0) = 0.
(ii)ch is continuous, strictly increasing and convex.
About uh, h = 1, . . . , H, we make the following assumptions:
(i)uh is continuous, concave and weakly increasing (i.e.α, ξ, α′, ξ′ ∈ R+, α

′
>

α, ξ′ > ξ, implies uh(α′, ξ′) > uh(α, ξ));
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(ii)α, ξ, α′, ξ′ ∈ R+, u
h(α′, ξ′) > uh(0, 0), uh(α, ξ) > uh(0, 0), α′ ≥ α and ξ′ ≥ ξ

with at least one of the last two inequalities being strict implies uh(α′, ξ′) >
uh(α, ξ).

Given a strategy profile < (x∗h, y∗h)|h = 1, . . . , H > and a seller g ∈ 1, . . . , H,
let Bg(< (x∗h, y∗h)|h = 1, . . . , H >) = {(xg, yg) ∈ Sg|ygp∗˘cg(xg + yg) ≥ 0} be
the competitive budget set of seller g,where p∗ = p(

∑H
h=1 y

∗h).

A strategy profile < (x∗h, y∗h)|h = 1, . . . , H > is said to be a competi-
tive equilibrium strategy profile if for all h = 1, . . . , H, (x∗h, y∗h) maximizes
u(p∗yh−ch(xh+yh), xh) subject to (xh, yh) ∈ Bh(< (x∗g, y∗g)|g = 1, . . . , H >).
In this case, p(

∑H
h=1 y

∗h) is said to be the competitive equilibrium price
vector.

Seller h is said to be a competitive profit maximizer at the strategy profile
< (xh, yh)|h = 1, . . . ,H > if p(

∑H
h=1 y

h)yh˘ch(xh+yh) ≥ p(
∑H
h=1 y

h)y
′h˘ch(x+

y
′h) for all y

′h ∈ [0, x̄h − xh].

Given a strategy profile < (xg, yg)|g = 1, . . . , H > and h ∈ 1, ...,H, let
Bh(< (xg, yg)|g = 1, . . . , H >) = {(x′h, y

′h) ∈ Sh|Rα(y
′h) − ch(x

′h + y
′h) ≥ 0,

where α =
∑
g 6=h y

g}. Bh(< (xg, yg)|g = 1, . . . , H >) is called the Cournotian
budget set of h.

A strategy profile < (xcg, ycg)|g = 1, . . . , H > is said to be a Cournotian
equilibrium if for all h = 1, . . . ,H, for all h = 1, . . . , H, (xch, ych) solves

Maximize uh(y
′hp(y

′h +
∑
m ing 6= hycg)− ch(x

′h + y
′h), x

′h)

subject to (x
′h, y

′h) ∈ Bh(< (xcg, ycg)|g = 1, . . . , H >).
A strategy profile < (xh, yh)|h = 1, . . . , H > is said to be a Cournot equilib-
rium if for all h = 1, . . . , H and for all y

′h ∈ [0, x̄h−xh] : p(
∑H
h=1 y

h)yh˘ch(xh+

yh) ≥ p(
∑
g 6=h y

g + y
′h)y

′h˘ch(xh + y
′h).

3 Existence of competitive equilibrium and com-
petitive profit mazimization:

In this section we will adjust the proof due to Arrow and Debreu (1954) to show
that a competitive equilibrium exists in our context.We begin with an assump-
tion.

Positivity Assumption:For all h = 1, . . . , H, there exists a strategy (x̂h, ŷh)

such that p(
∑H
g=1 x̄

g)ŷh − ch(x̂h + ŷh) > 0

It is easy to see that the Positivity Assumption implies [0,
∑H
h=1 x̄

h] ⊂ {y ∈
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R+|p(y) > 0}.

This is not an unreasonable assumption given that we assume that cost func-
tions are convex and there are no (long run) fixed costs. If p(

∑H
g=1 x̄

g) is greater
than the limit as output goes to zero of marginal costs, then it is easy to see
that there are two positive numbers ξ and η with ξ > η, both very small such
that p(

∑H
g=1 x̄

g)η − ch(ξ) > 0. In this case the Positivity Assumption clearly
holds. Thus if p(

∑H
g=1 x̄

g) > 0 and the limit of marginal costs as output goes to
zero is zero (e.g. quadratic cost functions) then the Positivity Assumption holds.

A crucial step in the proof of this result is the next lemma. In what follows
in this section and also in the subsequent section we will use the notions of
correspondence, upper-semicontinuous correspondence, lower-semi continuous
correspondence and continuous correspondence. For definitions of the same,
please see [4].

Lemma 1 Suppose the economy satisfies the Positivity Assumption. Then, for
all h = 1, ...,H, the competitive budget correspondence Bh : S →→ R2

+ is non-
empty valued, convex valued, compact valued and continuous.

Proof: Let < (x∗h, y∗h)|h = 1, ...,H >∈ S and p∗ = p(
∑H
h=1 y

∗h). It is
easy to see that given our assumptions Bg(< (x∗h, y∗h)|h = 1, ...,H >) =
{(xg, yg) ∈ Sg|ygp∗˘cg(xg + yg) ≥ 0} is convex-valued and compact valued.
In fact boundedness of Bg(< (x∗h, y∗h)|h = 1, ...,H >) follows from the fact
that if Bg(< (x∗h, y∗h)|h = 1, . . . , H >) ⊂ {(xg, yg) ∈ R2

+|xg + yg ≤ x̄g} and
Bg(< (x∗h, y∗h)|h = 1, ...,H >) is closed because we have made adequate con-
tinuity assumptions on the functions p(.) and c(.). Further,Bg(< (x∗h, y∗h)|h =
1, ...,H >) is non-empty since (0, 0) belongs to it.

Let << (x∗h(k), y∗h(k))|h = 1, ...,H > |k ∈ N > be a sequence of strategies
in S converging to < (x∗h, y∗h)|h = 1, ...,H >∈ S. Let << (xh(k), yh(k))|h =
1, ...,H > |k ∈ N > be a sequence with (xg(k), yg(k)) ∈ Bg(< (x∗h(k), y∗h(k))|h =
1, ...,H >) for all k ∈ N. Suppose < (xg(k), yg(k))|k ∈ N > converges to (xg, yg).
Then by our assumptions on the function p(.), the sequence < yg(k)p(

∑H
h=1 y

( ∗
h(k)))|k ∈ N > converges to ygp(

∑H
h=1 y

∗h) and by our assumptions on the
function c(.), the sequence < cg(xg(k) +yg(k))|k ∈ N > converges to cg(xg +yg).
Since yg(k)p(

∑H
h=1 y

∗h(k)) − cg(xg(k) + yg(k)) ≥ 0 for all k ∈ N, it must be the
case that ygp(

∑H
h=1 y

∗h)−cg(xg+yg) ≥ 0. Thus (xg, yg) ∈ Bg(< (x∗h, y∗h)|h =
1, ...,H >). Thus the correspondence Bg is upper semi-continuous.

Now let us show thatBg is lower semi-continuous. Let<< (x∗h(k), y∗h(k))|h =
1, ...,H > |k ∈ N > be a sequence of strategies in S converging to< (x∗h, y∗h)|h =
1, ...,H >∈ S and suppose (xg, yg) ∈ Bg(< (x∗h, y∗h)|h = 1, ...,H >).

By the Positivity Assumption, and since the function p(.) is non-increasing,
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p(
∑H
h=1 ỹ

h)ŷg − cg(x̂g + ŷg) > 0, whenever < (x̃h, ỹh)|h = 1, ...,H >∈ S.

Since S is a compact set and since the function p(.) is continuous and non-
decreasing, there exists δ > 0 such that p(

∑H
h=1 ỹ

h)ŷg − cg(x̂g + ŷg) ≥ δ for all
< (x̃h, ỹh)|h = 1, ...,H >∈ S.

Thus, p(
∑H
h=1 y

∗h)ŷg−cg(x̂g+ŷg) ≥ δ and p(
∑H
h=1 y

∗h(k))ŷg−cg(x̂g+ŷg) ≥ δ
for all k ∈ N.

Now, p(
∑H
h=1 y

∗h)yg − cg(xg + yg) ≥ 0.

Let M = 1. Since << (x∗h(k), y∗h(k))|h = 1, ...,H > |k ∈ N > is a sequence
of strategies in S converging to < (x∗h, y∗h)|h = 1, ...,H >∈ S, there exists a
positive integerN1 such that for all k ≥ N1, p(

∑H
h=1 y

∗h(k))yg−cg(xg+yg) ≥ −δ.

Having defined the positive integer NM for a positive integer M , let NM+1 >

NM be a positive integer such that for all k ≥ NM+1, p(
∑H
h=1 y

∗h(k))yg−cg(xg+
yg) ≥ −δ/M + 1 . This is possible since << (x∗h(k), y∗h(k))|h = 1, . . . ,H > |k ∈
N > is a sequence of strategies in S converging to< (x∗h, y∗h)|h = 1, ...,H >∈ S.

Let xg(k) = x̂g, yg(k) = ŷg for 1 ≤ k < N1, x
g(k) = x̂g/M + 1 +Mxg/M + 1

and yg(k) = ŷg/M + 1 +Myg/M + 1 for all NM ≤ k < NM+1,M ∈ N.

Then for 1 ≤ k < N1,

p(

H∑
h=1

y∗h(k))yg(k)−cg(xg(k)+yg(k)) = p(

H∑
h=1

y∗h(k))ŷg−cg(x̂g+ ŷg) ≥ δ > 0.

For M ∈ N and NM ≤ k < NM+1,

p(

H∑
h=1

y∗h(k))yg(k) − cg(xg(k) + yg(k)) =

p(
H∑
h=1

y∗h(k))[
ŷg

M + 1
+

Myg

M + 1
]− cg( x̂g

M + 1
+

Mxg

M + 1
+

ŷg

M + 1
+

Myg

M + 1
) ≥

1

M + 1
[p(

H∑
h=1

y∗h(k))ŷg − cg(x̂g + ŷg)] +
M

M + 1
[p(

H∑
h=1

y∗h(k))yg − cg(xg + yg)] =

1

M + 1
δ − M

M + 1

δ

M
= 0.

Thus, (xg(k), yg(k)) ∈ Bg(< (x∗h(k), y∗h(k))|h = 1, ...,H >) for all k ∈ N.

Further, limk→∞ xg(k) = xg and limk→∞ yg(k) = yg.
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Thus the competitive budget correspondence Bg is lower semi-continuous.
Combined with the upper semi-continuity of Bg we get that the competitive
budget correspondence Bg is continuous.Q.E.D.

Our proof of the following theorem (and subsequently that of Theorem 3)
mimics the proof of the existence of Nash equilibrium for games in strategic
form due to Geanakoplos in [9].

Theorem 1 Suppose the economy satisfies the Positivity Assumption. Then a
competitive equilibrium strategy profile exists. Further, if there are two sellers
h1 and h2 who are identical in every respect (i.e. uh1 = uh2 , ch1 = ch2 and
x̄h1 = x̄h2), then there exists a competitive equilibrium strategy profile with the
strategies of h1 and h2 being identical. The latter statement can be generalized
to any number of identical sellers.

Proof: Bh is non-empty valued, convex valued, compact valued and continuous
by Lemma 1. Also each Sh is a non-empty, compact and convex subset of R2

+.

Given < (xg, yg)|g = 1, ...,H >∈ S, and h ∈ {1, ...,H}, consider the problem

Maximize uh(y
′hp(

∑H
g=1 y

g)˘ch(x
′h + y

′h), x
′h)˘(x

′h˘xh)2˘(y
′h˘yh)2

subject to (x
′h, y

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >).

Let p = p(
∑H
g=1 y

g). By the Positivity assumption, there exists a strat-
egy (x̂h, ŷh) such that pŷh − ch(x̂h + ŷh) > 0. Thus, p > 0 and ŷh > 0.
Clearly there exists ε > 0 such that ŷh − ε > 0 and p(ŷh − ε) − cg(x̂h + ŷh) >
0. Thus (x̂h + ε, ŷh − ε) ∈ Bh(< (xg, yg)|g = 1, ...,H >) ∩ R2

++. Thus,
uh(p(ŷh − ε)˘ch(x̂h + ŷh), x̂h) > uh(0, 0).

By the continuity and strict concavity of the objective function on the con-
straint set and the compactness of the constraint set, the above problem has a
unique solution. Let fh : S → Sh be the function such that for < (xg, yg)|g =
1, ...,H >∈ S, fh(< (xg, yg)|g = 1, ...,H >) is the unique solution to the above
optimization problem. Let us show that fh is continuous.

Let << (xg(k), yg(k))|g = 1, ...,H > |k ∈ N > be a sequence in S converg-
ing to < (xg, yg)|g = 1, ...,H >. Since S is compact (and therefore closed)
< (xg, yg)|g = 1, ...,H > belongs to S. Let fh(< (xg(k), yg(k))|g = 1, ...,H >
) = (x̄h(k), ȳh(k)) for k ∈ N and let fh(< (xg, yg)|g = 1, ...,H >) = (x̄h, ȳh). We
have to show that limk→∞(x̄h(k), ȳh(k)) = (x̄h, ȳh).

Suppose not. Then there exists a δ > 0 and a subsequence of

< (x̄h(k), ȳh(k))|k ∈ N >
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such that the distance of every term of this subsequence from (x̄h, ȳh) is at
least δ. Since the set Sh is compact and this subsequence lies in Sh it admits
a further subsequence which converges to some (x̄

′h, ȳ
′h) in Sh. Without loss

of generality (and to save on some notation) suppose this subsequence which
converges to (x̄

′h, ȳ
′h) is the original sequence < (x̄h(k), ȳh(k))|k ∈ N >. By the

upper semi-continuity of Bh, (x̄
′h, ȳ

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >). Further
since the distance of each term of the sequence from (x̄h, ȳh) is at least δ, the
distance of (x̄

′h, ȳ
′h) from (x̄h, ȳh) must be at least δ.

Let p(k) =
∑H
g=1 y

g(k) and p =
∑H
g=1 y

g. Clearly p > 0 and p(k) > 0 for all
k ∈ N and by the continuity of the function p(.), limk→∞ p(k) = p.

Let (x
′h, y

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >). Then by the lower semi-
continuity of Bh, there exists a sequence < (x

′h(k), y
′h(k))|k ∈ N > such that

for all k ∈ N, (x
′h(k), y

′h(k)) ∈ Bh(< (xg(k), yg(k))|g = 1, ...,H >) and

lim
k→∞

(x
′h(k), y

′h(k)) = (x
′h, y

′h).

(x
′h(k), y

′h(k)) ∈ Bh(< (xg(k), yg(k))|g = 1, ...,H >) and fh(< (xg(k), yg(k))|g =
1, ...,H >) = (x̄h(k), ȳh(k)) implies uh(ȳh(k)p(k)˘ch(x̄h(k) + ȳh(k)), x̄h(k)) ≥
uh(y

′h(k)p(k)˘ch(x
′h(k) + y

′h(k)), x
′h(k)).

By the continuity of uh and since lim
k→∞

(ȳh(k)p(k)˘ch(x̄h(k) + ȳh(k), x̄h(k))) =

(ȳ
′hp˘ch(x̄

′h + ȳ
′h), x̄

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >) ⊂ R2
+ and

lim
k→∞

(y
′h(k)p(k)˘ch(x

′h(k) + y
′h(k)), x

′h(k)) =

(y
′hp˘ch(x

′h + y
′h), x

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >) ⊆ R2
+,

we get that uh(ȳ
′hp˘ch(x̄

′h + ȳ
′h), x̄

′h) ≥ uh(y
′hp˘ch(x

′h + y
′h), x

′h). Thus,
(x̄

′h, ȳ
′h) solves

Maximize uh(y
′hp˘ch(x

′h + y
′h), x

′h)˘(x
′h˘xh)2˘(y

′h˘yh)2

subject to (x
′h, y

′h) ∈ Bh(< (xg, yg)|g = 1, ...,H >).

Since, (x̄
′h, ȳ

′h) 6= (x̄h, ȳh) we arrive at a contradiction.

Thus, fh is continuous.

Consider the function f : S → S, whose hth component is fh. f is a con-
tinuous function from a compact convex subset of (R2

+)H to itself. Thus by
Brouwer’s fixed point theorem f has a fixed point.
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Let < (x∗g, y∗g)|g = 1, ...,H > be a fixed point of f . Thus, for all h ∈
{1, . . . , H}, (x∗h, y∗h) solves

Maximize uh(y
′hp(

∑H
g=1 y

∗g)˘ch(x
′h + y

′h), x
′h)˘(x

′h˘x∗h)2˘(y
′h˘y∗h)2

subject to (x
′h, y

′h) ∈ Bh(< (x∗g, y∗g)|g = 1, ...,H >).
Thus, for all h = 1, ...,H,

uh(y∗hp(

H∑
g=1

y∗g)˘ch(x∗h + y∗h), x∗h) ≥

uh(y
′hp(

H∑
g=1

y∗g)˘ch(x
′h + y

′h), x
′h)˘(x

′h˘x∗h)2˘(y
′h˘y∗h)2,

whenever (x
′h, y

′h) ∈ Bh(< (x∗g, y∗g)|g = 1, ...,H >).

Let p∗ = p(
∑H
h=1 y

∗h), (x
′h, y

′h) ∈ Bh(< (x∗g, y∗g)|g = 1, ...,H >) and
θ ∈ [0, 1]. Since Bh(< (x∗g, y∗g)|g = 1, ...,H >) is a convex set, (x∗h, y∗h) +
θ(x

′h − x∗h, y′h − y∗h) ∈ Bh(< (x∗g, y∗g)|g = 1, ...,H >) for all θ ∈ [0, 1].

Thus, uh(y∗hp∗˘ch(x∗h + y∗h), x∗h) ≥ uh((y∗h + θ(y
′h − y∗h))p∗ − ch(x∗h +

y∗h + θ(x
′h − x∗h + y

′h − y∗h), x∗h + θ(x
′h − x∗h))− θ2[(x

′h)2 + (y
′h)2].

By the concavity of uh and the convexity of ch, uh((y∗h + θ(y
′h − y∗h))p ∗

−ch(x∗h+y∗h+θ(x
′h−x∗h+y

′h−y∗h), x∗h+θ(x
′h−x∗h)) ≥ uh(y∗hp∗−ch(x∗h+

y∗h), x∗h) + θ[uh(y
′hp∗ − ch(x

′h + y
′h), x

′h)− uh(y∗hp∗ − ch(x∗h + y∗h), x∗h)].

Thus, uh(y∗hp∗˘ch(x∗h + y∗h), x∗h) ≥ uh(y∗hp∗ − ch(x∗h + y∗h), x∗h) +
θ[uh(y

′hp∗ − ch(x
′h + y

′h), x
′h)− uh(y∗hp∗ − ch(x∗h + y∗h), x∗h)]− θ2[(x

′h)2 +
(y

′h)2].

Hence θ2[(x
′h)2 + (y

′h)2] ≥ θ[uh(y
′hp∗ − ch(x

′h + y
′h), x

′h) − uh(y∗hp∗ −
ch(x∗h + y∗h), x∗h)] for all θ ∈ [0, 1].

Dividing throughout by θ for θ ∈ (0, 1], we get θ[(x
′h)2+(y

′h)2] ≥ uh(y
′hp∗−

ch(x
′h + y

′h), x
′h)− uh(y∗hp∗ − ch(x∗h + y∗h), x∗h) for all θ ∈ (0, 1].

Letting θ tend to zero, we get 0 ≥ uh(y
′hp∗−ch(x

′h+y
′h), x

′h)−uh(y∗hp∗−
ch(x∗h + y∗h), x∗h), i.e. uh(y∗hp∗ − ch(x∗h + y∗h), x∗h) ≥ uh(y

′hp∗ − ch(x
′h +

y
′h), x

′h).

Thus, < (x∗g, y∗g)|g = 1, ..,H > is a competitive equilibrium strategy profile.

To prove that there exists a competitive equilibrium strategy profile at
which identical sellers choose identical strategies, suppose that sellers 1 and
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two are identical. Let < (xg, yg)|g = 1, . . . , H > be a competitive equilib-
rium strategy profile and let x = (x1+x2)

2 , y = (y1+y2)
2 . Let p = p(

∑H
g=1 y

g) =

p(y + y +
∑

16=g 6=2 y
g). Let (x

′1, y
′1) ∈ S1 with py

′1˘c1(x
′1 + y

′1) ≥ 0. Then
u1(py1 − c1(x1 + y1), x1) ≥ u1(py

′1˘c1(x
′1 + y

′1), x
′1) and since sellers 1 and 2

are identical, u1(py2− c1(x2 +y2), x2) ≥ u1(py
′1˘c1(x

′1 +y
′1), x

′1). By the con-
cavity of u1 and convexity of c1, u1(py−c1(x+y), x) ≥ u1(py

′1˘c1(x
′1+y

′1), x
′1).

Similarly, if (x
′2, y

′2) ∈ S2 with py
′2˘c2(x

′2 + y
′2) ≥ 0, then u2(py − c2(x+

y), x) ≥ u2(py
′2˘c2(x

′2 + y
′2), x

′2).

Thus the strategy profile, < (x, y), (x, y), (x3, y3), ..., (xH , yH) > is a com-
petitive equilibrium profile.

This argument can be easily generalized to any number of identical sellers.
Q.E.D.

In order to show the continuity of the function f we went through a deriva-
tion instead of appealing to the Maximum Theorem of Berge [3]. The rea-
son for this is that for each h, the function uh is defined only on those pairs
(ξp(ξ+α) + ch(ξ+ η), ξ) which belong to R2

+. Hence were we to define a payoff
function V h : S → R for h such that given α (the aggregate output of other
sellers) V h evaluated at a strategy (ξ, η) for h is uh(ξp(ξ + α) + ch(ξ + η), ξ)
provided (ξp(ξ + α) + ch(ξ + η), ξ) belongs to R2

+ and something less than or
equal to uh(0.0) otherwise, such a function V h would not be continuous on S.
Hence the Maximum Theorem does not go through as stated, although its proof
can be replicated in our context. That is what we have done.

Claim 1: Let < (x∗g, y∗g)|g = 1, ...,H > be a competitive equilibrium
strategy profile and p∗ the competitive equilibrium price. Then p∗y∗g > 0 for
all g = 1, ...,H.

Proof: Suppose p∗ = 0. Thus,
∑H
g=1 y

∗g > 0.Hence there exists a seller h,
such that y∗h > 0. Thus, p∗y∗h˘ch(x∗h + y∗h) < 0, since x∗h + y∗h > 0 and ch
is strictly increasing. This implies (x∗h, y∗h) /∈ Bh(< (x∗g, y∗g)|g = 1, ...,H >),
contradicting< (x∗g, y∗g)|g = 1, ...,H > is a competitive equilibrium strategy
profile. Thus, p∗ > 0.
Hence suppose y∗h = 0 for some seller h. Since it is required that p∗y∗h˘ch(x∗h+
y∗h) ≥ 0, it must be the case that x∗h = 0. By the Positivity Assumption p∗ŷh−
ch(x̂h + ŷh) > 0. Thus there exists ε > 0 such that p∗(ŷh− ε)− ch(x̂h + ŷh) > 0
and ŷh − ε > 0. Thus (ŷh − ε, x̂h + ε) ∈ B(< (x∗g, y∗g)|g = 1, ...,H >) ∩ R2

++.

Thus, uh(p∗y∗h−ch(x∗h+y∗h), x∗h) ≥ uh(p∗(ŷh−ε)−ch(x̂h+ ŷh), x̂h+ε) >
uh(0, 0), contradicting (x∗h, y∗h) = (0.0). This proves the claim. Q.E.D.

In the next theorem we show that at competitive equilibrium strategy pro-
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files all sellers are profit maximizers.

Theorem 2 Let < (x∗g, y∗g)|g = 1, ...,H > be a competitive equilibrium strat-
egy profile. Then every seller is a competitive profit maximizer at this strategy
profile.

Proof: Let p∗ denote p(
∑H
g=1 y

∗g) and consider seller h. We know that by the
Positivity Assumption p∗ŷh − ch(x̂h + ŷh) > 0. Thus there exists ε > 0 such
that p∗(ŷh − ε)− ch(x̂h + ŷh) > 0 and ŷh − ε > 0. Thus (ŷh − ε, x̂h + ε) ∈ B(<
(x∗g, y∗g)|g = 1, ...,H >) ∩ R2

++.

Thus, uh(p∗y∗h−ch(x∗h+y∗h), x∗h) ≥ uh(p∗(ŷh−ε)−ch(x̂h+ ŷh), x̂h+ε) >
uh(0, 0).

Towards a contradiction suppose there exists yh ∈ [0, x̄h − x∗h], such that
p∗yh − ch(x∗h + yh) > p∗y∗h − ch(x∗h + y∗h).

Then by our hypothesis on preferences, uh(p∗yh − ch(x∗h + yh), x∗h) >
uh(p∗y∗h−ch(x∗h+y∗h), x∗h), contradicting our assumption that< (x∗g, y∗g)|g =
1, ...,H > is a competitive equilibrium strategy profile.

Thus every seller must be a competitive profit maximizer at this strategy
profile. Q.E.D.

We propose the following property for cost functions:

Twice continuous differentiability of cost functions:For all h = 1, ...,H,
ch is twicecontinuously differentiable on (0, x̄h) with Dch(ξ) > 0 and D2ch(ξ) ≥
0 for all ξ ∈ (0, x̄h).

Dch(ξ) is the marginal cost incurred by seller h to produce ξ units of the
produced good and is often denoted Mch(ξ).

Proposition 1: Suppose twice continuous differentiability of cost func-
tions. Let < (x∗g, y∗g)|g = 1, ...,H > be a competitive equilibrium strategy
profile. Then for all h = 1, ...,H, either (a)p(

∑H
g=1 y

∗g) = Mch(x∗h + y∗h) or
(b)x∗h + y∗h = x̄h.

Proof: Let p∗ = p(
∑H
g=1 y

∗g) be the competitive equilibrium price. Con-
sider seller h. By Theorem 2 and twice continuous differentiability of cost
functions assumption, p∗ < Mch(x∗h + y∗h) implies y∗h = 0. By the Posi-
tivity Assumption it must be the case that (x∗, y∗h) ∈ Bh(< (x∗g, y∗g)|g =
1, ...,H >) and uh(p∗y∗h − ch(x∗h + y∗h), x∗h) > uh(0, 0). Thus, (p∗y∗h −
ch(x∗h + y∗h), x∗h) 6= (0, 0). Since y∗h = 0, this is possible only if x∗h > 0 and
ch(x∗h + y∗h) = 0. But by twice continuous differentiability of cost functions
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assumption and x∗h + y∗h > 0 it follows that ch(x∗h + y∗h) > 0, leading to a
contradiction.

Towards a contradiction suppose that for some h ∈ 1, ...,H, p∗ > Mch(x∗h+
y∗h) and yet x∗h + y∗h < x̄h. Choose ε > 0 such that x∗h + y∗h + ε < x̄h and
p∗ > Mch(x∗h + y∗h + ε). This is clearly possible since the cost functions are
continuously differentiable and p∗ > Mch(x∗h+y∗h). Thus, p∗(y∗h+ε)˘ch(x∗h+
y∗h+ε) = p∗y∗h˘ch(x∗h+y∗h)+ε(p∗−Mch(x∗h+y∗h+θε)) for some θ ∈ (0, 1).
By the convexity of ch,Mch(x∗h + y∗h + ε) ≥Mch(x∗h + y∗h + θε)).

Thus, p∗y∗h˘ch(x∗h + y∗h) + ε(p∗ −Mch(x∗h + y∗h + θε)) ≥ p∗y∗h˘ch(x∗h +
y∗h) + ε(p∗ −Mch(x∗h + y∗h + ε)) > p∗y∗h˘ch(x∗h + y∗h).

Hence, p∗(y∗h + ε)˘ch(x∗h + y∗h + ε) > p∗y∗h˘ch(x∗h + y∗h).

But, then seller h is not a competitive profit maximizer at < (x∗g, y∗g)|g =
1, ...,H >, contradicting Theorem 2. This proves the proposition. Q.E.D.

Note: If the cost function of a seller is linear i.e. the case of constant av-
erage/marginal cost, then it follows from the Positivity Assumption that price
is greater than marginal cost. In such a situation it follows from Proposition 1,
that the seller will exhaust his capacity of production.

4 Cournotian and Cournot equilibrium strategy
profiles:

In this section we establish the existence of a Cournotian equilibrium if the Pos-
itivity Assumption is satisfied. Then we show that a Cournotian equilibrium is
a Cournot equilibrium.

A crucial step for what follows is the next lemma.

Lemma 2 Suppose the economy satisfies the Positivity Assumption. Then, for
all h = 1, ...,H, the Cournotian budget correspondence Bh : S →→ R2

+ is
non-empty valued, convex valued, compact valued and continuous.

Proof:Non-empty valuedness follows from the fact that (0, 0) belongs to every
Cournotian budget set. Convex valuedness follows from the concavity of Rα for
all α ≥ 0 and the convexity of the cost functions. Every Cournotian budget
set of a seller is bounded since it is a subset of his set of strategies which is a
bounded subset of R2

+. Every Cournotian budget set of a seller is closed since
the cost function of the seller as well as the functions Rα are all continuous and
profits are required to be non-negative.
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From here the proof is very similar to the proof of the converging part in
Lemma 1 and is therefore being omitted. Q.E.D.

Theorem 3 Suppose the economy satisfies the Positivity Assumption. Then a
Cournotian equilibrium strategy profile exists. Further, if there are two sellers
h1 and h2 who are identical in every respect (i.e.uh1 = uh2 , ch1 = ch2 and
x̄h1 = x̄h2), then there exists a Cournotian equilibrium strategy profile with the
strategies of h1 and h2 being identical. The latter statement can be generalized
to any number of identical sellers.

Proof: The proof of this is very similar to the proof of Theorem 1 and is there-
fore being omitted.

Claim 2: Let < (xcg, ycg)|g = 1, . . . ,H > be a Cournotian equilibrium
strategy profile and let p = p(

∑H
g=1 y

cg). Then pycg > 0 for all g = 1, . . . ,H.

Proof: The proof of this is very similar to the proof of Claim 1 and is there-
fore being omitted

The next result states that every Cournotian equilibrium strategy profile is
also a Cournot equilibrium strategy profile.

Theorem 4 Every Cournotian equilibrium strategy profile is a Cournot equi-
librium strategy profile.

Proof: The proof of this is very similar to the proof of Theorem 2 and is there-
fore omitted.

For a seller h, a strategy (xh, yh) ∈ Sh and α ≥ 0 with yh + α > 0, let
MRα(yh) = DRα(yh) = yhp

′
(yh + α) + p(yh + α).

The following proposition is analogous to Proposition 1.

Proposition 2: Suppose twice continuous differentiability of cost functions.
Let < (x∗g, y∗g)|g = 1, . . . , H > be a Cournotian equilibrium strategy profile.
For all h = 1, . . . , H, let α(h) =

∑
g 6=h y

∗g. Then for all h = 1, . . . , H, either
(a)MRα(h)(y

∗h) = Mch(x∗h + y∗h) or (b)x∗h + y∗h = x̄h.

Proof:The proof of this Proposition is very similar to the proof of Proposi-
tion 1 and is thus being omitted.
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5 Limiting properties of Cournotian equilibria:

In this section we investigate the behavior of Cournotian equilibria as the num-
ber of sellers in the market goes to infinity. For the sake of simplicity we will
assume that all sellers in the market are identical- each seller is an identical
copy of any other seller in the market.

We will also require to replicate the buyers’ side of the market. Hence we
postulate that the inverse demand function for the produced good in
a market with H buyers is a function p(H) : R+ → R+such that for all
y ≥ 0, p(H)(y) = p( yH ), where p(.) is the function that was defined and used in
earlier sections.

Let u denote the common utility function of all the sellers, c the common
cost function of all the sellers and x̄ > 0 their common plant capacity.

The Positivity Assumption now reduces to the following:

There exists x̂, ŷ ≥ 0 with x̂+ ŷ ≤ x̄, such that p(x̄)ŷ˘c(x̂+ ŷ) > 0.

A competitive equilibrium strategy < (x∗g, y∗g)|g = 1, . . . ,H > will be
said to be symmetric if for all g, h ∈ {1, . . . ,H} : (x∗g, y∗g) = (x∗h, y∗h).

Let x∗(H) denote the quantity of the produced good consumed by each seller
at a symmetric competitive equilibrium with H identical sellers and let y∗(H)
denote the quantity of the produced good sold by each seller at a symmetric
competitive equilibrium with H identical sellers.

In what follows we will denote a symmetric competitive equilibrium strategy
with H identical sellers by the ordered pair (x∗(H), y∗(H)).

A Cournotian equilibrium strategy < (xcg, ycg)|g = 1, . . . ,H > will be
said to be symmetric if for all g, h ∈ {1, . . . ,H} : (xcg, ycg) = (xch, ych).

Let xc(H) denote the quantity of the produced good consumed by each seller
at a symmetric Cournotian equilibrium with H identical sellers and let yc(H)
denote the quantity of the produced good sold by each seller at a symmetric
Cournotian equilibrium with H identical sellers.

In what follows we will denote a symmetric Cournotian equilibrium strategy
profile with H identical sellers by the ordered pair (xc(H), yc(H)).

Corollary of Proposition 1: Suppose twice continuous differentiability
of cost functions. Let (x∗(H), y∗(H)) denote a symmetric competitive equi-
librium strategy. Then either (a)p(y∗(H)) = p(H)(Hy∗(H)) = Mc(x∗(H) +
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y∗(H))or(b)x∗(H) + y∗(H) = x̄.

Corollary of Proposition 2: Suppose twice continuous differentiabil-
ity of cost functions. Let (xc(H), yc(H)) denote a Cournotian equilibrium
strategy. Then either (a)p(yc(H)) + yc(H)

H p
′
(yc(H)) = Mc(xc(H) + yc(H))

or (b)xc(H) + yc(H) = x̄.

Suppose in addition to what has been assumed before the following condition.

Twice continuous differentiability and strong concavity of utility
functions:
(i) u is twice continuously differentiable on R2

++ withDu(ξ, η) > 0 andD2u(ξ, η)
negative definite;
(ii) for all η > 0, limξ→0

∂u(ξ,η)
∂ξ = +∞ and limξ→∞

∂u(ξ,η)
∂ξ = 0;

(iii) for all ξ > 0, limη→0
∂u(ξ,η)
∂η = +∞ and limη→∞

∂u(ξ,η)
∂η = 0;

(iv) for all ξ > 0 and η > 0, ∂
2u(ξ,η)
∂ξ∂η ≥ 0.

As a consequence of these properties it follows that if ξ, η, ξ
′
, η

′ ∈ R++

with ξ
′ ≥ ξ, η

′ ≤ η and one of the latter two inequalities being strict then
D2u(ξ

′
,η

′
)

D1u(ξ
′ ,η′ )

> D2u(ξ,η)
D1u(ξ,η)

.

Consider the case of a symmetric competitive equilibrium strategy profile.
(x∗, y∗) is a symmetric competitive equilibrium strategy in a market with H
sellers if and only if (x∗, y∗) solves

Maximize u(p(y∗)y˘c(x+ y), x)

Subject to x+ y ≤ x̄ and p(y∗)y˘c(x+ y) ≥ 0.

Note: From the above it follows that a symmetric competitive market equi-
librium strategy is independent of the number of sellers in the market.

Under twice continuous differentiability of cost functions and twice continu-
ous differentiability of utility functions, (x∗, y∗) solves the above problem if and
only if there exists λ ≥ 0 such that

(i)(p(y∗)˘Mc(x∗ + y∗))D1u(p(y∗)y∗˘c(x∗ + y∗), x∗)− λ ≤ 0 and
[(p(y∗)˘Mc(x∗ + y∗))D1u(p(y∗)y∗˘c(x∗ + y∗), x∗)− λ]y∗ = 0.

(ii)˘Mc(x∗+y∗)D1u(p(y∗)y∗˘c(x∗+y∗), x∗)+D2u(p(y∗)y∗˘c(x∗+y∗), x∗)−
λ ≤ 0 and [˘Mc(x∗ + y∗)D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) + D2u(p(y∗)y∗˘c(x∗ +
y∗), x∗)− λ]x∗ = 0.

In the above Diu(.) stands for the partial derivative of u with respect to the
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ith coordinate.
We already know by Claim 1 that at a competitive equilibrium p(y∗)y∗ > 0.
Thus,

(p(y∗)˘Mc(x∗ + y∗))D1u(p(y∗)y∗˘c(x∗ + y∗), x∗)− λ = 0.

If p(y∗)y∗˘c(x∗ + y∗) = 0 and x∗ = 0, then u(p(y∗)y∗˘c(x∗ + y∗), x∗) =
u(0, 0). However, we have seen several times in the course of proofs in earlier
theorems that by the Positivity Assumption u(p(y∗)y∗˘c(x∗+y∗), x∗) > u(0, 0).

Thus, p(y∗)y∗˘c(x∗ + y∗) = 0 implies x∗ > 0.

Hence, from (ii) we get

˘Mc(x∗+y∗)D1u(p(y∗)y∗˘c(x∗+y∗), x∗)+D2u(p(y∗)y∗˘c(x∗+y∗), x∗)−λ = 0.

Since x∗ > 0 implies Mc(x∗ + y∗) > 0 and since limη→0D2u(ξ, η) = +∞ if
η > 0, the above equality would be violated if p(y∗)y∗˘c(x∗+y∗) = 0 and x∗ > 0.

Thus, p(y∗)y∗˘c(x∗ + y∗) > 0.

Since limη→0D2u(ξ, η) = +∞ if ξ > 0, x∗ = 0, would violate condition
(ii) above. Thus, x∗ > 0 and so ˘Mc(x∗ + y∗)D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) +
D2u(p(y∗)y∗˘c(x∗ + y∗), x∗)− λ = 0.

We summarize the above discussion in the following proposition.

Proposition 3: Suppose Positivity Assumption, twice continuous differ-
entiability of cost functions and twice continuous differentiability and strong
concavity of utility functions. Then (x∗, y∗) is a symmetric competitive equilib-
rium strategy if and only if:

(i)x∗ > 0, y∗ > 0.

(ii)p(y∗)y∗˘c(x∗ + y∗) > 0.

(iii)p(y∗)D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) = D2u(p(y∗)y∗˘c(x∗ + y∗), x∗).

(iv)(p(y∗)˘Mc(x∗ + y∗))D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) ≥ 0.

We say that a symmetric competitive equilibrium strategy (x∗, y∗) is an inte-
rior symmetric competitive equilibrium strategy if p(y∗) = Mc(x∗+y∗).

We can do a similar analysis for symmetric Cournotian equilibrium strate-
gies.
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(xc(H), yc(H)) is a symmetric Cournotian equilibrium strategy in a market
with H sellers if and only if (xc(H), yc(H)) solves

Maximize u(pH(y + (H − 1)yc(H))y˘c(x+ y), x)

Subject to x+ y ≤ x̄ and pH(y + (H − 1)yc(H))y˘c(x+ y) ≥ 0.

Given our definition of pH(.), (xc(H), yc(H)) is a symmetric Cournotian
equilibrium strategy in a market with H sellers if and only if (xc(H), yc(H))
solves

Maximize u(p(y+(H−1)yc(H)
H )y˘c(x+ y), x)

Subject to x+ y ≤ x̄ and p(
y + (H − 1)yc(H)

H
y˘c(x+ y) ≥ 0.

Under twice continuous differentiability of cost functions and twice contin-
uous differentiability and strong concavity of utility functions, (xc(H), yc(H))
solves the above problem if and only if there exists λ ≥ 0 such that

(i) (p(yc(H))+ yc(H)
H p

′
(yc(H))−Mc(xc(H)+yc(H)))D1u(p(yc(H))yc(H)−

c(xc(H)+yc(H)), xc(H))−λ ≤ 0 and [(p(yc(H))+ yc(H)
H p

′
(yc(H))˘Mc(xc(H)+

yc(H)))D1u(p(yc(H))yc(H)− c(xc(H) + yc(H)), xc(H))− λ]yc(H) = 0.

(ii) ˘Mc(xc(H) + yc(H))D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), yc(H)) +
D2u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H)) − λ ≤ 0 and [˘Mc(xc(H) +
yc(H))D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H)) +D2u(p(yc(H))yc(H)−
c(xc(H) + yc(H)), xc(H))− λ]xc(H) = 0.
We already know by Claim 1 that at a competitive equilibrium p(yc(H))yc(H) >
0. Thus,

(p(yc(H)) +
yc(H)

H
p

′
(yc(H))˘Mc(xc(H) + yc(H)))·

D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H))− λ = 0.

If p(yc(H))yc(H)˘c(xc(H) + yc(H)) = 0 and xc(H) = 0, then

u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H)) = u(0, 0).

However, we have seen several times in the course of proofs in earlier theorems
that by the Positivity Assumption u(p(yc(H))yc(H)˘c(xc(H)+yc(H)), xc(H)) >
u(0, 0).

Thus, p(yc(H))yc(H)˘c(xc(H) + yc(H)) = 0 implies xc(H) > 0.

Hence, from (ii) we get ˘Mc(xc(H)+yc(H))D1u(p(yc(H))yc(H)˘c(xc(H)+
yc(H)), xc(H)) +D2u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H))− λ = 0.
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Since xc(H) > 0 and p(yc(H))yc(H)˘c(xc(H) + yc(H)) = 0 and since
limη→0D2u(ξ, η) = +∞ if η > 0, the above equality would be violated if
p(yc(H))yc(H)˘c(xc(H) + yc(H)) = 0 and xc(H) > 0.

Thus, p(yc(H))yc(H)˘c(xc(H) + yc(H)) > 0.

Since limη→0D2u(ξ, η) = +∞ if ξ > 0, xc(H) = 0, would violate condition
(ii) above. Thus, xc(H) > 0 and so

˘Mc(xc(H) + yc(H))·
D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H))

+D2u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H))− λ = 0.

We summarize the above discussion in the following proposition.

Proposition 4: Suppose Positivity Assumption, twice continuous differ-
entiability of cost functions and twice continuous differentiability and strong
concavity of utility functions. Then (xc(H), yc(H)) is a symmetric Cournotian
equilibrium strategy if and only if:

(i)xc(H) > 0, yc(H) > 0.

(ii)p(yc(H))yc(H)˘c(xc(H) + yc(H)) > 0.

(iii)(p(yc(H)) + yc(H)
H p

′
(yc(H)))D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)),

xc(H)) = D2u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H)).

(iv)(p(yc(H)) + yc(H)
H p

′
(yc(H))˘Mc(xc(H) + yc(H)))D1u(p(yc(H))yc(H)

˘c(xc(H) + yc(H)), xc(H)) ≥ 0.

We say that a symmetric Cournotian equilibrium strategy in a market with
H sellers (x∗, y∗) is an interior symmetric Cournotian equilibrium strat-
egy if p(yc(H)) + yc(H)

H p
′
(yc(H)) = Mc(xc(H) + yc(H)).

In what follows we will assume the following.

Strong Law of Demand: p
′
< 0 on {y > 0 : p(y) > 0}.

Lemma 3 Suppose (x∗, y∗) and (x∗∗, y∗∗) are two distinct interior symmetric
competitive equilibrium strategies. Then the following are satisfied:

(i)x∗ 6= x∗∗, y∗ 6= y∗∗ and x∗ + y∗ 6= x∗∗ + y∗∗.

(ii)y∗ > y∗∗ implies, x∗∗ > x∗, x∗∗ + y∗∗ > x∗ + y∗ and p(y∗∗)y∗∗ − c(x∗∗ +
y∗∗) > p(y∗)y∗−c(x∗+y∗).Thus, u(p(y∗∗)y∗∗−c(x∗∗+y∗∗), x∗∗) > u(p(y∗)y∗−
c(x∗ + y∗), x∗).
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Proof: Suppose (x∗, y∗) and (x∗∗, y∗∗) are two distinct interior symmetric com-
petitive equilibrium strategies.

Towards a contradiction suppose x∗ + y∗ = x∗∗ + y∗∗. Then x∗ 6= x∗∗, y∗ 6=
y∗∗. Without loss of generality suppose y∗ > y∗∗. Thus x∗ < x∗∗. Since
Mc(x∗ + y∗) = Mc(x∗∗ + y∗∗), it must be that p(y∗) = p(y∗∗). But y∗ > y∗∗

and the Strong Law of Demand implies p(y∗) < p(y∗∗) leading to a contradic-
tion. Thus, x∗ + y∗ 6= x∗∗ + y∗∗.

Suppose towards a contradiction x∗ = x∗∗. Thus x∗ + y∗ 6= x∗∗ + y∗∗ im-
plies y∗ 6= y∗∗. Without loss of generality suppose y∗ > y∗∗. Thus, x∗ + y∗ >
x∗∗ + y∗∗.Thus, Mc(x∗ + y∗) ≥Mc(x∗∗ + y∗∗).

Since p(y∗) = Mc(x∗+y∗) and p(y∗∗) = Mc(x∗∗+y∗∗) we get p(y∗) ≥ p(y∗∗)
which since y∗ > y∗∗ contradicts the Strong Law of Demand. Thus, x∗ 6= x∗∗.

Now suppose y∗ = y∗∗. Since x∗ 6= x∗∗, without loss of generality suppose
x∗ > x∗∗. Thus, x∗ + y∗ > x∗∗ + y∗∗. Hence c(x∗ + y∗) > c(x∗∗ + y∗∗). Thus,
p(y∗)y∗ − c(x∗ + y∗) < p(y∗∗)y∗∗ − c(x∗∗ + y∗∗).

But p(y∗)y∗ − c(x∗ + y∗) < p(y∗∗)y∗∗ − c(x∗∗ + y∗∗) and x∗ > x∗∗ implies

p(y∗∗) =
D2u(ξ

′
, η

′
)

D1u(ξ′ , η′)
> D2u(ξ,η)

D1u(ξ,η)
= p(y∗), where (ξ, η) = (p(y∗)y∗ − c(x∗ +

y∗), x∗) and (ξ
′
, η

′
) = (p(y∗∗)y∗∗ − c(x∗∗ + y∗∗), x∗∗). But this contradicts

y∗ = y∗∗ and proves (i).

To prove (ii) suppose y∗ > y∗∗. Thus by the Strong Law of Demand, p(y∗) <
p(y∗∗). Thus, Mc(x∗ + y∗) < Mc(x∗∗ + y∗∗). Thus, c(x∗ + y∗) < c(x∗∗ + y∗∗)
and so x∗ + y∗ < x∗∗ + y∗∗ and further x∗ < x∗∗.

Let (ξ, η) = (p(y∗)y∗ − c(x∗ + y∗), x∗)and(ξ
′
, η

′
) = (p(y∗∗)y∗∗ − c(x∗∗ +

y∗∗), x∗∗).

If p(y∗)y∗ − c(x∗ + y∗) ≥ p(y∗∗)y∗∗ − c(x∗∗ + y∗∗), then

p(y∗) =
D2u(ξ, η)

D1u(ξ, η)

(D2u(ξ
′
, η

′
)

D1u(ξ′ , η′)
= p(y∗∗)

which combined with y∗ > y∗∗ contradicts the Strong Law of Demand. The last
part of (ii) follows from the weak monotonicity of u. This proves (ii). Q.E.D.

We are now in a position to state and prove the main result of this section.

Theorem 5 Suppose Positivity Assumption, twice continuous differentiability
of cost functions, twice continuous differentiability and strong concavity of utility
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functions and the Strong Law of Demand. Let < (xc(H), yc(H)|H ∈ N > be
a sequence of interior symmetric Cournotian equilibrium strategies. Then it
has a convergent subsequence and each convergent subsequence converges to an
interior symmetric competitive equilibrium strategy. If there is a unique interior
symmetric competitive equilibrium strategy then the sequence itself converges to
it.

Proof: Since < (xc(H), yc(H)|H ∈ N > lies in the compact set {(x, y) ∈
R2

+|x + y ≤ x̄} it has a convergent subsequence. Hence it has a convergent
subsequence converging to a point in (x, y) ∈ R2

+|x+ y ≤ x̄.

Without loss of generality and to save extra notation suppose the sequence it-
self is convergent and converges to finite vector (x∗, y∗). Since p(.) is continuous,
p

′
(.) is continuous on {y > 0|p(y) > 0} and p(yc(H))+ yc(H)

H p
′
(yc(H)) ∈ (0, p(0)]

for all H, limH→∞ p(yc(H)) = limH→∞[p(yc(H)) + yc(H)
H p

′
(yc(H))] ∈ [0, p(0)].

By property (iii) of Proposition 4 and (iv) of the requirements on u (made in
this section), it is not possible that x∗ > 0 and y∗ = 0.

Since u(p(yc(H))yc(H)− c(xc(H) + yc(H)), xc(H)) ≥ u(p(x̄)(ŷ− ε)− c(x̂+
ŷ), x̂+ε) > u(0, 0), for ε > 0 sufficiently small such that p(x̄)(ŷ−ε)−c(x̂+ŷ) > 0,
it is not possible that x∗ = 0 = y∗.

If y∗ > 0 and x∗ = 0, then by property (iii) of Proposition 4 and (iv) of the re-
quirements on u (made in this section), limH→∞ p(yc(H)) = limH→∞[p(yc(H))+
yc(H)
H p

′
(yc(H))] = 0.

However, p(yc(H)) ≥ p(x̄) > 0 for all H implies limH→∞ p(yc(H)) > 0, leading
to a contradiction. Thus, x∗ > 0 and y∗ > 0. This satisfies (i) of Proposition 3.

Now, p(yc(H))yc(H) − c(xc(H) + yc(H) ≥ p(x̄)ŷ − c(x̂ + ŷ) > 0 for all
H implies p(y∗)y∗ − c(x∗ + y∗) = limH→∞[p(yc(H)) − c(xc(H) + yc(H))] ≥
p(x̄)ŷ − c(x̂+ ŷ) > 0. This satisfies (ii) of Proposition 3.

Since

(p(yc(H))+
yc(H)

H
p

′
(yc(H)))D1u(p(yc(H))yc(H)˘c(xc(H)+yc(H)), xc(H)) =

D2u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H))

for all H, taking limits of both sides and appealing to the continuity of all the
functions that are involved in the above equations, we get

p(y∗)D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) = D2u(p(y∗)y∗˘c(x∗ + y∗), x∗).

This satisfies (iii) of Proposition 3.
Since

(p(yc(H)) +
yc(H)

H
p

′
(yc(H))˘Mc(xc(H)+

yc(H)))D1u(p(yc(H))yc(H)˘c(xc(H) + yc(H)), xc(H)) ≥ 0
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for all H, taking limits of both sides and appealing to the continuity of all the
functions that are involved in the above equations, we get

(p(y∗)˘Mc(x∗ + y∗))D1u(p(y∗)y∗˘c(x∗ + y∗), x∗) ≥ 0.

This satisfies (iv) of Proposition 3.

Hence by Proposition 3, (x∗, y∗) is an interior symmetric competitive equi-
librium.

Finally suppose (x∗, y∗) is the unique interior symmetric competitive equi-
librium. Towards a contradiction suppose the given sequence does not converge
to (x∗, y∗). Then there exists δ > 0 such that the (Euclidean) distance of
(xc(H), yc(H) from (x∗, y∗) is greater than or equal to δ infinitely often. Thus
there is a subsequence of the given sequence such that the distance of each term
of the subsequence from (x∗, y∗) is greater than or equal to δ. Since this sub-
sequence lies in a compact set it has a convergent subsequence which by what
we have established above converges to an interior symmetric competitive equi-
librium strategy. Since (x∗, y∗) is the unique interior symmetric competitive
equilibrium this subsequence must converge to (x∗, y∗). This contradicts that
the distance of every term of the subsequence from (x∗, y∗) is greater than or
equal to δ. Hence the sequence itself converges to (x∗, y∗). Q.E.D.

6 The Bertrand Edgeworth game and its pure
strategy equilibria:

In this section we assume that all sellers are identical in every respect.

Let D : R+ → R+ be the demand function corresponding to the inverse de-
mand function p(.), i.e. for all p ∈ R+, D(p) = min{y ∈ R+|p(y) = p}. In this
section(as in the previous one) we assume that p(.) satisfies the Strong
Law of Demand.

Let s ≥ 0 and x̄ > 0 be constants such that such that the common cost
function is given by c(ξ) = sξ for all ξ ∈ [0, x̄] and c(ξ) = +∞ for all ξ > x̄.
Thus x̄ is the common production capacity of all the sellers.

As before we assume that the Positivity Assumption is satisfied.

A trivial consequence of the Positivity Assumption (which in this case is
p(Hx̄) > s) is thatHx̄ < D(s).

Let u be the common utility function of all the sellers and in addition to
what we have assumed about u in section 2, we assume now that u is strictly
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concave on the set {(m, ξ) ∈ R2
+|u(m, ξ) > u(0, 0)}.

The Bertrand Edgeworth game is a price setting game, where each seller
h ∈ {1, . . . , H} sets a price ph ≥ s. In the literature on Bertrand Edgeworth
game it is not usually assumed that individual prices should not be lower than
unit costs of production. However, setting a price which is less than unit costs
is an irrational strategy and we make our assumption in order to save time dis-
cussing such theoretically futile possibilities.

A strategy profile denoted ~P is an H-tuple (p1, p2, . . . , pH) such that ph is
the price strategy of seller h.

At a strategy profile ~p let {p(1), p(2), . . . , p(K)} denote the set of K- distinct
prices announced by the sellers,
i.e. for all h ∈ {1, . . . , H}, ph ∈ {p(1), p(2), . . . , p(K)} and for all k ∈ {1, . . . ,K},
there exists h ∈ {1, . . . , H} such that ph = p(k). Suppose p(1) < p(2) < . . . <
p(K).

Let I(k)(~p) = {h|ph = p(k)} and let #[I(k)(~p)] denote its cardinality.

Let (x(1)(~p), y(1)(~p)) be a solution to the problem:

Maximize u(p(1)η − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p(1))
#[I(1)(~p)]

, p(1)η − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Having defined (x(t)(~p), y(t)(~p)) for t < k, define (x(k)(~p), y(k)(~p)) = (0, 0)
for all k ∈ {t + 1, . . . ,K} if D(p(t)) =

∑t
τ=1 y

(τ)(~p)(#[Iτ (~p)]); if D(p(t)) >∑t
τ=1 y

(τ)(~p)(#[Iτ (~p)]) then define (x(t+1)(~p), y(t+1)(~p)) as a solution to the
problem

Maximize u(p(t+1)η − s(ξ + η), ξ)

subject to ξ+η ≤ x̄, η ≤ D(p(t+1))−
∑t
τ=1 y

(τ)(~p)(#[I(τ)(~p)]

#[I(t+1)(~p)]
, p(t+1)η−s(ξ+η) ≥ 0

and ξ, η ≥ 0.

The procedure stops as soon as (x(K)(~p), y(K)(~p)) has been defined.

Given a strategy profile ~p, a real number π ≥ s and h ∈ {1, . . . ,H}, let
~p−h denote the (H− 1)-tuple (p1, . . . , ph−1, ph+1, . . . , pH) and ~p−h|π denote the
strategy profile (p1, . . . , ph−1, π, ph+1, . . . , pH).
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A strategy profile ~p such that for all h = 1, . . . , H and π ≥ s,

u(phy(k)(~p)˘s(x(k)(~p) + y(k)(~p)), x(k)(~p)) ≥
u(πy(j)(~p−h|π)˘s(x(j)(~p−h|π) + y(j)(~p−h|π)), x(j)(~p−h|π)),

where h ∈ I(k)(~p) ∩ I(j)(~p−h|π), is said to be a Bertrand Edgeworth (BE)
equilibrium.

Lemma 4 Suppose ~p is a BE equilibrium. Then D(p(1)) > 0.

Proof: Towards a contradiction suppose, D(p(1)) = 0. Then, D(p(k)) = 0 for
all k = 1, . . . ,K.

Thus, y(k)(~p) = 0 for all k = 1, . . . ,K and so x(k)(~p) = 0 for all k = 1, . . . ,K.

Let ε > 0 be so chosen that p(1) − ε > s and D(p(1) − ε) > 0.

Let δ > 0 be such that min{D(p(1) − ε), x̄} > 2δ > 0.

Then, (p(1) − ε)δ − sk+1
k δ = (p(1) − ε − s)δ − s

k δ for all k ∈ N, and for k
sufficiently large, (p(1) − ε− s)δ − s

k δ > 0.

Also x(1) + δ
k = δ

k > 0.

Thus, u((p(1)− ε)(y(1) + δ)−s(x(1) +y(1) + k+1
k δ), x(1) + δ

k ) = u((p(1)− ε)δ−
sk+1

k δ, δk ) > u(0, 0) = u(x(1), y(1)).

Let π = p(1) − ε and let h ∈ I(1)(~p). Consider the strategy ~p−h|π.

Now the least price at this new strategy is π which is chosen by h, and all
other sellers continue to choose their price strategy as before. Thus, D(pg) = 0
for all g 6= h and hence at this new strategy they consume nothing and sell
nothing. Hence the utility obtained by a seller g( 6= h) is u(0, 0) as before.

However,

u(πy(1)(~p−h|π)˘s(x(1)(~p−h|π) + y(1)(~p−h|π)), x(1)(~p−h|π)) ≥

u((p(1) − ε)δ − sk + 1

k
δ,
δ

k
) > u(0, 0) =

u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p))

and h ∈ I(1)(~p) ∩ I(1)(~p−h|π), for k ∈ N sufficiently large, contradicting ~p is a
BE equilibrium.

This proves the lemma. Q.E.D.
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Lemma 5 Suppose ~p is a BE equilibrium. Then p(1) > s.

Proof: Towards a contradiction suppose p(1) = s. In this case it is easy to see
that x(1) = 0.

By Positivity Assumption Hx̄ < D(s). Hence #[I(1)(~p)]x̄ < D(s). Let
h ∈ I(1)(~p).

Case 1: x(1) + y(1) = y(1) < x̄.

In this case consider ε > 0 sufficiently small such that p(1) + ε < p(2) and
D(p(1) + ε)− (#I(1)(~p)˘1)y(1) > x̄.

Let δ > 0 be such that x(1) + y(1) + 2δ < x̄. Thus, x(1) + y(1) + k+1
k δ < x̄ for

all k ∈ N.

Clearly, for all k ∈ N, y(1) + k+1
k δ ≤ y(1) + 2δ ≤ x(1) + y(1) < x̄ <

D(p(1) + ε)−#[I(1)(~p)− 1]y(1).

Further, [(p(1) + ε)(y(1) + δ)˘s(x(1) + y(1) + k+1
k δ)]˘[p(1)y(1)˘s(x(1) + y(1))] =

(s + ε)δ + εy(1)˘k+1
k δs = ε(y(1) + δ) − δ

ks = εy(1) + δ(ε − s
k ) > 0 for k ∈ N

sufficiently large.

Also, x(1)+
δ

k
> x(1) and so, u((p(1)+ε)(y(1)+δ)˘s(x(1)+y(1)+2δ), x(1)+δ) >

u(p(1)y(1)˘s(x(1) + y(1)), x(1)) for k ∈ N sufficiently large.

Let π = p(1) + ε and consider the strategy ~p−h|π.

If I(1)(~p) \ {h} = φ, then h ∈ I(1)(~p) ∩ I(1)(~p−h|π) and

u(πy(1)(~p−h|π)˘s(x(1)(~p−h|π) + y(1)(~p−h|π), x(1)(~p−h|π)) ≥

u(εy(1) + δ(ε− s

k
),
δ

k
) >

u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p)),

for k ∈ N sufficiently large, contradicting ~p is a BE equilibrium.

If I(1)(~p) \ {h} 6= φ, then our deviating agent h ∈ I(1)(~p) ∩ I(2)(~p−h|π).

The problem faced by a seller g ∈ I(1)(~p−h|π) = I(1)(~p)\{h}, is the following:

Maximize u(p(1)η − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p(1))
#[I(1)(~p)]−1 , p

(1)η − s(ξ + η) ≥ 0 and ξ, η ≥ 0.
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Since y(1) < D(p(1))
#[I(1)(~p)]

< D(p(1))
#[I(1)(~p)]−1 , (x

(1), y(1)) is feasible for this problem
and from the concavity of u it follows that (x(1), y(1)) is optimal for this problem
(if not then there would exist a feasible solution for this problem giving higher
utility and a convex combination of this new feasible solution and (x(1), y(1)),
sufficiently close to (x(1), y(1)) would be feasible for the earlier problem, and
would give a higher utility than what (x(1), y(1)) gives, contradicting the defini-
tion of (x(1), y(1))).

Thus, u(πy(2)(~p−h|π)˘s(x(2)(~p−h|π) + y(2)(~p−h|π), x(2)(~p−h|π)) ≥ u(εy(1) +
δ(ε− s

k ), δk ) > u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p)).
This contradicts that ~p is a BE equilibrium.
Case 2: x(1) + y(1) = y(1) = x̄.

In this case it is easy to see that y(1) = x̄ and x(1) = 0.

Consider ε > 0 sufficiently small such that p(1) + ε < p(2) and D(p(1) + ε)−
(#I(1)(~p)˘1)y(1) ≤ x̄.

Now, [(p(1) + ε)(y(1) − δ)˘s(x(1) + y(1))]˘[p(1)y(1)˘s(x(1) + y(1))] = −(p(1) +
ε)δ + εy(1) > 0 for δ > 0 sufficiently small.

Also, x(1) + δ > x(1) and so,u((p(1) + ε)(y(1) − δ)˘s(x(1) + y(1)), x(1) + δ) >
u(p(1)y(1)˘s(x(1) + y(1)), x(1)).

Let π = p(1) + ε and consider the strategy ~p−h|π.

If I(1)(~p) \ {h} = φ, then h ∈ I(1)(~p) ∩ I(1)(~p−h|π) and

u(πy(1)(~p−h|π)˘s(x(1)(~p−h|π) + y(1)(~p−h|π), x(1)(~p−h|π)) ≥
u(εy(1) − (p(1) + ε)δ, δ) >

u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p))

for δ > 0 sufficiently small.

If I(1)(~p) \ {h} 6= φ, then our deviating agent h ∈ I(1)(~p) ∩ I(2)(~p−h|π).

The problem faced by a seller g ∈ I(1)(~p−h|π) = I(1)(~p)\{h}, is the following:

Maximize u(p(1)η − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p(1))
#[I(1)(~p)]−1 , p

(1)η − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Since y(1) < D(p(1))
#[I(1)(~p)]

< D(p(1))
#[I(1)(~p)]−1 , (x

(1), y(1)) is feasible for this problem
and from the concavity of u it follows that (x(1), y(1)) is optimal for this problem
(if not then there would exist a feasible solution for this problem giving higher
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utility and a convex combination of this new feasible solution and (x(1), y(1)),
sufficiently close to (x(1), y(1)) would be feasible for the earlier problem, and
would give a higher utility than what (x(1), y(1)) gives, contradicting the defini-
tion of (x(1), y(1))).

Thus, u(πy(2)(~p−h|π)˘s(x(2)(~p−h|π) + y(2)(~p−h|π), x(2)(~p−h|π)) ≥ u(εy(1) −
(p(1) + ε)δ, δ) > u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p)) for δ > 0 sufficiently
small.

This once again contradicts that ~p is a BE equilibrium and proves the lemma.
Q.E.D.

An immediate consequence of Lemma 5 is the following.

Lemma 6 Suppose ~p is a BE equilibrium with {p(1), . . . , p(K)} being the set of
distinct prices quoted at ~p and. Suppose K > 1. Then, y(1)(~p) < D(p1)

#I(1)(~p)
.

Proof: Towards a contradiction suppose y(1)(~p) = D(p1)
#I(1)(~p)

. Then

(x(k)(~p), y(k)(~p)) = (0, 0)

<++> for k = 2, . . . ,K.
By Lemma 5, p(1) > s. Hence there exists ε > 0 sufficiently small, such that

p(1) − ε > s.
By Lemma 2, D(p(1)) > 0. Thus by Strong Law of Demand D(p(1)− ε) > 0.
Let π = p(1) − ε, h ∈ I(2)(~p) and consider, ~p−h|π.
Let δ > 0 be such that 2δ < min{x̄, D(p(1) − ε)}.
Now (p(1)− ε)δ− s(k+1

k δ) = (p(1)− ε)δ− s

k
δ > 0 for k ∈ N sufficiently large.

Hence ((p(1) − ε)δ− s(k+1
k δ), δk ) ∈ R2

++ and so u((p(1) − ε)δ− s(k+1
k δ), δk ) >

u(0, 0) = u(phy(2)(~p)˘s(x(2)(~p) + y(2)(~p)), x(2)(~p)) for k ∈ N sufficiently large.
Observe that {h} = I(1)(~p−h|π).
Thus, u(πy(1)(~p−h|π)˘s(x(1)(~p−h|π) + y(1)(~p−h|π), x(1)(~p−h|π)) ≥ u((p(1) −

ε)δ−s(k+1
k δ), δk ) > u(phy(2)(~p)˘s(x(2)(~p)+y(2)(~p)), x(2)(~p)) for k ∈ N sufficiently

large.
This contradicts that ~p is a BE equilibrium and proves the lemma. Q.E.D.
The next lemma states if ~p is a BE equilibrium then ph = p(1) > s for all

h = 1, . . . , H.

Lemma 7 Suppose ~p is a BE equilibrium. Then ph = p(1) for all h = 1, . . . , H.

Proof: Towards a contradiction suppose K > 1 where the set of distinct prices
at ~p is {p(1), p(2), . . . , p(K)}.

By Lemma 6, #[I(1)(~p)]y(1)(~p) < D(p(1)).
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By Lemma 5, p(1) > s.

Let h ∈ I(1)(~p).

Case 1:y(1)(~p) = 0.

Thus, x(1)(~p) = 0 and so x(1)(~p) + y(1)(~p) = 0 < x̄.

The problem faced by a seller g ∈ I(1)(~p), is the following:

Maximize u(p(1)η − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p(1))
#I(1)(~p)

, p(1)η − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

By Lemma 4, D(p(1))
#[I(1)(~p)]

> 0 and by Lemma 5, p(1) > s.

Let δ > 0 be such that 2δ < min{x̄, D(p(1))
#I(1)(~p)

}.

Now, p(1)δ˘k+1
k δs = (p(1) − s)δ − s

k δ > 0 for k ∈ N sufficiently large.

Also,x(1) + δ
k > x(1) and so, u(p(1)(y(1) + δ) − k+1

k δs, x(1) + δ
k ) > u(0, 0) =

u(p(1)y(1) − s(x(1) + y(1)), x(1)) for k ∈ N sufficiently large, contradicting the
definition of (x(1), y(1)).

Thus, y(1)(~p) = 0 is not possible.

Case 2: y(1)(~p) > 0.

Consider ε > 0 sufficiently small such that p(1) + ε < p(2) and D(p(1) + ε) >
#[I(1)(~p)]y(1)(~p).

Now, [(p(1) + ε)(y(1) − δ)˘s(x(1) + y(1))]˘[p(1)y(1)˘s(x(1) + y(1))] = −(p(1) +
ε)δ + εy(1) > 0 for δ > 0 sufficiently small.

Also, x(1) + δ > x(1) and so, u((p(1) + ε)(y(1) − δ)˘s(x(1) + y(1)), x(1) + δ) >
u(p(1)y(1)˘s(x(1) + y(1)), x(1)) for δ > 0 sufficiently small.

Let π = p(1) + ε and consider ~p−h|π.

If I(1)(~p \ {h} = φ, then h ∈ I(1)(~p) ∩ I(1)(~p−h|π) and

u(πy(1)(~p−h|π)˘s(x(1)(~p−h|π) + y(1)(~p−h|π), x(1)(~p−h|π)) ≥
u((p(1) + ε)(y(1) − δ)˘s(x(1) + y(1)), x(1) + δ) >

u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p))
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for δ > 0 sufficiently small.

If I(1)(~p) \ {h} 6= φ, then our deviating agent h ∈ I(1)(~p) ∩ I(2)(~p−h|π).

The problem faced by a seller g ∈ I(1)(~p−h|π) = I(1)(~p)\{h}, is the following:

Maximize u(p(1)η − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p(1))
#[I(1)(~p)]−1 , p

(1)η − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Since y(1) < D(p(1))
#[I(1)(~p)]

< D(p(1))
#[I(1)(~p)]−1 (x(1), y(1)) is feasible for this problem and

from the concavity of u it follows that (x(1), y(1)) is optimal for this problem
(if not then there would exist a feasible solution for this problem giving higher
utility and a convex combination of this new feasible solution and (x(1), y(1)),
sufficiently close to (x(1), y(1)) would be feasible for the earlier problem, and
would give a higher utility than what (x(1), y(1)) gives, contradicting the defini-
tion of (x(1), y(1))).

Thus, u(πy(2)(~p−h|π)˘s(x(2)(~p−h|π) + y(2)(~p−h|π), x(2)(~p−h|π)) ≥ u((p(1) +
ε)(y(1) − δ)˘s(x(1) + y(1)), x(1) + δ) > u(phy(1)(~p)˘s(x(1)(~p) + y(1)(~p)), x(1)(~p))
for δ > 0 sufficiently small.

This contradicts that ~p is a BE equilibrium and proves the lemma. Q.E.D.

An immediate consequence of lemma 7 is that a BE equilibrium price is
greater than or equal to p(Hx̄), since every one quotes the same price at a BE
and the aggregate quantity supplied cannot exceed Hx̄.

Lemma 8 Suppose ~p is a BE equilibrium with ph = p for all h = 1, . . . , H. Then
each seller sells D(p)

H .

Proof: Let (x, y) be the unique solution to the problem

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H , pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Towards a contradiction suppose y < D(p)
H .

Consider seller 1 and let ε > 0 be so small such that D(p+ ε) > Hy.

Let δ > 0 be such that y + δ < D(p+ε)
H .
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Then, (p+ε)(y+δ)˘s(x+y+ k+1
k δ) = py˘s(x+y)+ε(y+δ)+(p−s)δ− s

k δ >
py˘s(x+ y) for k ∈ N sufficiently large.

Also,x+ δ
k > x and so u(π(y+δ)˘s(x+y+ k+1

k δ), x+ δ
k ) > u(py˘s(x+y), x)

for k ∈ N sufficiently large.

Let π = p+ ε and consider the strategy profile ~p−1|π.1 ∈ I(2)(~p−1|π).

At this strategy profile the problem faced by a seller h(6= 1) is given by

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H−1 , pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Clearly y < D(p)
H < D(p)

H−1 and (x, y) is feasible for this problem. From the
concavity of u it follows that (x, y) is optimal for this problem (if not then there
would exist a feasible solution for this problem giving higher utility and a convex
combination of this new feasible solution and (x, y), sufficiently close to (x, y)
would be feasible for the earlier problem, and would give a higher utility than
what (x, y) gives, contradicting the definition of (x, y)).

Thus, u(πy(2)(~p−1|π)˘s(x(2)(~p−1|π) + y(2)(~p−1|π), x(2)(~p−1|π)) ≥ u(π(y +
δ)˘s(x+ y + k+1

k δ), x+ δ) > u(py˘s(x+ y), x) for k ∈ N sufficiently large.

This contradicts that ~p is BE equilibrium and proves the lemma. Q.E.D.

Our next lemma states that at a BE equilibrium all sellers produce x̄ units
of the produced good.

Lemma 9 Let x be the amount of the produced good that each seller consumes
and y be the amount of the produced good that each seller sells at a BE. Then
x+ y = x̄.

Proof: Towards a contradiction suppose x+ y < x̄.

Suppose y = 0. Then D(p) = Hy = 0, contradicting lemma 4. Thus y > 0.

Consider ε > 0 sufficiently small such that p − ε > s. This is possible,
since by lemma 5, p > s. Observe that D(p− ε) > D(p) so that for δ > 0 suffi-
ciently small x+y+2δ < x̄ and y+δ = D(p)

H +δ < D(p) < D(p−ε), since H > 1.

Now (p− ε)(y + δ)˘s(x+ y + k+1
k δ) = py˘s(x+ y) + δ(p− ε− s)− εy − s

k δ.

Holding δ fixed for ε > 0 sufficiently small and k ∈ N sufficiently large,
δ(p− ε− s)− εy− s

k δ > 0 so that (p− ε)(y+ δ)˘s(x+ y+ k+1
k δ) > py˘s(x+ y).
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Also x+ δ
k > x.

Thus,u((p− ε)(y + δ)˘s(x+ y + k+1
k δ), x+ δ

k ) > u(py˘s(x+ y), x).

Let π = p− ε and consider ~p−1|π.{1} = I(2)(~p−1|π).

Clearly, u(πy(1)(~p−1|π)˘s(x(1)~p−1|π)+y(1)(~p−1|π), x(1)(~p−1|π) ≥ u((p−ε)(y+
δ)˘s(x + y + k+1

k δ), x + δ
k ) > u(py˘s(x + y), x) for ε > 0 sufficiently small and

k ∈ N sufficiently large.

This contradicts that ~p is BE equilibrium and proves the lemma. Q.E.D.

The next lemma says that in our model, a BE equilibrium is of necessity a
competitive equilibrium.

Lemma 10 Let ~p be a BE equilibrium strategy profile with ~p = (p, p, . . . , p).
Then p is a competitive equilibrium price.

Proof: Suppose ~p is BE equilibrium. Then by lemmas 5 and 7, there exists
p > s such that ~p = (p, . . . ., p), i.e. every seller chooses p as his strategy. By
lemma 4, D(p) > 0 and by lemma 8, each seller sells D(p)

H . By lemma 9, if x is
the amount of the produced good that each seller consumes and y is the amount
of the produced good that each seller sells at ~p then x+ y = x̄.

We will show that (x, y) is a competitive equilibrium strategy.

Clearly, py − s(x+ y) ≥ 0.

Note that (x, y) is the unique solution to the following maximization prob-
lem:

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H , pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Suppose towards a contradiction (x, y) does not solve

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Then there exists x
′
, y

′ ≥ 0 with x
′

+ y
′ ≤ x̄ and py

′
˘s(x

′
+ y

′
) ≥ 0 such

that u(py
′
˘s(x

′
+ y

′
), x

′
) > u(py − s(x+ y), x).
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Since (x, y) solves

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H , pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

it is not possible that y
′ ≤ D(p)

H . Thus, y
′
> D(p)

H .

Let (x(t), y(t)) = (x, y) + t[(x
′
, y

′
)˘(x, y)] for 0 ≤ t ≤ 1.

For all t ∈ [0, 1], (x(t), y(t)) satisfies all the constraints of the maximization
problem

Maximize u(pη − s(ξ + η), ξ)

subject to ξ + η ≤ x̄, pη − s(ξ + η) ≥ 0 and ξ, η ≥ 0.

Further by the (strict) concavity of u, u(py(t)−s(x(t)+y(t)), x(t)) > u(py−
s(x+ y), x) for all t ∈ (0, 1].

Let ε > 0 be sufficiently so that p − ε > s and u((p − ε)y(t) − s(x(t) +
y(t)), x(t)) > u(py − s(x + y), x) for all t > 0 sufficiently small with y(t) <

D(p− ε). This is possible since y = D(p)
H < D(p) < D(p− ε) the last inequality

following from the Strong Law of Demand.

Let π = p − ε and consider ~p−1|π, i.e. seller 1 deviates unilaterally and
chooses the price strategy π.

Clearly, I(1)(~p−1|π) = {1} and

u(πy(1)(~p−1|π)˘s(x(1)(~p−1|π) + y(1)(~p−1|π), x(1)(~p−1|π)) ≥
u((p− ε)y(t)˘s(x(t) + y(t)), x) > u(py˘s(x+ y), x)

for t > 0 sufficiently small.

This contradicts that ~p is a BE equilibrium.

Hence, (x, y) must be a competitive equilibrium strategy and p a competitive
equilibrium price. Q.E.D.

For p > 0 such that D(p) > 0, µ(p) = − p
D(p)D

′
(p) denote the price elasticity

of demand at price p.

If D(p) is linear then by the Law of Demand, µ(p) increases as p increases.
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The following is a non-existence result under palpable conditions. For the
sake of simplicity we assume in what follows that s = 0, so that costs of pro-
duction if there be any are fixed costs.

Theorem 6 Let u be continuously differentiable (i.e. C1).Let p be a competi-
tive equilibrium price and suppose that x > 0, where the pair (x, y) solves

Maximize u(pη, ξ)

subject to ξ + η ≤ x̄, pη ≥ 0 and ξ, η ≥ 0.

Then the strategy profile ~p where each seller chooses p as his strategy is not
a BE equilibrium strategy. Thus if sellers consume positive quantities of the
produced good at every competitive equilibrium, then a BE equilibrium does not
exist.

Proof: We know from lemma 8, that y (as in the statement of this theorem)
= D(p)

H .

Assume the conditions of the theorem.

Then the pair (x, y) solves

Maximize u(pη, ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H , pη ≥ 0 and ξ, η ≥ 0.

as well as

Maximize u(pη, ξ)

subject to ξ + η ≤ x̄, η ≤ D(p)
H−1 , pη ≥ 0 and ξ, η ≥ 0, since D(p)

H < D(p)
H−1 .

No seller can do better by charging a lower price for if p
′
< p, and there

exists (ξ, η) such that ξ+ η ≤ x̄, p′
η ≥ 0, ξ, η ≥ 0, and u(p

′
η, ξ) > u(py, x), then

clearly pη > p
′
η ≥ 0 as well as u(pη, ξ) > u(py, x) contradicting our assumption

about the pair (x, y). Since no improvement is possible by unilateral deviation
to a lower price, without incorporating the constraint η ≤ D(p

′
), it is certainly

the case that no improvement is possible by unilateral deviation to a lower price,
if we add the constraint η ≤ D(p

′
)

Hence in order to consider unilateral deviations that lead to an improvement
for a seller, it is enough to consider deviations that arise due to increasing the
price.



78 SOMDEB LAHIRI

Consider seller 1 and suppose he raises his price from p to p+ε for some ε > 0.
Then the residual demand curve faced by seller 1, isD(p+ε)˘ (H−1)

H D(p) < D(p)
H .

Hence seller 1 will have to reduce his sales.

Since production is costless and his utility function is increasing, we might
as well assume that if he cuts back his sales by δ ≥ D(p)˘D(p+ ε), he increases
his consumption of the produced good by δ.

We need to show that u((p+ ε)(y − δ), x+ δ)− u(py, x) > 0.

Let α = (H−1)
H y and Rα(y − δ) = (D(p)

H − δ)p(D(p)− δ).

Consider the function δ| → u(Rα(y − δ), x+ δ) with domain (0, D(p)
H ).

The derivative of this function is equal to −MRα(y− δ)D1u(Rα(y− δ), x+
δ) +D2u(Rα(y− δ), x+ δ) = −p(α+ y− δ)[1− 1

µ(p(α+y−δ)) ]D1u(Rα(y− δ), x+

δ) +D2u(Rα(y − δ), x+ δ) = D2u(Rα(y − δ), x+ δ)− p(α+ y − δ)D1u(Rα(y −
δ), x+ δ) + p(α+y−δ)

µ(p(α+y−δ)D1u(Rα(y − δ), x+ δ) = p(α+ y − δ)D1u(Rα(y − δ), x+

δ)[ 1
µ(p(α+y−δ)) −

p(α+y−δ)D1u(Rα(y−δ),x+δ)−D2u(Rα(y−δ),x+δ)
pD1u(Rα(y−δ),x+δ) ].

Since p is a competitive equilibrium price and since both py and x are posi-
tive, by (iii) of Proposition 3, pD1u(Rα(y), x)−D2u(Rα(y), x) = 0. Thus 1

µ(p)−
pD1u(Rα(y),x)−D2u(Rα(y),x)

pD1u(Rα(y),x)
> 0. Thus for δ > 0 sufficiently small 1

µ(p(α+y−δ)) −
p(α+y−δ)D1u(Rα(y−δ),x+δ)−D2u(Rα(y−δ),x+δ)

pD1u(Rα(y−δ),x+δ) > 0.

Thus, for δ > 0 sufficiently small,

p(α+ y − δ)D1u(Rα(y − δ), x+ δ)[
1

µ(p(α+ y − δ))
−

p(α+ y − δ)D1u(Rα(y − δ), x+ δ)−D2u(Rα(y − δ), x+ δ)

pD1u(Rα(y − δ), x+ δ)
] > 0,

and so u(Rα(y − δ), x+ δ) > u(py, x).

Let ε = p(α+ y − δ)− p(α+ y − δ).

Thus, u((p+ε)y(2)(~p−1|p+ε), x(2)(~p−1|p+ε)) ≥ u(Rα(y−δ), x+δ) > u(py, x)

This proves the theorem. Q.E.D.

Note that the demand function for the market replicated k times is simply
kD(p). Thus each replica of a seller continues to face the same problem that
the seller did in the un-replicated market, irrespective of the number of times
we decide to replicate it. Hence all the results obtained above are independent



BACK TO BASICS 79

of the number of sellers H, provided H is no less than two.
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him for the proofof this result since this result is what is essentially used in the
proofs of Theorems 1 and 3 in this paper. Errors that still remain are the sole
responsibility of the author.

References

[1] Arrow, K.J. and G. Debreu : “Existence of equilibrium for a competitive
economy”, Econometrica, 22 (1954): 265-290.

[2] Beckmann, J. M. : “Edgeworth-Bertrand duopoly revisited”, in R. Henn, ed.,
Operations Research Verfahren III, Meisenheim: Verlag Anton Hain (1965).

[3] Berge, C. :”Topological Spaces”, Macmillan, New York (1963).

[4] Debreu, G. : “Theory of Value: An Axiomatic Analysis of Economic Equilib-
rium”, Monograph 17, Cowles Foundation for Research in Economics, Yale
University Press, New Haven (1959).

[5] Dahl, C. : “International Energy Markets: Understanding Pricing, Policies
and Profits”, Tulsa OK: Pennwell Press, March (2004).

[6] Dubey, P. and M. Shubik. : “A Closed Economic System with Production and
Exchange Modeled as a Game of Strategy”, Cowles Foundation Discussion
Paper No. 429, New Haven, Connecticut (1976).

[7] Gabszewicz, J. J. and P. Michel : “Oligopoly equilibrium in exchange
economies”, in B.C. Eaton and R. G. Harris, (Eds.) Trade, technology and



80 SOMDEB LAHIRI

economics: Essays in honor of Richard G. Lipsey, Elgar, Cheltenham, UK
(1997).

[8] Gabszewicz, J. J. and J.-P. Vial : “Oligopoly “A la Cournot” in a General
Equilibrium Analysis”, Journal of Economic Theory, 4 (1972): 381-400.

[9] Geanakoplos, J. : “Nash and Walras equilibrium via Brouwer”, Economic
Theory 21 (2003): 585-603.

[10] Lahiri, S.: “Asymptotic Convergence to competitive equilibrium of
oligopoly equilibria”, available at http://ssrn.com/abstract=1739486 (2010).

[11] Lahiri, S. : “Comparative statics of oligopoly equilibrium in a pure exchange
economy”, Modern Economy, 2 (2011): 77-83.

[12] Levitan, R., and M. Shubik : “Price duopoly and capacity constraints”,
International Economic Review 13 (1972): 111-122.

[13] Novshek, W. : “Perfectly competitive markets as the limits of Cournot
markets”, Journal of Economic Theory, 35 (1985): 72-82.

[14] Shapley, L.S. : “Non-cooperative general exchange”, in S.A.Y. Lin (ed.),
Theory of measurement of economic externalities, Academic Press, New
York (1976).

[15] Shapley, L.S. and M. Shubik : “Trade using one commodity as a means of
payment”, Journal of Political Economy 85 (1977), 937-968.

[16] Shubik, M. : “Commodity money, oligopoly, credit and bankruptcy in a
general equilibrium model”, Western Economic Journal 11 (1973), 24-38.

[17] Tasnadi, A. : “Existence of Pure Strategy Nash Equilibrium in Bertrand
Edgeworth Oligopolies”, Economics Letters, 63 (1999): 201-206.

[18] Vives, X. : “Cournot and the oligopoly problem”, European Economic Re-
view, 33 (1989): 503-514.

[19] Vives, X. : “Oligopoly Pricing: Old Ideas and New Tools”, The MIT Press,
Cambridge, Massachusetts (1999).


	Introduction
	The Model
	Existence of competitive equilibrium and competitive profit mazimization: 
	Cournotian and Cournot equilibrium strategy profiles:
	Limiting properties of Cournotian equilibria: 
	The Bertrand Edgeworth game and its pure strategy equilibria: 

