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Abstract

Existence of viable trajectories to nonautonomous differential inclu-
sions are proven for time-dependent viability tubes. In the convex case we
prove a double-selection theorem and a new Scorza-Dragoni type lemma.
Our result also provides a new and palpable proof for the equilibrium form
of Kakutani’s fixed point theorem.
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1 Introduction

In this paper we examine the viability problem

(1)

 x (t) ∈ P (t) for every t;
x′ (t) ∈ F (t, x (t)) for a. e. t;
x (0) = x0

where P is a given map (tube). Viability theorems with a constant viability
set are proven by Nagumo [24], Haddad [15], Kánnai and Tallos [19], Aubin,
Lygeros, Quincampoix, Sastry, and Seube [3], Gao [11], and recently Gao and
Han [12] for autonomous inclusions and by Deimling [9], Ledyaev [23], Tallos
[26], and Kánnai and Szabó [17] for nonautonomous inclusions with convex
right-hand side; and by Goncharov [14], Colombo [7], and Kánnai and Tallos
[18] with nonconvex right-hand side. Nonautonomous viability theorems with
a time-dependent tube are proven by Frankowska, Plaskacz and Rzeżuchowski
[10], Bothe [5], Gavioli and Malaguti [13], and Kánnai [20] and [21].

A natural extension of the tangential condition for a Caratheodory map F
can be written as

(2) F (t, x) ∩DP (t, x) (1) 6= ∅ for a.e. t and every x ∈ P (t)
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in the convex case; while in the nonconvex case,

(3) F (t, x) ⊆ DP (t, x) (1) for a.e. t and every x ∈ P (t) ,

where DP (t, x) (1) is the contingent derivative to P, i.e.

DP (t, x) (1) = {v : (1, v) ∈ TgraphP (t, x)} ,

where TgraphP (t, x) is the Bouligand tangent cone to graphP at (t, x) (see e.g.
[1]). Note that if P (t) ≡ K, then DP (t, x) (1) = TK (x) .

Unfortunately, for time-dependent problems condition (2) (and respectively,
(3)) is not sufficient for the existence of a viable trajectory. As is well-known,
there is a strictly monotone and continuous function f : [0, 1]→ [0, 1] such that
f ′ (t) = 0 for a.e. t in [0, 1] . Then putting P (t) = {f (t)} and F (t, x) ≡ {0} ,
condition (3) is valid, P has a compact graph, however, it does not admit a
viable solution to (1) .

We will see that if the tube P is sleek (see below), then the condition

(4) DP (t, x) (1) 6= ∅ for every (t, x) ∈ graphP

combined with (2) (or respectively, (3)) is already sufficient to guarantee the
existence of viable solutions. Note that the tangential condition (2) alone yields
DP (t, x) (1) 6= ∅ for a.e. t and every x ∈ P (t) . However, this property is
quite far from (4) because, as shown by the previous example, solutions may
not exist. Even if P is sleek, (2) will not be sufficient, either, because the map
P : [0, 2]→ P (R) ,

P (t) =


{

1−
√

1− t2
}

if 0 ≤ t < 1;
[1, 3] if t = 1;{
3 +

√
1− (t− 2)

2

}
if 1 < t ≤ 2

is sleek, has a compact graph, and even (4) is fulfilled except only one point,
however P has no absolutely continuous selection.

In [20] we examined viability on sleek tubes, but under virtually stronger
conditions than (4) . Seeing the above examples, it is expectable (as e. g. in [10])
that a condition guaranteeing the viability of a tube, will be strong enough, e. g.
essentially the tube shall be absolutely continuous. But, one of our purposes in
viability theory, is to weaken the virtual tangential condition. In this work, we
give viability theorems on sleek tubes with only (4) , moreover in the convex case
we retain upper semicontinuity in the second variable, in contrast to the parallel
results in [20] and [10]. In the convex case, Bothe [5] proved a somewhat stronger
result in finite dimension exploiting a different technique. Nevertheless, [5]
uses a skilled definition (almost u.s.c. maps). Our Scorza-Dragoni-type lemma
retains the classical conditions for the right-hand side: measurability, and upper
semicontinuity in the second variable. The significance of this lemma is, that
the values of F are unchanged on a “big” set, hence the tangential condition
remains valid there. Using the classical result [25], we cannot guarantee the
tangential condition for the regularized map. The tools applied by us seem to
be useful also in equilibrium theory, as we will see in the final paragraph.
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2 Preliminaries
In the following let X be a Banach space.

Definition 1 A set K ⊆ X is said to be sleek if its Bouligand cone map

TK : K → P (x) , x 7→ TK (x)

is lower semicontinuous (l.s.c.). A map P : [0, 1] → P (X) is called sleek if
graphP is a sleek subset of R × X. P is called properly sleek if it is sleek
moreover (4) is fulfilled for every 0 ≤ t < 1 and x ∈ P (t). Finally, P is called
strongly sleek if it is sleek, and there is a constant M > 0 such that

(5) DP (t, x) (1)∩M ·B 6= ∅ for every (t, x) ∈ graphP ∩ ([0, 1)×X) .

We remark that if K is sleek, then for every x ∈ K, TK (x) = CK (x) (where
CK (x) is the Clarke cone to K at x, see e.g. [1]), thus, TK (x) is convex and
closed. Consequently, whenever P is a sleek map,then the sets DP (t, x) (1) are
also convex and closed.

In [20] the following theorem is proven:

Theorem 1 Suppose that X is reflexive. Let P : [0, 1] → P (X) be a strongly
sleek map with a compact graph, F : graphP → P (X) be a Λ ⊗ B-measurable,
integrably bounded and nonempty closed valued map, which is l.s.c. in x, and
assume (3) is valid. Then there is a function x ∈ ACX [0, 1] satisfying (1) .

Now we verify two lemmata.

Lemma 1 Let P : [0, 1]→ P (X) be a sleek map. Then DP (·, ·) (1) is l.s.c. on
its domain. Consequently, if P is properly sleek, then

DP (·, ·) (1) : graphP ∩ ([0, 1)×X)→ P (X)

is a nonemty closed and convex valued l.s.c. map.

Proof. Take an open set H ⊆ X such that for some (t0, x0) ∈ graphP,

DP (t0, x0) (1) ∩H 6= ∅ .

Taking a point v ∈ DP (t0, x0) (1) ∩H there is a number 1
2 > ε > 0 such that

v + ε · Bo ⊆ H, on the other hand, since P is sleek, there is a neighborhood U
of (t0, x0) in graphP such that(

1− ε

4 ‖v‖+ 4
, 1 +

ε

4 ‖v‖+ 4

)
×
(
v +

ε

2
·Bo

)
∩ TgraphP (t, x) 6= ∅

for an arbitrary fixed (t, x) ∈ U. Then there exist 3
2 > α > 1

2 and u ∈ v+ ε
2 ·B

o

such that (α, u) ∈ TgraphP (t, x) , thus,
(
1, uα

)
∈ TgraphP (t, x) , hence

u

α
∈ DP (t, x) (1) .



22 ZOLTÁN KÁNNAI

At the same time,∥∥∥u
α
− v
∥∥∥ ≤ |α− 1|

α
· ‖u‖+ ‖u− v‖ < ε · (‖v‖+ 1)

2 ‖v‖+ 2
+
ε

2
= ε ,

hence u
α ∈ H, consequently

DP (t, x) (1) ∩H 6= ∅

for any (t, x) ∈ U. Thus, DP (·, ·) (1) is l.s.c.. �

Lemma 2 Let P : [0, 1]→ P (X) be a properly sleek map with a compact graph.
Then for every number 0 < T < 1, P is strongly sleek on [0, T ] .

Proof. For every n ∈ N, the set

Gn = {(t, x) ∈ graphP ∩ ([0, 1)×X) : DP (t, x) (1) ∩ n ·Bo 6= ∅}

is open subset of graphP in accordance with the previous lemma. Hence
(Gn)n∈N is an open covering of the compact set graphP ∩ ([0, T ]×X) . Then
there is an integer n such that

graphP ∩ ([0, T ]×X) ⊆ Gn ,

which just means that P is strongly sleek on [0, T ] . �

3 Viability. A double-selection theorem.
First consider the nonconvex case.

Theorem 2 Suppose X is reflexive. Let P : [0, 1] → P (X) be a properly
sleek map with a compact graph, F : graphP → P (X) be a Λ ⊗ B-measurable,
integrably bounded and nonempty closed valued map, which is l.s.c. in the second
variable. If the tangential condition (3) is valid for a.e. t and every x ∈ P (t) ,
then (1) has a solution x ∈ ACX [0, 1] for any x0 ∈ P (0) .

Proof. Take a strictly monotone sequence (Tn) from [0, 1] converging to 1 such
that T0 = 0. According to Lemma 2, P is strongly sleek on every [Tn, Tn+1] . By
an inductive way, using Theorem 1, we define the function x on every [Tn, Tn+1]
so that x can satisfy (1) on [Tn, Tn+1] in the meaning that in every step the
initial condition coincides with the final data of the preceding step. Then x is
absolutely continuous on every [Tn, Tn+1] and ‖x′ (t)‖ ≤ ` (t) for a.e. t ∈ [0, 1] ,
where ` ∈ L1 [0, 1] is an integrable bound of F. Hence x is obviously absolutely
continuous on [0, 1] and satisfies (1) on [0, 1] . �

The convex case is technically more involved than the nonconvex one. For
this we prove a double-selection theorem, which can be considered as the unifi-
cation of theorems of Michael and Cellina [2].

In the following, fix a compact metric space K, a Banach space X and a
closed convex subset Y ⊆ X.

The next proposition is easy to verify (and also well-known).
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Proposition 1 Let r be a positive number, F : K → P (X) be a nonempty
valued l.s.c. map, and f : K → X be a continuous function such that

d (f (x) , F (x)) < r

for every x ∈ K. Then the map G : K → P (X) ,

G (x) = F (x) ∩ (f (x) + r ·Bo)

is also l.s.c..

We will need a technical lemma.

Lemma 3 Let F : K → P (Y ) and G : K → P (X) be nonempty convex valued
maps such that

F (x) ∩G (x) 6= ∅

for every x ∈ K. Suppose that F is Hausdorff-u.s.c. (H-u.s.c.) and G is l.s.c.
Then for arbitrary ε > 0 there is a continuous function fε : K → Y such that

graph fε ⊆ B (graphF, ε)

and for every x ∈ K,
fε (x) ∈ G (x) + ε ·B.

Proof. For every x ∈ K fix a vector

vx ∈ F (x) ∩G (x) .

Take a number ε > 0. Then F being H-u.s.c. and G being l.s.c., every point
x ∈ K has an open neighborhood Bo (x, δx) with radius 0 < δx < ε such that

F (y) ⊆ F (x) + ε ·B,

and
G (y) ∩ (vx + ε ·B) 6= ∅

for every y ∈ Bo (x, δx) . Then{
Bo

(
x,
δx
2

)
: x ∈ K

}
is an open covering of K, hence there are points x1, x2, . . . , xn ∈ K such that

K =

n⋃
k=1

Bo

(
xk,

δxk

2

)
.

For every 1 ≤ k ≤ n, consider the distance functions

ϕk = d

(
·,
[
Bo

(
xk,

δxk

2

)]c)
.
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Since the sets Bo
(
xk,

δxk

2

)
cover K, for any x ∈ K,

n∑
j=1

ϕj (x) > 0.

Denote for every 1 ≤ k ≤ n,
ψk =

ϕk
n∑
j=1

ϕj

.

Then each ψk is a nonnegative continuous function, furthermore

n∑
k=1

ψk (x) = 1

for every x ∈ K. Then

fε (x) =

n∑
k=1

ψk (x) · vxk

being a convex combination of some elements of Y, we have that fε (x) ∈ Y. So
the latest equality defines a continuous function fε : K → Y. We will show that
fε satisfies the statement. Fix a point x ∈ K. Note that

x ∈ Bo

(
xk,

δxk

2

)
i.e. xk ∈ Bo

(
x,
δxk

2

)
whenever ψk (x) > 0. Now consider all indexes 1 ≤ k ≤ n such that ψk (x) > 0.
Among them, there is an index for which δxk

is maximal; thus,
there exists a number 1 ≤ p ≤ n such that

• ψp (x) > 0, consequently d (x, xp) <
δxp

2 ;

• whenever 1 ≤ k ≤ n, ψk (x) > 0, then δxk
≤ δxp

; hence d (x, xk) <
δxk

2 .

Furthermore by

1 =

n∑
k=1

ψk (x) =
∑

ψk(x)>0

ψk (x) and fε (x) =

n∑
k=1

ψk (x)·vxk
=

∑
ψk(x)>0

ψk (x)·vxk

fε (x) appears as a convex combination of vectors vxk
such that ψk (x) > 0. At

the same time, for every such index k we have

d (xk, xp) ≤ d (xk, x) + d (x, xp) <
δxk

2
+
δxp

2
≤ δxp

consequently
xk ∈ Bo

(
xp, δxp

)
,
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hence on the one hand
F (xk) ⊆ F (xp) + ε ·B,

so vxk
belongs to the convex set F (xp) + ε ·B; on the other hand,

fε (x) ∈ F (xp) + ε ·B

since fε (x) is a convex combination these aforementioned vectors vxk
. So there

is a vector v ∈ F (xp) such that ‖v − fε (x)‖ < ε, and d (x, xp) < δxp < ε, hence

(x, fε (x)) ∈ B (graphF, ε) .

Moreover for each index k satisfying ψk (x) > 0 we have

G (x) ∩ (vxk
+ ε ·B) 6= ∅

since x ∈ Bo
(
xk,

δxk

2

)
. Hence

vxk
∈ G (x) + ε ·B

for all these k, thus, G (x) + ε ·B being convex, we get that

fε (x) ∈ G (x) + ε ·B ,

which just means the statement of the lemma. �
Note that the previous lemma obviously implies the approximate selec-

tion theorem of Cellina. By applying Lemma 3 to the map G (x) = F (x) ∩
(f0 (x) + r ·Bo) and the constant map valued Y, we obtain the following:

Corollary 1 Let F : K → P (X) be a nonempty convex valued l.s.c. map, r
be a positive number, and f0 : K → Y be a continuous function such that

f0 (x) ∈ F (x) + r ·B

for every x ∈ K. Then for every number ε > 0 there is a continuous function
fε : K → Y such that

1. fε (x) ∈ F (x) + ε ·B for all x ∈ K;

2. ‖fε (x)− f0 (x)‖ < r + ε for all x ∈ K.

Lemma 4 Let F : K → P (X) be a nonempty closed convex valued l.s.c. map,
r be a positive number, and f0 : K → Y be a continuous function such that

f0 (x) ∈ F (x) + r ·B

for every x ∈ K. Then there exists a continuous function f : K → Y such that
for every x ∈ K,

f (x) ∈ F (x) and ‖f (x)− f0 (x)‖ ≤ 2r.
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Proof. Define a sequence of continuous functions fn : K → Y, by induction.

• By Corollary 1 choose a continuous function f1 : K → Y such that f1 (x) ∈
F (x) + r

2 ·B and ‖f1 (x)− f0 (x)‖ < r + r
2 for every x ∈ K.

• When fn is already defined, and fn (x) ∈ F (x) + r
2n ·B for every x ∈ K,

then applying Corollary 1 again, choose a continuous function fn+1 : K →
Y such that fn+1 (x) ∈ F (x)+ r

2n+1 ·B and ‖fn+1 (x)− fn (x)‖ < r
2n + r

2n+1

for every x ∈ K.

By all these we have defined the sequence (fn). One can immediately see
that this sequence uniformly converges to a continuous function f : K → Y .
Since

d (fn (x) , F (x)) ≤ r

2n

for every x ∈ K and n ∈ N, we obviously get that

d (f (x) , F (x)) = 0, i.e. f (x) ∈ F (x)

for every x ∈ K. Furthermore

‖fn (x)− f0 (x)‖ ≤
n∑
k=1

‖fk (x)− fk−1 (x)‖ ≤
n∑
k=1

r

2k−1
≤ 2r

for every x ∈ K and n ∈ N, thus, taking the limit we have

‖f (x)− f0 (x)‖ ≤ 2r.

�
Now we arrived at the main technical results.

Theorem 3 Let F : K → P (Y ) and G : K → P (X) nonempty convex valued
maps such that

F (x) ∩G (x) 6= ∅

for every x ∈ K, moreover F is H-u.s.c. and és G closed valued l.s.c.. Then for
every ε > 0 there is a continuous function fε : K → Y such that

graph fε ⊆ B (graphF, ε) ,

and
fε (x) ∈ G (x)

for every x ∈ K.

Proof. According to Lemma 3, there is a continuous function f∗ : K → Y such
that

graph f∗ ⊆ B
(

graphF,
ε

4

)
,
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moreover for every x ∈ K,

f∗ (x) ∈ G (x) +
ε

4
·B.

Then by Lemma 4, there is a continuous function fε : K → Y such that

fε (x) ∈ G (x)

and
‖fε (x)− f∗ (x)‖ ≤ ε

2

for every x ∈ K. Hence we obviously get that

graph fε ⊆ B (graphF, ε) .

�
The following statement is a new version of the celebrated Scorza-Dragoni

lemma.

Lemma 5 Let T be a compact subset of R, X and Y be separable metric spaces,
P : T → P (X) be a compact valued Lebesgue-measurable map, and finaly F :
graphP → P (Y ) be a compact valued Λ ⊗ B-measurable map, which is u.s.c.
in the second variable. Then for every ε > 0, there is a compact subset Aε ⊆ T
such that the Lebesgue measure of T \ Aε is less than ε, and the restriction of
F to graphP ∩ (Aε ×X) has a compact graph.

Proof. graphF is obviously Λ⊗ BX×Y -measurable. Then there is a zero mea-
sured Borel set H ⊆ T such that graphF \H×X×Y is B1⊗BX×Y -measurable.
Put Φ : T → P (T ×X × Y ) ,

Φ (t) = [(graphF \H ×X × Y ) ∪H × {(x0, v0)}] ∩ ({t} ×X × Y ) ,

with an arbitrary (x0, v0) ∈ X ×Y. Since P and F are compact valued and F is
u.s.c. in the second variable, the values of Φ are compact. On the other hand,

graph Φ = (∆T ×X × Y ) ∩ (T × [(graphF \H ×X × Y ) ∪H × {(x0, v0)}]) ,

which is obviously BR⊗BR×X×Y -measurable. Then by Theorem III.30 in [6] we
have that Φ is a Lebesgue-measurable map. Applying Lusin’s theorem (in the
metric space of compact subsets in T ×X × Y with the Hausdorff distance) we
get that for any ε > 0, there is a compact subset Aε ⊆ T with λ (T \Aε) < ε
such that the restriction of Φ is Hausdorff-continuous. We can obviously suppose
that H ⊆ Aε. Then the compactness of⋃

t∈Aε

Φ (t) = graph
(
F|graphP∩(Aε×X)

)
follows our statement. �

Let us now return to viability.
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Proposition 2 Suppose that X is a separable Hilbert space and Y ⊆ X is
convex, bounded and closed. Let P : [0, 1] → P (X) be a properly sleek map
with a compact graph, F : graphP → P (X) be a closed and convex valued
Λ⊗ B-measurable map, which is u.s.c. in the second variable, moreover

F (t, x) ⊆ Y

and the tangential condition (2) is valid for a.e. t ∈ [0, 1] and every x ∈ P (t) .
Then (1) has a solution x ∈ ACX [0, 1] for any x0 ∈ P (0) .

Proof. At first we show the existence to (1) on [S, T ] with an arbitrary x0 ∈
P (S) where 0 ≤ S < T < 1. By Lemma 2, P is strongly sleek on [S, T ] with a
constant M > d (0, Y ) + diamY + 1. Then the map

G : (t, x) 7→ DP (t, x) (1) ∩M ·Bo

is l.s.c. on graphP ∩ ([S, T ]×X) moreover

(6) F (t, x) ∩G (t, x) 6= ∅

for a.e. t ∈ [S, T ] and every x ∈ P (t) . Fix a number n ∈ N. Then by Lemma 5,
we get that there is an compact set An ⊆ [S, T ] such that the Lebesgue measure
of [S, T ] \An is less than 1

n , moreover F on graphP ∩ (An ×X) has a compact
graph and satisfies (6). Denote by Fn this restricted map. Then Fn is u.s.c..
Now by applying Theorem 3, we have a continuous function

fn : graphP ∩ (An ×X)→ Y

such that
graph fn ⊆ B

(
graphFn,

1

n

)
,

and fn (t, x) ∈ G (t, x) for every (t, x) ∈ graphP ∩ (An ×X) . Since G is a
closed and convex valued l.s.c. map, by Michael’s selection theorem fn can be
continuously extended to graphP ∩ ([S, T ]×X) so that fn (t, x) ∈ G (t, x) , i.e.

fn (t, x) ∈ DP (t, x) (1) and ‖fn (t, x)‖ ≤M

for every (t, x) ∈ graphP ∩ ([S, T ]×X) . Then by applying Theorem 4.4.1 in
[2], we have that there is a function xn ∈ ACX [S, T ] such that xn (t) ∈ P (t) for every t ∈ [S, T ] ;

x′n (t) = fn (t, xn (t)) for a. e. t;
xn (S) = x0 .

We can obviously suppose that the sets An and graphFn increase in n. Now for
a.e. t ∈ [S, T ] and every n, ‖x′n (t)‖ ≤ M, so the sequence (x′n) has a weakly
convergent subsequence (denoted by (x′n) again) in L2

X [S, T ], converging to a
function u ∈ L2

X [S, T ] . Define

x := x0 +

∫
S

u .
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Then x′ = u, i.e. x′n → x′ weakly in L2
X [S, T ] , moreover for every S ≤ t ≤ T,

xn (t) tends to x (t) weakly in X. Thus, by compactness of P (t) we get that
xn (t) tends to x (t) in norm and x (t) ∈ P (t) for every t ∈ [S, T ] . By definition
x (S) = x0. Now fix n ∈ N. Then for every k ≥ n and a.e. t ∈ An, obviously

(t, xk (t) , x′k (t)) ∈ B
(

graphFn,
1

k

)
,

so by the Kuratowski–Ryll-Nardzewski selection theorem (see [6]) the measur-
able map

t 7→ Γk (t) =

[
(t, xk (t) , x′k (t)) +

2

k
·B
]
∩ graphFn

has a measurable selection t 7→ (uk (t) , vk (t) , wk (t)) . Then necessarily, uk (t)→
t, vk (t)→ x (t) for a.e. t ∈ An, and wk → x′ weakly in L2

X [S, T ] , moreover

wk (t) ∈ Fn (uk (t) , vk (t))

for a.e. t ∈ An. Then for any k ≥ m ≥ n,

wk (t) ∈ conv

+∞⋃
j=m

Fn (uk (t) , vk (t)) ,

on the other hand, all measurable selections of the right-hand side (as a map of
t) appears as a weakly closed subset of L2

X [S, T ] . So

x′ (t) ∈ conv

+∞⋃
j=m

Fn (uk (t) , vk (t))

for a.e. t ∈ An and every m ≥ n, hence we easily get that

x′ (t) ∈
+∞⋂
m=1

conv

+∞⋃
j=m

Fn (uk (t) , vk (t)) ⊆ Fn (t, x (t)) ⊆ F (t, x (t))

for a.e. t ∈ An. Since it is true for any n, then x′ (t) ∈ F (t, x (t)) for a.e.
t ∈ [S, T ] . Now the rest of the proof is carried out similarly to Theorem 2. �

Theorem 4 Let X be a Banach space, P : [0, 1] → P (X) be a properly sleek
map with a compact graph, F : graphP → P (X) be a weakly compact and
convex valued Λ⊗B-measurable and integrably bounded map, which is u.s.c. in
the second variable with respect to the norm topology in graphP and the weak
topology in X, moreover the tangential condition (2) is valid for a.e. t ∈ [0, 1]
and every x ∈ P (t) . Then (1) has a solution defined on [0, 1] for any x0 ∈ P (0) .

Proof. The closed linear hull of ∪t∈[0,1]P (t) is separable and contains all the
contingent derivatives to P. Restricting everything to this subspace, all prop-
erties of F remain valid, so for the sake of simplicity, we may assume that X
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is separable. Take an integrable bound ` ∈ L1 [0, 1] of F such that ` (t) ≥ 1
for a.e. t ∈ [0, 1] . Define g =

∫
0
`. In [21] we used a continuous linear injec-

tion A : X → L2 [0, 1] such that for every weakly compact subset W ⊆ X
the set A (W ) is compact in L2 [0, 1] , moreover if W is compact, then A is a
homeomorphism between W and A (W ) . Now take the tube A ◦ P ◦ g and the
map

G (t, y) =
1

` (g−1 (t))
·A
(
F
(
g−1 (t) , A−1 (y)

))
.

Then A ◦ P and G obviously satisfy the conditions of Proposition 2 (the values
of G are contained in the unit ball of L2 [0, 1] and G is u.s.c. in the second
variable), so we have that there is a function y ∈ ACL2 [0, 1] which satisfies (1)
with respect to A◦P and G. It is easy to verify that x = A−1 ◦y ◦g is a solution
to (1) with respect to P and F. �

4 The tangent cone form of Kakutani’s theorem
Finally, as an other application of Theorem 3, we present a new proof to the
equilibrium form of the classical Kakutani’s fixed point theorem.

In the following, let X be a Banach space. Let us assume the fixed point
theorem: If K ⊆ X is nonempty convex and compact set and F : K → P (K)
is a closed and convex valued u.s.c. map, then F has a fixed point, i.e. a point
x ∈ K such that x ∈ F (x) .

Take a convex and compact subset K in X. Then it is easy to see that the
projection map

ΠK : X → P (K) ,

ΠK (x) : = {y ∈ K : ‖y − x‖ = d (x,K)}

is convex compact valued and u.s.c. The next observation is also easy to verify:
if x ∈ K and y ∈ X, moreover

y ∈ x+ TK (x) and x ∈ ΠK (y) ,

then necessarily x = y.

Lemma 6 Let f : K → X a continuous function such that

f (x) ∈ TK (x)

for every x ∈ K. Then there is an equilibrium point x∗ ∈ K of f , i. e.,

f (x∗) = 0 .

Proof. Take the convex compact valued u.s.c. map

F : K → P (K) ,

x 7→ ΠK (x+ f (x)) .
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Then by Kakutani’s fixed point theorem (e. g. Theorem 1 in [22]) we get that
∃x∗ ∈ K such that

x∗ ∈ ΠK (x∗ + f (x∗)) ,

on the other hand,

f (x∗) ∈ TK (x∗) i.e. x∗ + f (x∗) ∈ x∗ + TK (x∗) ,

so from the previous observation we get that

x∗ = x∗ + f (x∗) ,

thus, f (x∗) = 0. �

Theorem 5 Let F : K → P (X) be a nonempty convex and closed valued u.s.c.
map such that

F (x) ∩ TK (x) 6= ∅
for every x ∈ K. Then there is an equilibrium point of F i.e. a point x∗ ∈ K
such that

0 ∈ F (x∗) .

Proof. Since K is convex, the map TK : K → P (X) , x 7→ TK (x) is nonempty
convex and closed valued l.s.c. map. Then by Theorem 3, we have that for all
positive ε, there is a continuous function fε : K → X such that

graph fε ⊆ B (graphF, ε) and fε (x) ∈ TK (x)

for every x ∈ X. From Lemma 6, we get a point xε ∈ K such that 0 = fε (xε) ,
i.e. (xε,0) ∈ graph fε ⊆ B (graphF, ε) , thus,

(K × {0}) ∩B (graphF, ε) 6= ∅

for every ε > 0, hence
(K × {0}) ∩ graphF 6= ∅

since K × {0X} kis compact and graphF is closed. This just means that there
is a point x∗ ∈ K such that (x∗,0) ∈ graphF i.e. 0 ∈ F (x∗) . �
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