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A generalization of André-Jeannin’s symmetric identity
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Abstract. In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam
numbers Wn, defined by a three-term recurrence Wn+2 = PWn+1 − QWn with constant coefficients. In this paper,
we extend this identity to sequences {an}n∈N satisfying a three-term recurrence an+2 = pn+1an+1 + qn+1an with
arbitrary coefficients. Then, we specialize such an identity to several q-polynomials of combinatorial interest, such as the
q-Fibonacci, q-Lucas, q-Pell, q-Jacobsthal, q-Chebyshev and q-Morgan-Voyce polynomials.
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1 Introduction

Let Wn = Wn(a, b;P,Q) be the Horadam numbers [8, 9], defined by the linear recurrence

Wn+2 = PWn+1 −QWn

with the initial conditions W0 = a and W1 = b , where a , b , P and Q are constants (or symbols)
with PQ 6= 0 . Several classical combinatorial sequences are of this kind. This is true, for instance, for
the Fibonacci, Lucas, Pell and Jacobsthal numbers, the Chebyshev polynomials and the Morgan-Voyce
polynomials.

In [2], Richard André-Jeannin proved, for all m,n ∈ N , the symmetric identity

Un

m∑
k=1

Qk

WkWn+k
= Um

n∑
k=1

Qk

WkWm+k
(1)

where Un = Wn(0, 1;P,Q) . For instance, for the Fibonacci numbers Fn = Wn(0, 1; 1,−1) and for
the Lucas numbers Ln = Wn(2, 1; 1,−1) , we have Un = Wn(0, 1; 1,−1) = Fn . Hence, in this case,
we have the identities [6]

Fn

m∑
k=1

(−1)k

FkFn+k
= Fm

n∑
k=1

(−1)k

FkFm+k

Fn

m∑
k=1

(−1)k

LkLn+k
= Fm

n∑
k=1

(−1)k

LkLm+k
.
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Similarly, for the Chebyshev polynomials of the first and second kind Tn(x) = Wn(1, x; 2x, 1) and
Un(x) = Wn(1, 2x; 2x, 1) we have Un = Wn(0, 1; 2x, 1) = Un−1(x) and

Un−1(x)
m∑
k=1

1

Tk(x)Tn+k(x)
= Um−1(x)

n∑
k=1

1

Tk(x)Tm+k(x)

Un−1(x)
m∑
k=1

1

Uk(x)Un+k(x)
= Um−1(x)

n∑
k=1

1

Uk(x)Um+k(x)
.

Finally, for the Morgan-Voyce polynomials [13] [19, 20]

Mn(x) = Wn(1, x+ 2;x+ 2, 1) =
n∑
k=0

(
n+ k + 1

n− k

)
xk

Nn(x) = Wn(1, x+ 1;x+ 2, 1) =

n∑
k=0

(
n+ k

n− k

)
xk

we have Un = Wn(0, 1;x+ 2, 1) = Mn−1(x) and

Mn−1(x)

m∑
k=1

1

Mk(x)Mn+k(x)
= Mm−1(x)

n∑
k=1

1

Mk(x)Mm+k(x)

Mn−1(x)

m∑
k=1

1

Nk(x)Nn+k(x)
= Mm−1(x)

n∑
k=1

1

Nk(x)Nm+k(x)
.

In this paper, we extend André-Jeannin’s identity (1) to sequences {an}n∈N satisfying a three-
term recurrence an+2 = pn+1an+1 + qn+1an with arbitrary coefficients. Then, we specialize such an
identity to the particular case in which the coefficients of the recurrence are given by pn = X(qnx) and
qn = Y (qnx) . Finally, we exemplify this identity for several q-polynomials of combinatorial interest,
such as the q-Fibonacci, q-Lucas, q-Pell, q-Jacobsthal, q-Chebyshev and q-Morgan-Voyce polynomials.

2 The main result

André-Jeannin’s identity (1) is a simple consequence of the next Lemma (whose proof is reported
for completeness).

Lemma 2.1 Given a sequence {an}n∈N , let {An,k}n,k∈N be the sequence where An,k = ak − an+k .
Then, for every m,n ∈ N , we have the identity

m∑
k=1

An,k =

n∑
k=1

Am,k .

Proof. If m ≥ n , then we have

m∑
k=1

An,k =

m∑
k=1

(ak − an+k) = (a1 + · · ·+ am)− (an+1 + · · ·+ an+m)
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= (a1 + · · ·+ an + an+1 + · · ·+ am)− (an+1 + · · ·+ am + am+1 + · · ·+ am+n)

= (a1 + · · ·+ an)− (am+1 + · · ·+ am+n) =
n∑
k=1

(ak − am+k) =
n∑
k=1

Am,k .

A similar argument holds for n ≥ m . This completes the proof. 2

We also need the following result.

Theorem 2.2 Let {an}n∈N be a sequence satisfying a three-term recurrence

an+2 = pn+1an+1 + qn+1an (2)

with an 6= 0 for all n ≥ 1 . Then there exists a sequence {An}n∈N with the following property: for

every k ∈ N , the sequence {B(k)
n }n∈N , where

B(k)
n = Akan+k −An+kak ,

satisfies the three-term recurrence

B
(k)
n+2 = pn+k+1B

(k)
n+1 + qn+k+1B

(k)
n (3)

with the initial values B
(k)
0 = 0 and B

(k)
1 = (−1)kq∗k , where q∗k = qkqk−1 · · · q2q1 .

Proof. Let us suppose that the sequence {An}n∈N exists. Then, by recurrence (2), we have

B
(k)
n+2 = Akan+k+2 −An+k+2ak

= Ak(pn+k+1an+k+1 + qn+k+1an+k)−An+k+2ak

= pn+k+1Akan+k+1 + qn+k+1Akan+k −An+k+2ak

= pn+k+1(Akan+k+1 −An+k+1ak) + pn+k+1An+k+1ak+

+ qn+k+1(Akan+k −An+kak) + qn+k+1An+kak −An+k+2ak

= pn+k+1B
(k)
n+1 + qn+k+1B

(k)
n − (An+k+2 − pn+k+1An+k+1 − qn+k+1An+k)ak .

Now, if we assume that the sequence {An}n∈N satisfies the recurrence

An+2 = pn+1An+1 + qn+1An (4)

then, by the above remarks, we obtain identity (3). Moreover, for every k ∈ N , we have

B
(k)
0 = Akak −Akak = 0

B
(k)
1 = Akak+1 −Ak+1ak =

∣∣∣∣ak+1 ak
Ak+1 Ak

∣∣∣∣ .
Assuming k ≥ 1 and using recurrence (2), we have

B
(k)
1 =

∣∣∣∣ pkak + qkak−1 ak
pkAk + qkAk−1 Ak

∣∣∣∣ =

∣∣∣∣qkak−1 ak
qkAk−1 Ak

∣∣∣∣ = −qk
∣∣∣∣ak ak−1

Ak Ak−1

∣∣∣∣ = −qkB
(k−1)
1 .
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Consequently, we have

B
(k)
1 = (−1)kqkqk−1 · · · q2q1B

(0)
1 = (−1)kq∗k (A0a1 −A1a0) .

Now, we choose A0 and A1 so that A0a1 − A1a0 = 1 . Specifically, since a1 6= 0 , we choose
A0 = (A1a0 + 1)/a1 . In conclusion, there exists at least a sequence {An}n∈N satisfying recurrence
(4) and having the requested property. 2

Now, we can prove next

Theorem 2.3 Let {an}n∈N be a sequence satisfying a three-term recurrence

an+2 = pn+1an+1 + qn+1an (5)

with an 6= 0 for all n ≥ 1 . Then, for every m,n ∈ N , we have the identity

m∑
k=1

(−1)kq∗k
b
(k)
n

akan+k
=

n∑
k=1

(−1)kq∗k
b
(k)
m

akam+k
(6)

where q∗k = qkqk−1 · · · q2q1 , and where the coefficients b
(k)
n are defined by the recurrence

b
(k)
n+2 = pn+k+1b

(k)
n+1 + qn+k+1b

(k)
n (7)

with the initial values b
(k)
0 = 0 and b

(k)
1 = 1 .

Proof. Consider the sequence {B(k)
n }n∈N defined in Theorem 2.2. Since B

(k)
n = Akan+k − An+kak

and an 6= 0 for all n ≥ 1 , we have

B
(k)
n

akan+k
=
Ak
ak
− An+k

an+k
.

So, by Lemma 2.1, we have the identity

m∑
k=1

B
(k)
n

akan+k
=

n∑
k=1

B
(k)
m

akam+k
.

Finally, since B
(k)
n = (−1)kq∗kb

(k)
n , we have identity (6). 2

Notice that the coefficients b
(k)
n can be obtained by two linearly independent solutions of recurrence

(5). Indeed, we have

Proposition 2.4 If {xn}n∈N and {yn}n∈N are two linearly independent solutions of recurrence (5),

then the coefficients b
(k)
n can be expressed as

b(k)
n =

xkyn+k − xn+kyk
xkyk+1 − xk+1yk

. (8)
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Proof. The sequence {b(k)
n }n∈N satisfies recurrence (7). So, it belongs to the vector space generated

by the two sequences {xn+k}n∈N and {yn+k}n∈N . This means that there exist two scalars λ, µ ∈ R
such that

b(k)
n = λxn+k + µyn+k ∀n ∈ N .

By imposing the initial conditions b
(k)
0 = 0 and b

(k)
1 = 1 , we obtain the system{

xkλ+ ykµ = 0

xk+1λ+ yk+1µ = 1

whose unique solution (by Cramer’s theorem) is given by

λ =
1

∆k

∣∣∣∣0 yk
1 yk+1

∣∣∣∣ = − yk
∆k

and µ =
1

∆k

∣∣∣∣ xk 0
xk+1 1

∣∣∣∣ =
xk
∆k

where

∆k =

∣∣∣∣ xk yk
xk+1 yk+1

∣∣∣∣ = xkyk+1 − xk+1yk .

Notice that ∆k 6= 0 for all k ∈ N , since we are considering two linearly independent solutions of
recurrence (5). In conclusion, we have obtained identity (8). 2

3 A first specialization

Let X(x) and Y (x) be two expressions such that X(x), Y (x) 6= 0 . Let {Wn(q, x)}n∈N be the
sequence defined by the recurrence

Wn+2(q, x) = X(qn+1x)Wn+1(q, x) + Y (qn+1x)Wn(q, x) (9)

with the initial values W0(q, x) = 1 and W1(q, x) = X(x) . Furthermore, let {W(a,b)
n (q, x)}n∈N be

the sequence defined by recurrence (9) and by the initial values W(a,b)
0 (q, x) = a and W(a,b)

1 (q, x) = b
(with b 6= 0 ).

Theorem 3.1 We have W(0,1)
n (q, x) =Wn−1(q, qx) , for all n ∈ N .

Proof. Set Un(q, x) =Wn−1(q, qx) . Replacing n by n− 1 and x by qx in recurrence (9), we have

Wn+1(q, qx) = X(qn+1x)Wn(q, qx) + Y (qn+1x)Wn−1(q, qx)

that is

Un+2(q, x) = X(qn+1x)Un+1(q, x) + Y (qn+1x)Un(q, qx) .

So, the terms Un(q, x) satisfy recurrence (9). Moreover U1(q, x) =W0(q, qx) = 1 . Finally, for n =
−1 in (9), we have W1(q, x) = X(x)W0(q, x)+Y (x)W−1(q, x) , that is X(x) = X(x)+Y (x)W−1(q, x) ,
from which we have U0(q, x) =W−1(q, qx) = 0 . 2
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Theorem 3.2 For every m,n ∈ N , m,n ≥ 1 , we have the identity

m∑
k=1

(−1)kQk(q, x)
Wn−1(q, qk+1x)

W(a,b)
k (q, x)W(a,b)

n+k (q, x)
=

n∑
k=1

(−1)kQk(q, x)
Wm−1(q, qk+1x)

W(a,b)
k (q, x)W(a,b)

m+k(q, x)
(10)

where Qk(q, x) = Y (qx)Y (q2x) · · ·Y (qk−1x)Y (qkx) . In particular, we have the identity

m∑
k=1

(−1)kQk(q, x)
Wn−1(q, qk+1x)

Wk(q, x)Wn+k(q, x)
=

n∑
k=1

(−1)kQk(q, x)
Wm−1(q, qk+1x)

Wk(q, x)Wm+k(q, x)
(11)

Proof. The terms W(a,b)
n (q, x) satisfy recurrence (5) with pn = X(qnx) and qn = Y (qnx) . So

q∗k = Y (qkx)Y (qk−1x) · · ·Y (q2x)Y (qx) = Qk(q, x) and the coefficients b
(k)
n = b

(k)
n (q, x) appearing in

the statement of Theorem 2.3 are defined by the recurrence

b
(k)
n+2(q, x) = X(qn+k+1x)b

(k)
n+1(q, x) + Y (qn+k+1x)b(k)

n (q, x)

with the initial values b
(k)
0 (q, x) = 0 and b

(k)
1 (q, x) = 1 . Hence, by Theorem 3.1, we have

b(k)
n (q, x) = Un(q, qkx) =Wn−1(q, qk+1x) .

In conclusion, identity (6) becomes identity (11). 2

The results obtained in Theorem 3.2 can be extended to the bisection sequences {W(a,b)
2n (q, x)}n∈N

and {W(a,b)
2n+1(q, x)}n∈N . If E

(a,b)
n (q, x) =W(a,b)

2n (q, x) and O
(a,b)
n (q, x) =W(a,b)

2n+1(q, x) , then we have

Theorem 3.3 The terms E
(a,b)
n (q, x) and O

(a,b)
n (q, x) satisfy the three-term recurrences

En+2(q, x) = Rn+1(q, x)En+1(q, x) + Sn+1(q, x)En(q, x) (12)

On+2(q, x) = R+
n+1(q, x)On+1(q, x) + S+

n+1(q, x)On(q, x) (13)

where

Rn+1(q, x) = Y (q2n+3x) +X(q2n+2x)X(q2n+3x) +
X(q2n+3x)

X(q2n+1x)
Y (q2n+2x) (14)

Sn+1(q, x) =
X(q2n+3x)

X(q2n+1x)
Y (q2n+1x)Y (q2n+2x) (15)

and R+
n+1(q, x) = Rn+1(q, qx) and S+

n+1(q, x) = Sn+1(q, qx) .

Proof. By recurrence (9), we have the system{
En+1(q, x) = Y (q2n+1x)En(q, x) +X(q2n+1x)On(q, x)

On+1(q, x) = X(q2n+2x)En+1(q, x) + Y (q2n+2x)On(q, x)

from which it is straightforward to obtain recurrences (12) and (13). 2

Moreover, if En(q, x) =W2n(q, x) and On(q, x) =W2n+1(q, x) , then we have
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Theorem 3.4 For every n ∈ N , we have

E(0,1)
n (q, x) =

On−1(q, qx)

X(qx)
=
W2n−1(q, qx)

X(qx)
(16)

O(0,1)
n (q, x) =

On−1(q, q2x)

X(q2x)
=
W2n−1(q, q2x)

X(q2x)
. (17)

Proof. Since R+
n (q, qx) = Rn+1(q, x) and S+

n (q, qx) = Sn+1(q, x) , also the terms On−1(q,qx)
X(qx)

satisfy recurrence (12) with the initial values 0 and 1 . So, we have identity (16). Similarly, since

R+
n (q, q2x) = R+

n+1(q, x) and S+
n (q, q2x) = S+

n+1(q, x) , also the terms On−1(q,q2x)
X(q2x)

satisfy recurrence

(13) with the initial values 0 and 1 . So, we have identity (17). 2

Now, we can prove next

Theorem 3.5 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2n−1(q, q2k+1x)

W(a,b)
2k (q, x)W(a,b)

2n+2k(q, x)
=

=
n∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2m−1(q, q2k+1x)

W(a,b)
2k (q, x)W(a,b)

2m+2k(q, x)

(18)

and
m∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2n−1(q, q2k+2x)

W(a,b)
2k+1(q, x)W(a,b)

2n+2k+1(q, x)
=

=

n∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2m−1(q, q2k+2x)

W(a,b)
2k+1(q, x)W(a,b)

2m+2k+1(q, x)

(19)

where Qk(q, x) = Y (qx)Y (q2x) · · ·Y (qk−1x)Y (qkx) . In particular, we have the identities

m∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2n−1(q, q2k+1x)

W2k(q, x)W2n+2k(q, x)
=

=
n∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2m−1(q, q2k+1x)

W2k(q, x)W2m+2k(q, x)

(20)

and
m∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2n−1(q, q2k+2x)

W2k+1(q, x)W2n+2k+1(q, x)
=

=

n∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2m−1(q, q2k+2x)

W2k+1(q, x)W2m+2k+1(q, x)

(21)

Proof. By recurrence (12), the terms En(q, x) satisfy recurrence (5) with pn = Rn(q, x) and
qn = Sn(q, x) . So, by identity (15), we have

q∗k =
k∏
i=1

Sk(q, x) =
k∏
i=1

X(q2i+1x)

X(q2i−1x)
Y (q2i−1x)Y (q2i+1x)
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=
X(q2k+1x)

X(qx)

k∏
i=1

Y (q2i+1x)

k∏
i=1

Y (q2i−1x)

=
X(q2k+1x)

X(qx)
Qk(q

2, qx)Qk(q
2, x/q) .

Moreover, by identities (14) and (15), the coefficients b
(k)
n = b

(k)
n (q, x) appearing in the statement of

Theorem 2.3 are defined by the recurrence

b
(k)
n+2(q, x) = Rn+k+1(q, x)b

(k)
n+1(q, x) + Sn+k+1(q, x)b(k)

n (q, x)

= Rn+1(q, q2kx)b
(k)
n+1(q, x) + Sn+1(q, q2kx)b(k)

n (q, x)

with the initial values b
(k)
0 (q, x) = 0 and b

(k)
1 (q, x) = 1 . So, by identity (16), we have

b(k)
n (q, x) = E(0,1)

n (q, q2kx) =
W2k−1(q, q2k+1x)

X(q2k+1x)
.

Then, identity (6) becomes identity (20).
By recurrence (13), the terms On(q, x) satisfy recurrence (5) with pn = R+

n (q, x) = Rn(q, qx)
and qn = S+

n (q, x) = Sn(q, qx) . So, as before, we have

q∗k =
X(q2k+2x)

X(q2x)
Qk(q

2, qx)Qk(q
2, x) .

Moreover, the coefficients b
(k)
n = b

(k)
n (q, x) are defined by the recurrence

b
(k)
n+2(q, x) = R+

n+k+1(q, x)b
(k)
n+1(q, x) + S+

n+k+1(q, x)b(k)
n (q, x)

= R+
n+1(q, q2kx)b

(k)
n+1(q, x) + S+

n+1(q, q2kx)b(k)
n (q, x)

with the initial values b
(k)
0 (q, x) = 0 and b

(k)
1 (q, x) = 1 . So, by identity (17), we have

b(k)
n (q, x) = O(0,1)

n (q, q2kx) =
W2k−1(q, q2k+2x)

X(q2k+2x)
.

Then, identity (6) becomes identity (21). 2

4 Specialization to q-polynomials

Now, we specialize the results obtained in the previous section to some q-polynomials of combina-
torial interest. Specifically, we consider the q-polynomials Wn(q, x) defined by the recurrence

Wn+2(q, x) = (A+Bqn+2x)Wn+1(q, x) + (C +Dqn+1x)Wn(q, x) (22)

with the initial conditions W0(q, x) = 1 and W1(q, x) = A + Bqx , where AB 6= 0 and CD 6= 0 .
Notice that, by extending this recurrence to negative indices, we have W−1(q, x) = 0 . In particular, for
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x = 1 , we have the q-numbers wn(q) = Wn(q, 1) . Furthermore, let W
(a,b)
n (q, x) be the q-polynomials

defined by recurrence (22) and by the initial values W
(a,b)
0 (q, x) = a and W

(a,b)
1 (q, x) = b (with

b 6= 0 ).

First of all, we have

Theorem 4.1 For every m,n ∈ N , m,n ≥ 1 , we have the identity

m∑
k=1

(−1)kQk(q, x)
Wn−1(q, qk+1x)

W
(a,b)
k (q, x)W

(a,b)
n+k (q, x)

=
n∑
k=1

(−1)kQk(q, x)
Wm−1(q, qk+1x)

W
(a,b)
k (q, x)W

(a,b)
m+k(q, x)

(23)

where Qk(q, x) = (C +Dqx) · · · (C +Dqk−1x)(C +Dqkx) . In particular, we have the identity

m∑
k=1

(−1)kQk(q, x)
Wn−1(q, qk+1x)

Wk(q, x)Wn+k(q, x)
=

n∑
k=1

(−1)kQk(q, x)
Wm−1(q, qk+1x)

Wk(q, x)Wm+k(q, x)
(24)

and for x = 1 and Qk(q) = Qk(q, 1) , we have the identity

m∑
k=1

(−1)kQk(q)
Wn−1(q, qk+1)

wk(q)wn+k(q)
=

n∑
k=1

(−1)kQk(q)
Wm−1(q, qk+1)

wk(q)wm+k(q)
. (25)

Proof. Apply Theorem 3.2, with X(x) = A+Bqx and Y (x) = C +Dx . 2

Then, we have

Theorem 4.2 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2n−1(q, q2k+1x)

W
(a,b)
2k (q, x)W

(a,b)
2n+2k(q, x)

=

=

n∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2m−1(q, q2k+1x)

W
(a,b)
2k (q, x)W

(a,b)
2m+2k(q, x)

(26)

and
m∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2n−1(q, q2k+2x)

W
(a,b)
2k+1(q, x)W

(a,b)
2n+2k+1(q, x)

=

=

n∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2m−1(q, q2k+2x)

W
(a,b)
2k+1(q, x)W

(a,b)
2m+2k+1(q, x)

(27)

where Qk(q, x) = (C +Dqx) · · · (C +Dqk−1x)(C +Dqkx) . In particular, we have the identities

m∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2n−1(q, q2k+1x)

W2k(q, x)W2n+2k(q, x)
=

=
n∑
k=1

Qk(q
2, x)Qk(q

2, x/q)
W2m−1(q, q2k+1x)

W2k(q, x)W2m+2k(q, x)

(28)
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and
m∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2n−1(q, q2k+2x)

W2k+1(q, x)W2n+2k+1(q, x)
=

=
n∑
k=1

Qk(q
2, qx)Qk(q

2, x)
W2m−1(q, q2k+2x)

W2k+1(q, x)W2m+2k+1(q, x)
.

(29)

Proof. Apply Theorem 3.5, with X(x) = A+Bqx and Y (x) = C +Dx . 2

Finally, we have

Theorem 4.3 The q-polynomials W
(a,b)
n (q, x) have generating series

W (a,b)(q, x; t) =
∑
n≥0

W (a,b)
n (q, x) tn =

=
∑
k≥0

q(
k+1
2 )xktk

(a+ (b− aA− aBqx)qkt)(B +Dt)(B +Dqt) · · · (B +Dqk−1t)

(1−At− Ct2)(1−Aqt− Cq2t2) · · · (1−Aqkt− Cq2ktk)
.

(30)

In particular, the q-polynomials Wn(q, x) have generating series∑
n≥0

Wn(q, x) tn =
∑
k≥0

q(
k+1
2 )xktk

(B +Dt)(B +Dqt) · · · (B +Dqk−1t)

(1−At− Ct2)(1−Aqt− Cq2t2) · · · (1−Aqkt− Cq2kt2)
. (31)

Proof. Let W (t) = W (a,b)(q, x; t) . By recurrence (22), we have

W (t)− a− bt
t2

= A
W (t)− a

t
+Bqx

W (qt)− a
t

+ CW (t) +DqxW (qt)

from which we obtain the identity

W (t) =
a+ (b− aA− aBqx)t

1−At− Ct2
+
qxt(B +Dt)

1−At− Ct2
W (qt) .

By applying this identity repeatedly, we obtain

W (t) =
n∑
k=0

q(
k+1
2 )xktk

(a+ (b− aA− aBqx)qkt)(B +Dt)(B +Dqt) · · · (B +Dqk−1t)

(1−At− Ct2)(1−Aqt− Cq2t2) · · · (1−Aqkt− Cq2kt2)
+

+ q(
n+2
2 )xn+1tn+1 (a+ (b− aA− aBqx)qn+1t)(B +Dt)(B +Dqt) · · · (B +Dqnt)

(1−At− Ct2)(1−Aqt− Cq2t2) · · · (1−Aqnt− Cq2nt2)
W (qn+1t) .

Now, by taking the limit of both sides for n→ +∞ , we get identity (30). Finally, since W0(q, x) = 1
and W1(q, x) = A+Bqx , identity (30) implies identity (31). 2

Remark 4.4. By identity (30), we also have∑
n≥0

W (0,1)
n (q, x) tn =

∑
k≥0

q(
k+1
2 )(qx)ktk+1 (B +Dt)(B +Dqt) · · · (B +Dqk−1t)

(1−At− Ct2)(1−Aqt− Cq2t2) · · · (1−Aqkt− Cq2ktk)
.

Notice that, by series (31), we have the identity W (0,1)(q, x; t) = tW (q, qx; t) , from which we reobtain

that W
(0,1)
n (q, x) = Wn−1(q, qx) .
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5 Examples

Several q-polynomials are a specialization of the q-polynomials Wn(q, x) considered in Section 4.
Some of them can be defined in the following combinatorial setting. A linear partition of the linearly
ordered set [n] = {1, 2, . . . , n} is a family π = {B1, B2, . . . , Bk} of non-empty intervals Bi of [n]
such that Bi ∩ Bj = ∅ , for every i 6= j , and B1 ∪ B2 ∪ · · · ∪ Bk = [n] . A 2-filtering partition

of [n] is a linear partition of [n] where each block has size 1 or 2 . Let Φ
(2)
n be the set of the

2-filtering partitions of [n] where the blocks are of two types, say black or white. Given π ∈ Φ
(2)
n , let

m(π) = m(B1) +m(B2) + · · ·+m(Bk) , where m(Bi) = 0 if Bi is a block of the first kind (black),
m(Bi) = s if Bi = {s} or Bi = {s, s+ 1} is a block of the second kind (white); then, let w(π) be
the number of white blocks of π .

5.1 q-Fibonacci and q-Lucas polynomials

Let Φn be the subset of Φ
(2)
n consisting of the 2-filtering partitions with only 1-blocks of the first

kind (black) and 2-blocks of the second kind (white). The q-Fibonacci polynomials are defined by

Fn(q, x) =
∑
π∈Φn

qm(π)xw(π)

and satisfy the recurrence
Fn+2(q, x) = Fn+1(q, x) + qn+1xFn(q, x)

with the initial values F0(q, x) = F1(q, x) = 1 . In particular, for x = 1 , we have the q-Fibonacci
numbers fn(q) = Fn(q, 1) , [17, 10] [4, 5].

Similarly, we define the q-Lucas polynomials Ln(q, x) by the recurrence

Ln+2(q, x) = Ln+1(q, x) + qn+1xLn(q, x)

with the initial values L0(q, x) = 1 + q and L1(q, x) = 1 . Then, for x = 1 , we have the q-Lucas
numbers `n(q) = Ln(q, 1) .

The q-Fibonacci polynomials are a special case of the q-polynomials Wn(q, x) . Indeed, we have
Fn(q, x) = Wn(q, x) for A = 1 , B = 0 , C = 0 , D = 1 . The q-Lucas polynomials satisfy the same
recurrence, but with different initial values. Then, by identities (31) and (30), we have the generating
series ∑

n≥0

Fn(q, x) tn =
∑
k≥0

qk
2
xkt2k

(1− t)(1− qt) · · · (1− qkt)∑
n≥0

Ln(q, x) tn =
∑
k≥0

qk
2
(1 + q − qk+1t)xkt2k

(1− t)(1− qt) · · · (1− qkt)

from which we obtain Ln(q, x) = (1 + q)Fn(q, x) + qFn−1(q, qx) , for n ≥ 1 . Moreover, we have

Theorem 5.1 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

(−1)kq(
k+1
2 )xk

Fn−1(q, qk+1x)

Fk(q, x)Fn+k(q, x)
=

n∑
k=1

(−1)kq(
k+1
2 )xk

Fm−1(q, qk+1x)

Fk(q, x)Fm+k(q, x)
(32)
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m∑
k=1

(−1)kq(
k+1
2 )xk

Fn−1(q, qk+1x)

Lk(q, x)Ln+k(q, x)
=

n∑
k=1

(−1)kq(
k+1
2 )xk

Fm−1(q, qk+1x)

Lk(q, x)Lm+k(q, x)
. (33)

In particular, for x = 1 , we have the identities

m∑
k=1

(−1)kq(
k+1
2 ) Fn−1(q, qk+1)

fk(q)fn+k(q)
=

n∑
k=1

(−1)kq(
k+1
2 ) Fm−1(q, qk+1)

fk(q)fm+k(q)
(34)

m∑
k=1

(−1)kq(
k+1
2 ) Fn−1(q, qk+1)

`k(q)`n+k(q)
=

n∑
k=1

(−1)kq(
k+1
2 ) Fm−1(q, qk+1)

`k(q)`m+k(q)
. (35)

Proof. Since Qk(q, x) = qk+(k−1)+···+2+1xk = q(
k+1
2 )xk , identity (24) becomes identity (32). Similarly,

identity (23) becomes identity (33). 2

Then, we have

Theorem 5.2 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

qk(2k+1)x2k F2n−1(q, q2k+1x)

F2k(q, x)F2n+2k(q, x)
=

n∑
k=1

qk(2k+1)x2k F2m−1(q, q2k+1x)

F2k(q, x)F2m+2k(q, x)
(36)

m∑
k=1

qk(2k+1)x2k F2n−1(q, q2k+1x)

L2k(q, x)L2n+2k(q, x)
=

n∑
k=1

qk(2k+1)x2k F2m−1(q, q2k+1x)

L2k(q, x)L2m+2k(q, x)
(37)

and

m∑
k=1

qk(2k+3)x2k F2n−1(q, q2k+2x)

F2k+1(q, x)F2n+2k+1(q, x)
=

n∑
k=1

qk(2k+3)x2k F2m−1(q, q2k+2x)

F2k+1(q, x)F2m+2k+1(q, x)
(38)

m∑
k=1

qk(2k+3)x2k F2n−1(q, q2k+2x)

L2k+1(q, x)L2n+2k+1(q, x)
=

n∑
k=1

qk(2k+3)x2k F2m−1(q, q2k+2x)

L2k+1(q, x)L2m+2k+1(q, x)
. (39)

Proof. Apply Theorem 4.2, noticing that

Qk(q
2, x)Qk(q

2, x/q) = q4(k+1
2 )−kx2k = qk(2k+1)x2k

Qk(q
2, qx)Qk(q

2, x) = q4(k+1
2 )+kx2k = qk(2k+3)x2k .

2

Remark 5.3. In the literature, there are other q-analogues of the Fibonacci polynomials and
numbers. For instance, we have the q-Fibonacci polynomials ϕn(q, x) defined by the recurrence
ϕn+2(q, x) = qn+1xϕn+1(q, x) + qnxϕn(q, x) with the initial values ϕ0(q, x) = 1 and ϕ1(q, x) = x ,
and the q-Fibonacci numbers ϕn(q) = ϕn(q, 1) considered in [7]. In this case, we have ϕn(q, x) =
Wn(q, x) for A = 0 , B = 1/q , C = 0 , D = 1/q . So, we have the generating series∑

n≥0

ϕn(q, x) tn =
∑
k≥0

q(
k
2)xktk(1 + t)(1 + qt) · · · (1 + qk−1t)
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and the identity

m∑
k=1

(−1)kq(
k
2)xk

ϕn−1(q, qk+1x)

ϕk(q, x)ϕn+k(q, x)
=

n∑
k=1

(−1)kq(
k
2)xk

ϕm−1(q, qk+1x)

ϕk(q, x)ϕm+k(q, x)
. (40)

5.2 q-Pell polynomials

Let Ψn be the subset of Φ
(2)
n consisting of the 2-filtering partitions of [n] where the 1-blocks

are of both types (black and white), and the 2-blocks are only of the second type (white). The q-Pell
polynomials are defined by

Pn(q, x) =
∑
π∈Ψn

qm(π)xw(π)

and satisfy the recurrence

Pn+2(q, x) = (1 + qn+2x)Pn+1(q, x) + qn+1xPn(q, x)

with the initial conditions P0(q, x) = 1 and P1(q, x) = 1 + qx . In particular, for x = 1 , we have the
q-Pell numbers pn(q) = Pn(q, 1) , [16, 15, 3]. For q = 1 , we have the Pell numbers [18, A000129].

In this case, we have Pn(q, x) = Wn(q, x) for A = 1 , B = 1 , C = 0 , D = 1 . Then, by identity
(31), we have the generating series∑

n≥0

Pn(q, x) tn =
∑
k≥0

q(
k+1
2 )xktk

(1 + t)(1 + qt) · · · (1 + qk−1t)

(1− t)(1− qt) · · · (1− qkt)
.

Moreover, we have

Theorem 5.4 For every m,n ∈ N , m,n ≥ 1 , we have the identity

m∑
k=1

(−1)kq(
k+1
2 )xk

Pn−1(q, qk+1x)

Pk(q, x)Pn+k(q, x)
=

n∑
k=1

(−1)kq(
k+1
2 )xk

Pm−1(q, qk+1x)

Pk(q, x)Pm+k(q, x)
. (41)

In particular, for x = 1 , we have the identity

m∑
k=1

(−1)kq(
k+1
2 ) Pn−1(q, qk+1)

pk(q)pn+k(q)
=

n∑
k=1

(−1)kq(
k+1
2 ) Pm−1(q, qk+1)

pk(q)pm+k(q)
. (42)

Proof. Since Qk(q, x) = qk+(k−1)+···+2+1xk = q(
k+1
2 )xk , identity (24) becomes identity (41). 2

Then, we have

Theorem 5.5 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

qk(2k+1)x2k P2n−1(q, q2k+1x)

P2k(q, x)P2n+2k(q, x)
=

n∑
k=1

qk(2k+1)x2k P2m−1(q, q2k+1x)

P2k(q, x)P2m+2k(q, x)
(43)

m∑
k=1

qk(2k+3)x2k P2n−1(q, q2k+2x)

P2k+1(q, x)P2n+2k+1(q, x)
=

n∑
k=1

qk(2k+3)x2k P2m−1(q, q2k+2x)

P2k+1(q, x)P2m+2k+1(q, x)
. (44)



A GENERALIZATION OF ANDRÉ-JEANNIN’S SYMMETRIC IDENTITY 111

Proof. By Theorem 4.2, where Qk(q
2, x)Qk(q

2, x/q) = q4(k+1
2 )−kx2k = qk(2k+1)x2k . 2

Remark 5.6. In [12], we have other two q-analogues of the Pell polynomials: the q-polynomials
an(q, x) defined by the recurrence an+2(q, x) = (1 + x)an+1(q, x) + qnxan(q, x) with the initial
values a0(q, x) = 0 and a1(q, x) = x , and the q-polynomials bn(q, x) defined by the recurrence
bn+2(q, x) = (1+qn+1x)bn+1(q, x)+qnxbn(q, x) with the initial values b0(q, x) = 0 and b1(q, x) = x .
The q-polynomials bn+1(q, x) satisfy the same recurrence of Pn(q, x) , but with different initial values,
while the q-polynomials an+1(q, x) do not satisfy an instance of recurrence (22).

5.3 q-Jacobsthal polynomials

Let Ξn be the subset of Φ
(2)
n consisting of the 2-filtering partitions of [n] where the 1-blocks are

only of the first type (black) and the 2-blocks are of both types (black and white). The q-Jacobsthal
polynomials are defined by

Jn(q, x) =
∑
π∈Ξn

qm(π)xw(π)

and satisfy the recurrence

Jn+2(q, x) = Jn+1(q, x) + (1 + qn+1x)Jn(q, x)

with the initial values J0(q, x) = J1(q, x) = 1 . In particular, for x = 1 , we have the q-Jacobsthal
numbers jn(q) = Jn(q, 1) . Furthermore, for q = 1 , we have the Jacobsthal numbers jn = (2n+1 +
(−1)n)/3 [18, A001045].

In this case, we have Jn(q, x) = Wn(q, x) for A = 1 , B = 0 , C = 1 , D = 1 . Then, by identity
(31), we have the generating series∑

n≥0

Jn(q, x) tn =
∑
k≥0

qk
2
xkt2k

(1− t− t2)(1− qt− q2t2) · · · (1− qkt− q2kt2)
.

Moreover, recalling that the q-Pochhammer symbol is defined by

(x; q)k = (1− x)(1− qx) · · · (1− qk−1x) ,

we have

Theorem 5.7 For every m,n ∈ N , m,n ≥ 1 , we have the identity

m∑
k=1

(−1)k(−qx; q)k
Jn−1(q, qk+1x)

Jk(q, x)Jn+k(q, x)
=

n∑
k=1

(−1)k(−qx; q)k
Jm−1(q, qk+1x)

Jk(q, x)Jm+k(q, x)
. (45)

In particular, for x = 1 , we have the identity

m∑
k=1

(−1)k(−q; q)k
Jn−1(q, qk+1)

jk(q)jn+k(q)
=

n∑
k=1

(−1)k(−q; q)k
Jm−1(q, qk+1)

jk(q)jm+k(q)
. (46)

Proof. Since Qk(q, x) = (1 + qx) · · · (1 + qk−1x)(1 + qkx) = (−qx; q)k , identity (24) becomes identity
(45). 2

Then, we have
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Theorem 5.8 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

(−qx; q)2k
J2n−1(q, q2k+1x)

J2k(q, x)J2n+2k(q, x)
=

n∑
k=1

(−qx; q)2k
J2m−1(q, q2k+1x)

J2k(q, x)J2m+2k(q, x)
(47)

m∑
k=1

(−q2x; q)2k
J2n−1(q, q2k+2x)

J2k+1(q, x)J2n+2k+1(q, x)
=

n∑
k=1

(−q2x; q)2k
J2m−1(q, q2k+2x)

J2k+1(q, x)J2m+2k+1(q, x)
. (48)

Proof. By Theorem 4.2, where Qk(q
2, x/q)Qk(q

2, x) = (−qx; q2)k(−q2x; q2)k = (−qx; q)2k . 2

5.4 The q-polynomials Rn(q, x)

Let Rn(q, x) be the q-polynomials associated to Φ
(2)
n , i.e. the q-polynomials defined by

Rn(q, x) =
∑
π∈Φ

(2)
n

qm(π)xw(π) .

These q-polynomials satisfy the recurrence

Rn+2(q, x) = (1 + qn+2x)Rn+1(q, x) + (1 + qn+1x)Rn(q, x)

with the initial conditions R0(q, x) = 1 and R1(q, x) = 1 + qx . In particular, for x = 1 , we have
the q-numbers rn(q) = Rn(q, 1) . Furthermore, the coefficients of the polynomials Rn(x) = Rn(1, x)
form sequence A063967 in [18], while the numbers rn = rn(1) form sequence A026150 in [18].

In this case, we have Rn(q, x) = Wn(q, x) for A = 1 , B = 1 , C = 1 , D = 1 . Then, by identity
(31), we have the generating series

∑
n≥0

Rn(q, x) tn =
∑
k≥0

q(
k+1
2 )xktk

(1 + t)(1 + qt) · · · (1 + qk−1t)

(1− t− t2)(1− qt− q2t2) · · · (1− qkt− q2kt2)
.

Moreover, we have

Theorem 5.9 For every m,n ∈ N , m,n ≥ 1 , we have the identity

m∑
k=1

(−1)k(−qx; q)k
Rn−1(q, qk+1x)

Rk(q, x)Rn+k(q, x)
=

n∑
k=1

(−1)k(−qx; q)k
Rm−1(q, qk+1x)

Rk(q, x)Rm+k(q, x)
. (49)

In particular, for x = 1 , we have the identity

m∑
k=1

(−1)k(−q; q)k
Rn−1(q, qk+1)

rk(q)rn+k(q)
=

n∑
k=1

(−1)k(−q; q)k
Rm−1(q, qk+1)

rk(q)rm+k(q)
. (50)

Proof. Since Qk(q, x) = (1 + qx) · · · (1 + qk−1x)(1 + qkx) = (−qx; q)k , identity (24) becomes identity
(49). 2

Then, we have
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Theorem 5.10 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

(−qx; q)2k
R2n−1(q, q2k+1x)

R2k(q, x)R2n+2k(q, x)
=

n∑
k=1

(−qx; q)2k
R2m−1(q, q2k+1x)

R2k(q, x)R2m+2k(q, x)
(51)

m∑
k=1

(−q2x; q)2k
R2n−1(q, q2k+2x)

R2k+1(q, x)R2n+2k+1(q, x)
=

n∑
k=1

(−q2x; q)2k
R2m−1(q, q2k+2x)

R2k+1(q, x)R2m+2k+1(q, x)
. (52)

Proof. By Theorem 4.2, where Qk(q
2, x/q)Qk(q

2, x) = (−qx; q2)k(−q2x; q2)k = (−qx; q)2k . 2

5.5 q-Chebyshev polynomials

We define the q-Chebyshev polynomials of the first kind Tn(q, x) by the recurrence

Tn+2(q, x) = 2qn+1xTn+1(q, x)− Tn(q, x)

with the initial conditions T0(q, x) = 1 and T1(q, x) = x . Similarly, we define the q-Chebyshev
polynomials of the second kind Un(q, x) by the recurrence

Un+2(q, x) = 2qn+1xUn+1(q, x)− Un(q, x)

with the initial conditions U0(q, x) = 1 and U1(q, x) = 2x .

In this case, we have Un(q, x) = Wn(q, x) for A = 0 , B = 2/q , C = −1 , D = 0 . Then, by
identities (30) and (31), we have the generating series

T (q, x; t) =
∑
n≥0

Tn(q, x) tn =
∑
k≥0

q(
k
2)2kxktk(1− qkxt)

(1 + t2)(1 + q2t2) · · · (1 + q2kt2)

U(q, x; t) =
∑
n≥0

Un(q, x) tn =
∑
k≥0

q(
k
2)2kxktk

(1 + t2)(1 + q2t2) · · · (1 + q2kt2)
.

Notice that T (q, x; t) = U(q, x; t) − xtU(q, qx; t) , and consequently that Tn(q, x) = Un(q, x) −
xUn−1(q, qx) . Moreover, we have

Theorem 5.11 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

Un−1(q, qk+1x)

Tk(q, x)Tn+k(q, x)
=

n∑
k=1

Um−1(q, qk+1x)

Tk(q, x)Tm+k(q, x)
(53)

m∑
k=1

Un−1(q, qk+1x)

Uk(q, x)Un+k(q, x)
=

n∑
k=1

Um−1(q, qk+1x)

Uk(q, x)Um+k(q, x)
. (54)

Proof. Since Qk(q, x) = (−1)k , identity (24) becomes identity (54). Similarly, identity (23) becomes
identity (53). 2

Then, we have
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Theorem 5.12 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

U2n−1(q, q2k+1x)

T2k(q, x)T2n+2k(q, x)
=

n∑
k=1

U2m−1(q, q2k+1x)

T2k(q, x)T2m+2k(q, x)
(55)

m∑
k=1

U2n−1(q, q2k+2x)

T2k+1(q, x)T2n+2k+1(q, x)
=

n∑
k=1

U2m−1(q, q2k+2x)

T2k+1(q, x)T2m+2k+1(q, x)
(56)

and

m∑
k=1

U2n−1(q, q2k+1x)

U2k(q, x)U2n+2k(q, x)
=

n∑
k=1

U2m−1(q, q2k+1x)

U2k(q, x)U2m+2k(q, x)
(57)

m∑
k=1

U2n−1(q, q2k+2x)

U2k+1(q, x)U2n+2k+1(q, x)
=

n∑
k=1

U2m−1(q, q2k+2x)

U2k+1(q, x)U2m+2k+1(q, x)
. (58)

Proof. Apply Theorem 4.2. 2

Remark 5.13. In [11] we have the q-polynomials U
(a)
n (q, x) (with a and x exchanged between

them) defined by the recurrence

U
(a)
n+2(q, x) = (2a+ qn+1x)U

(a)
n+1(q, x)− U (a)

n (q, x)

with the initial conditions U
(a)
0 (q, x) = 1 and U

(a)
1 (q, x) = 2a + x . So U

(a)
n (q, x) = Wn(q, x) for

A = 2a , B = 1/q , C = −1 , D = 0 . Consequently, we have the generating series

∑
n≥0

U (a)
n (q, x) tn =

∑
k≥0

q(
k
2)xktk

(1− 2at+ t2)(1− 2aqt+ q2t2) · · · (1− 2aqkt+ q2kt2)
.

and the same identities given by (54), (57) and (58).

5.6 q-Morgan-Voyce polynomials

We define the q-Morgan-Voyce polynomials Mn(q, x) by the recurrence

Tn+2(q, x) = (2 + qn+1x)Mn+1(q, x)−Mn(q, x)

with the initial conditions M0(q, x) = 1 and M1(q, x) = 2 + x . Similarly, we define the q-Morgan-
Voyce polynomials Nn(q, x) by the recurrence

Nn+2(q, x) = (2 + qn+1x)Nn+1(q, x)−Nn(q, x)

with the initial conditions N0(q, x) = 1 and N1(q, x) = 1 + x .
In this case, we have Mn(q, x) = Wn(q, x) for A = 2 , B = 1/q , C = −1 , D = 0 . then, by

identities (31) and (30), we have the generating series

M(q, x; t) =
∑
n≥0

Mn(q, x) tn =
∑
k≥0

q(
k
2)xktk

(1− 2t+ t2)(1− 2qt+ q2t2) · · · (1− 2qkt+ q2kt2)
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N(q, x; t) =
∑
n≥0

Nn(q, x) tn =
∑
k≥0

q(
k
2)xktk(1− qkt)

(1− 2t+ t2)(1− 2qt+ q2t2) · · · (1− 2qkt+ q2kt2)
.

Notice that N(q, x; t) = M(q, x; t) − tM(q, qx; t) , and consequently that Nn(q, x) = Mn(q, x) −
Mn−1(q, qx) . Moreover, we have

Theorem 5.14 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

Mn−1(q, qk+1x)

Mk(q, x)Mn+k(q, x)
=

n∑
k=1

Mm−1(q, qk+1x)

Mk(q, x)Mm+k(q, x)
(59)

m∑
k=1

Mn−1(q, qk+1x)

Nk(q, x)Nn+k(q, x)
=

n∑
k=1

Mm−1(q, qk+1x)

Nk(q, x)Nm+k(q, x)
. (60)

Proof. Since Qk(q, x) = (−1)k , identity (24) becomes identity (59). Similarly, identity (23) becomes
identity (60). 2

Then, we have

Theorem 5.15 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

M2n−1(q, q2k+1x)

M2k(q, x)M2n+2k(q, x)
=

n∑
k=1

M2m−1(q, q2k+1x)

M2k(q, x)M2m+2k(q, x)
(61)

m∑
k=1

M2n−1(q, q2k+2x)

M2k+1(q, x)M2n+2k+1(q, x)
=

n∑
k=1

M2m−1(q, q2k+2x)

M2k+1(q, x)M2m+2k+1(q, x)
(62)

and

m∑
k=1

M2n−1(q, q2k+1x)

N2k(q, x)N2n+2k(q, x)
=

n∑
k=1

M2m−1(q, q2k+1x)

N2k(q, x)N2m+2k(q, x)
(63)

m∑
k=1

M2n−1(q, q2k+2x)

N2k+1(q, x)N2n+2k+1(q, x)
=

n∑
k=1

M2m−1(q, q2k+2x)

N2k+1(q, x)N2m+2k+1(q, x)
. (64)

Proof. Apply Theorem 4.2. 2

5.7 Two q-sums

As a final example, we consider the q-polynomials

Sn(q, x) =
n∑
k=0

q(
k
2)xk and Tn(q, x) =

n∑
k=0

(x; q)k .

Lemma 5.16 The q-polynomials Sn(q, x) satisfy the recurrence

Sn+2(q, x) = (1 + qn+1x)Sn+1(q, x)− qn+1xSn(q, x) (65)
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with the initial values S0(q, x) = 1 and S1(q, x) = 1 + x , while the q-polynomials Tn(q, x) satisfy
the recurrence

Tn+2(q, x) = (2− qn+1x)Tn+1(q, x)− (1− qn+1x)Tn(q, x) (66)

with the initial values T0(q, x) = 1 and T1(q, x) = 2− x .

Proof. In the first case, we have the identities

Sn+1(q, x)− Sn(q, x) = q(
n+1
2 )xn+1

Sn+2(q, x)− Sn+1(q, x) = q(
n+2
2 )xn+2 ,

from which we obtain the equation

Sn+2(q, x)− Sn+1(q, x) = qn+1x(Sn+1(q, x)− Sn(q, x))

equivalent to recurrence (65). Similarly, in the second case, we have the identities

Tn+1(q, x)− Tn(q, x) = (x; q)n+1

Tn+2(q, x)− Tn+1(q, x) = (x; q)n+2 ,

from which we obtain the equation

Tn+2(q, x)− Tn+1(q, x) = (1− qn+1x)(Tn+1(q, x)− Tn(q, x))

equivalent to recurrence (66). 2

By Lemma 5.16, we have that also Sn(q, x) and Tn(q, x) are special cases of the q-polynomials
Wn(q, x) . Specifically, we have Sn(q, x) = Wn(q, x) for A = 1 , B = 1/q , C = 0 , D = −1 , and
Tn(q, x) = Wn(q, x) for A = 2 , B = −1/q , C = −1 , D = 1 . So, we have

Theorem 5.17 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

q(
k+1
2 )xk

Sn−1(q, qk+1x)

Sk(q, x)Sn+k(q, x)
=

n∑
k=1

q(
k+1
2 )xk

Sm−1(q, qk+1x)

Sk(q, x)Sm+k(q, x)
(67)

and
m∑
k=1

(qx; q)k
Tn−1(q, qk+1x)

Tk(q, x)Tn+k(q, x)
=

n∑
k=1

(qx; q)k
Tm−1(q, qk+1x)

Tk(q, x)Tm+k(q, x)
. (68)

Proof. In the first case, we have Qk(q, x) = q(
k+1
2 )(−x)k and identity (24) becomes identity (67). In

the second case, we have Qk(q, x) = (−1)k(qx; q)k and identity (24) becomes identity (68). 2

Finally, by Theorem (4.2), we have

Theorem 5.18 For every m,n ∈ N , m,n ≥ 1 , we have the identities

m∑
k=1

qk(2k+1)x2k S2n−1(q, q2k+1x)

S2k(q, x)S2n+2k(q, x)
=

n∑
k=1

qk(2k+1)x2k S2m−1(q, q2k+1x)

S2k(q, x)S2m+2k(q, x)
(69)
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m∑
k=1

qk(2k+3)x2k S2n−1(q, q2k+2x)

S2k+1(q, x)S2n+2k+1(q, x)
=

n∑
k=1

qk(2k+3)x2k S2m−1(q, q2k+2x)

S2k+1(q, x)S2m+2k+1(q, x)
(70)

and

m∑
k=1

(qx; q)2k
T2n−1(q, q2k+1x)

T2k(q, x)T2n+2k(q, x)
=

n∑
k=1

(qx; q)2k
T2m−1(q, q2k+1x)

T2k(q, x)T2m+2k(q, x)
(71)

m∑
k=1

(q2x; q)2k
T2n−1(q, q2k+2x)

T2k+1(q, x)T2n+2k+1(q, x)
=

n∑
k=1

(q2x; q)2k
T2m−1(q, q2k+2x)

T2k+1(q, x)T2m+2k+1(q, x)
. (72)

Remark 5.19. The Al-Salam and Ismail polynomials Un(x; a, b) , [1], are defined by the recurrence

Un+2(x; a, b) = (1 + qn+1a)xUn+1(x; a, b)− qn+1b Un(x; a, b)

with the initial values U0(x; a, b) = 1 and U1(x; a, b) = (1 + a)x . These polynomials do not satisfy
an instance of recurrence (22). However, if we consider the q-polynomials un(q, x) = Un(1;x, x) , then
they satisfy the recurrence un+2(q, x) = (1+qn+1x)un+1(q, x)−qn+1xun(q, x) with the initial values
u0(q, x) = 1 and u1(q, x) = 1 + x . This means that Sn(q, x) = un(q, x) = Un(1;x, x) .

References

[1] W. A. Al-Salam and M. E. H. Ismail, Orthogonal polynomials associated with the Rogers-
Ramanujan continued fraction, Pacific J. Math., 104 (1983) 269–283.
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