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Abstract. In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam
numbers W,,, defined by a three-term recurrence W, yo = PW,11 — QW,, with constant coefficients. In this paper,
we extend this identity to sequences {an}nen satisfying a three-term recurrence an42 = Prnt+1@n+1 + gntian with
arbitrary coefficients. Then, we specialize such an identity to several g-polynomials of combinatorial interest, such as the
g-Fibonacci, ¢g-Lucas, ¢-Pell, g-Jacobsthal, g¢-Chebyshev and ¢-Morgan-Voyce polynomials.

Mathematics Subject Classification(2010). Primary 05A19; Secondary 05A30, 11B65.

Keywords: combinatorial sums, sums of reciprocals, three-term recurrences, g-Fibonacci polynomials, ¢g-Fibonacci num-
bers, ¢g-Lucas polynomials, g-Lucas numbers, g-Pell polynomials, ¢g-Pell numbers, g-Jacobsthal polynomials, ¢g-Jacobsthal

numbers, g-Chebyshev polynomials, g-Morgan-Voyce polynomials.
1 Introduction
Let W,, = Wy(a,b; P,Q) be the Horadam numbers [8, 9], defined by the linear recurrence

Wn+2 = PWn—l-l - QW'IZ

with the initial conditions Wy =a and W; = b, where a, b, P and @ are constants (or symbols)
with PQ # 0. Several classical combinatorial sequences are of this kind. This is true, for instance, for
the Fibonacci, Lucas, Pell and Jacobsthal numbers, the Chebyshev polynomials and the Morgan-Voyce
polynomials.

In [2], Richard André-Jeannin proved, for all m,n € N, the symmetric identity

U,y —— =0,y —~ 1
; WiW 4k Z WiW ik e

where U, = W,(0,1; P,Q). For instance, for the Fibonacci numbers F, = W,(0,1;1,—1) and for
the Lucas numbers L, = W,(2,1;1,—1), we have U, = W,(0,1;1,—1) = F,,. Hence, in this case,
we have the identities [0]

i e k=1
m n
(=1)" (=D*
" — LiLnyk " — LiLmk
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Similarly, for the Chebyshev polynomials of the first and second kind T,,(z) = W,,(1,z;22,1) and
Un(z) = Wy(1,2x;22,1) we have U, = W,(0,1;2z,1) = U,_1(x) and

m 1 n 1

U@ 2 gt = ) B @
m 1 i 1

Up—1 () ; U@ Onir@) -~ Um-1@) ; Un(@) Ui ()

Finally, for the Morgan-Voyce polynomials [13] [19, 20]

n

kE+1
Mn<x>=Wn<1,x+2;x+2,1)=2<”;§Z )az’“
k=0

3

k
Np(z) = Wp(La + Lo +2,1) = (Zi_k>xk
k=0

we have U, = W,(0,1;2+2,1) = M,,_1(z) and

m 1 " 1
Mn_l(x) Z M (-T)Mn-‘rk(x) N Mm_l(x) z:: Mk(SL‘)Mm-f-k;(-T)

=1 k=1
m ) 1
M,—1(x) ; M@ V@) M1 (x) ~ Ni()Nnsi (@)

In this paper, we extend André-Jeannin’s identity to sequences {an}nen satisfying a three-
term recurrence Gp4+2 = Pp+10n+1 + gn+1an with arbitrary coefficients. Then, we specialize such an
identity to the particular case in which the coefficients of the recurrence are given by p,, = X(¢"z) and
gn = Y (q"x) . Finally, we exemplify this identity for several g-polynomials of combinatorial interest,
such as the ¢g-Fibonacci, g-Lucas, ¢-Pell, g-Jacobsthal, g-Chebyshev and ¢g-Morgan-Voyce polynomials.

2 The main result

André-Jeannin’s identity is a simple consequence of the next Lemma (whose proof is reported
for completeness).

LEMMA 2.1 Given a sequence {an}nen, let {A, k}nken be the sequence where A, = ar — Gpiy -
Then, for every m,n € N, we have the identity

m n
§ An,k = Z Am,k .
k=1 k=1

Proof. If m > n, then we have

m

m
ZA”J“ = Z(ak —aptk) = (a1 + -+ am) — (any1+ -+ angm)
k=1 k=1
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=@+ Fapntani+-Fam) — (@1 FamF+ ampr + o+ Gpin)

n

n
=(a1+ - +an) = @mi1+ + npn) = O (G — Gmgr) = > Amp.
k=1 k=1

A similar argument holds for n > m . This completes the proof. O

We also need the following result.

THEOREM 2.2 Let {an}neny be a sequence satisfying a three-term recurrence

Ap+2 = Pp+10n+1 + Qnt+10n (2)

with an #0 for all n > 1. Then there exists a sequence {Ay}nen with the following property: for
every k € N, the sequence {B;Lk)}neN , where

BW = Agay iy — Anirar,

satisfies the three-term recurrence
k k
372422 = pn+k+1B1(1+)1 + Qo1 BY (3)
with the initial values B =0 and B = (—=Dkqr, wh r=
0 1 qp , where qp = qrqx—1- - 4291 -
Proof. Let us suppose that the sequence {Ay},en exists. Then, by recurrence , we have
B¥, — 4 .y
n+2 kOn+k+2 n+k+20k
= Ak (Pntkt10n+k+1 + Gkt 10n+k) — Antky2ay
= Pntht1AkAntkt1 + Gntht1 Apnik — Antrtoak

= Prtht1 (AkCnirr1 — Apghr10k) + Ptk Anpip106+
+ Gkt 1 (Ar@nik — Apsrar) + k1 Angrar — Angpyoar

k
= pn+k+1B7(1421 + k1 BY — (Apikr2 = Poskr1Anthit — Gk Antr)ay -
Now, if we assume that the sequence {A,},en satisfies the recurrence
An+2 = pn+1An+1 + Qn+1An (4)

then, by the above remarks, we obtain identity . Moreover, for every k € N, we have

B(()k) = Apap — Ararp, =0

BW — Arag1 — Appiap = U1 Ak
! i i App1 Ag
Assuming k£ > 1 and using recurrence , we have
+ qrQg—1 Ak gk0k—1 Ok ar Q-1 (k—1)
! PeAr + @ Ar—1 Ak |aAr—1 Ag Tlap A =
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Consequently, we have

B = (<1 gugr1 -+ goq1 BY” = (~1)"qj; (Aoar — Avag).

Now, we choose Ay and A; so that Aga; — Ajag = 1. Specifically, since a; # 0, we choose
Ay = (A1ap + 1)/a1 . In conclusion, there exists at least a sequence {A,},en satisfying recurrence

and having the requested property.

Now, we can prove next
THEOREM 2.3 Let {an}neny be a sequence satisfying a three-term recurrence
On+2 = Pn+10n+1 + Gn+10n

with ap, #0 for all n>1. Then, for every m,n € N, we have the identity

where ¢y = qrqr—1---q2q1 , and where the coefficients bslk) are defined by the recurrence

k k
bf(w)z = Pn+k+1b7(1421 + Qs 1b)

with the initial values b(()k) =0 and bgk) =1.

a

(7)

Proof. Consider the sequence {B,S’“)}neN defined in Theorem Since B,(@k) = Apanir — Anirag

and a, # 0 for all n > 1, we have

k
Br(z) _ ﬂ . An-‘rk
ApGnpik ag Qnptk

So, by Lemma we have the identity

mop k) n B(k)
Z n m

QpGp4k el Ak Qm+k

Finally, since Bq(lk) = (—1)qubSlk) , we have identity @

a

Notice that the coefficients b%k) can be obtained by two linearly independent solutions of recurrence

. Indeed, we have

PROPOSITION 2.4 If {xn}nen and {yn}nen are two linearly independent solutions of recurrence (@,

then the coefficients bnk) can be expressed as

b(k) _ TkYn+k — Tnt+kYk
TrYk+1 — Te+1Yk

(8)
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Proof. The sequence {b%k)}neN satisfies recurrence . So, it belongs to the vector space generated
by the two sequences {Z,1x}neny and {ynik}nen . This means that there exist two scalars A\, u € R
such that

b®) = Ntk + pynger YneN.

)

By imposing the initial conditions b(()k) =0 and bgk =1, we obtain the system

A+ yppn =0
1A + Y1 =1

whose unique solution (by Cramer’s theorem) is given by

)\:io Y | — _ Yk and ,u:i Lk O‘:xk’
Ap |1 Yr1 Ay Ap |41 1 Ay
where
xT
N e L TrYk+1 — Tt 1Yk -
T+l Ye+1

Notice that Ag # 0 for all k € N, since we are considering two linearly independent solutions of
recurrence . In conclusion, we have obtained identity . O

3 A first specialization

Let X(x) and Y(z) be two expressions such that X(z),Y(z) # 0. Let {W,(q,z)}nen be the
sequence defined by the recurrence

Waia(g, ) = X (@™ a)Waii (g, 2) + Y (" 2)Wa(g,2) (9)

with the initial values Wy(q,z) =1 and Wi(q,z) = X(x). Furthermore, let {W,(La’b) (¢,7)}nen be

the sequence defined by recurrence and by the initial values Wéa’b) (¢,z) = a and Wl(a’b) (q,z)=b

(with b#0).
THEOREM 3.1 We have Wflo’l)(q,x) = Wy—-1(q,qz), for all n € N.

Proof. Set U,(q,z) = Wp—1(q,qz). Replacing n by n—1 and x by ¢z in recurrence @D, we have
Wii1(q,qx) = X ("' 2)Wa(g, qz) + Y (" 2)Wh1(q, gz)

that is
Uni2(q,2) = X ("™ 2)Uni1(q,z) + Y ("M 2)Up(q, qz) -

So, the terms U,(q,z) satisfy recurrence (9). Moreover Uj(q,z) = Wy(g,qz) = 1. Finally, for n =
—1 in (9), we have Wi(q,z) = X (2)Wo(q, z)+Y (z)W-_1(q, z) , thatis X (z) = X (2)+Y (z)W_1(q,z),
from which we have Up(gq,x) = W-_1(¢,qx) =0. O
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THEOREM 3.2 For every m,n € N, m,n > 1, we have the identity

m W, 7 k+1 n W ’ k—i—lx
Z Qk Q7 (a,b) 1(q q(a b) ) = Z(_l)ka(%x) (a,b) 1(q q(a7b) ) (10)
k=1 Wk (g, x)WrH—k (¢,2) = Wy (q, x)Wm+k(q7$)

where Qi(q,z) = Y (qx)Y (¢%x) - Y (¢* '2)Y (¢*2) . In particular, we have the identity

Wi—1(q, " 'z) = Win-1(g,¢" )

m _ N\ "
; Qk (g, Wk(q,av) Wik (4, )_;( )" Qu(g, )Wk(q,x)Wm+k(Q7l')

(11)

Proof. The terms W.*" (q,x) satisfy recurrence with p, = X(¢"x) and ¢, = Y(¢"z). So
g =Y (¢*2)Y (¢*z) - Y (¢?2)Y (gx) = Q(g,z) and the coefficients ) = pF )( ,x) appearing in
the statement of Theorem are defined by the recurrence

k n n
bila(a. @) = X (" )b (g.2) + Y (@ 0p (g, @)
with the initial values b(()k)(q, z) =0 and bgk)(q, x) = 1. Hence, by Theorem m we have

b (q, ) = Un(q, ") = Wy—1(g, ¢"'z).

In conclusion, identity @ becomes identity (|11} m O

The results obtained in Theorema can be extended to the bisection sequences {W(a b)( , ) bneN
and {Wéiﬁ)l(q,x)}neN. If Ey(f’b)(q, x) = Wén )( q,x) and O(a b)( x) = W§n+)1(ﬂb x), then we have

THEOREM 3.3 The terms E(a b)( ,x) and Oq(@a’b)(q, x) satisfy the three-term recurrences

Eni2(q,7) = Ryy1(¢, ) Eny1(q, 2) + Snta(q, ) En(q, x) (12)
Ony2(q,z) = Rn+1( 2)Ony1(q, ) + S;+1(qv 7)Op(q, ) (13)
where
_ v 2043 2n-+2 2n+3 X(¢*"x) . opis
Rypt1(q, ) =Y (™" x) + X(¢™" " 2) X (™" x) + X(@ ) Y(q™ " ) (14)
2n 3.’L‘
Sua.0) = F o V(Y () (15)

and R}, (q,2) = Rnt1(q,qz) and S\ (q,2) = Spt1(q, qz) -

Proof. By recurrence @D, we have the system

Epii(q,z) = Y(¢*" ) En(q,2) + X(¢*" ' 2)On(q, 2)
On+1(q,2) = X (¢*"22)Epy1(q, z) + Y(¢*"22)O0n(q, ©)

from which it is straightforward to obtain recurrences and . O
Moreover, if E,(q,x) = Way(q,z) and O,(q,x) = Wan+1(q, x), then we have
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THEOREM 3.4 For every n € N, we have

EOD (g, 2) = On-1(q,qz) _ Wan—1(q, q2)

— 16
X(qz) X(qz) (16)
On-1(q,¢*x)  Wan_1(q,¢*x)
(0,1) — 19, — ’ 1
00 (a0) = =5 Ny (17)
Proof. Since R+(q qzr) = Ryti1(¢,z) and  Sjf(g,qx) = Spt1(q,x), also the terms %((]q)qx)

satisfy recurrence with the initial values 0 and 1. So, we have identity (16 . Similarly, since
R (q,¢*x) = R;t_H( z) and Sf(q,¢*x) = S, (g, x), also the terms % satisfy recurrence
(13) with the initial values 0 and 1. So, we have identity . a

Now, we can prove next

THEOREM 3.5 For every m,n € N, m,n > 1, we have the identities

m 2k+1
3 Qulata) Qule?w/g) — g D)
(a b) wilab)
1 (@, 2)Way,' 44, 7) (18)
n Wam-1(q,¢*" ')
Z q x Qk q ) /Q) W(a’b) W(a ,b)
-1 2k (q,l’) 2m+2k<q’ )
and m L
Z Qk(q2a qac) Qk(qZ’ .f) - ;;VQn—l(q gIQb)+2x) _
k=1 W1 (@ )Wy Yop 11 (¢, ) (19)
n Wy, 2h+2,,
= ZQR(‘JQ"W) Qr(q* @) (@) ; 1(q(gb) !
el Wor (@, 2)Wa,pr Lon 11 (¢, @)
where Qi(q,z) = Y (qx)Y (¢*x)--- Y (¢*'2)Y (¢*z) . In particular, we have the identities
" Whn1(q, ¢ )
2’ T 2’ x =
; Qr(q”,z) Qrlq™,v/q) Wk (¢, ©)Wanvor(q, ) (20)
. Wam—1(q, ¢** ')
g 27 X 27 X
;Qk(q )kl 2/q) War(q, 2)Womor(q, )
and 2k+2
m Wan-1(q, ¢** )
2’ T 2’ T =
kZ:l Qr(q°, q7) Qr(q”, x) W1 (@ 2)Wanronsr (4, 2) 1)

2k+2x)

n Wmel(q’q
— 2 qx oz
Z Qr(q, 97) Qr(q”, ) Wort1(q, 2)Wapmyor+1(q, )

Proof. By recurrence , the terms FE,(q,x) satisfy recurrence with p, = Rp(¢,z) and
dn = Sn(q, ). So, by identity , we have

.
g =] Sk(g.2) =
=1

11‘)Y 2i—1,\y (421
- (¢ 2)Y(¢™ )

—~
>

=1
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X(qx)

B X(q2k+1x)
- X(qu)

— w ﬁ Y(q2i+1$) H Y(qu_ll')
Qr(¢®, q7) Qul(a® x/q) -

Moreover, by identities and , the coefficients bg{) = b,(lk)(q,:c) appearing in the statement of
Theorem [2.3] are defined by the recurrence

b8)(a, %) = Ruriir (0,200 (0, %) + Snsnir (g, 2)bP) (g, 2)

= Rur (0. 4% 0)b)1 (0.2) + Sua (g, )P (g, )

with the initial values b(()k)(q, z) =0 and bgk)(q,a:) = 1. So, by identity , we have

2k+1l‘)

b0 (q,2) = EOD (g, ¢?z) = War—1(4, 4

X (g2 H1g)

Q»q

Then, identity @ becomes identity .
By recurrence , the terms O,(q,x) satisfy recurrence with p, = Rf(q,x) = Ry(q,qx)
and ¢, = S;7(q,2) = Sn(q,qz) . So, as before, we have

. X(¢* )
4x = m Qk(q qx) Qk(q ).
Moreover, the coefficients b%k) = b%k)(q, x) are defined by the recurrence

k k
651422( ) = R++k+1 (¢, 33)57(1421 (¢, %) + S:+k+1( )b(k) (¢, )
=R} (g, q2km)b1(1k—gl(% T) + S:{H(q, ) (¢, z)

with the initial values b(()k)(q, x) =0 and bgk)(q,z) = 1. So, by identity , we have

War—1(g, ¢** )

p(k) 0O (g, ¢?*

n (Q7m) (q7q ) X(q2k+2$)

Then, identity (6) becomes identity (21)). |

4 Specialization to ¢g-polynomials

Now, we specialize the results obtained in the previous section to some ¢-polynomials of combina-
torial interest. Specifically, we consider the ¢g-polynomials W, (q,z) defined by the recurrence

WnJrQ(qv .’L’) = (A + Bqn+2$)Wn+l(q7 ':U) + (C + an—’_lx)Wn(Qa 113') (22)

with the initial conditions Wy(q,z) =1 and Wi(q,z) = A+ Bqgx, where AB # 0 and CD # 0.
Notice that, by extending this recurrence to negative indices, we have W_1(q,z) = 0. In particular, for
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x =1, we have the g-numbers w,(q) = Wy(q,1). Furthermore, let Wéa’b)(q, x) be the g-polynomials

defined by recurrence and by the initial values Wéa’b) (¢,x) = a and Wl(a’b) (¢g,x) = b (with
b#0).

First of all, we have

THEOREM 4.1 For every m,n € N, m,n > 1, we have the identity

m Wn , k+1x n Wm— , k+1
Z Qk q,T (a,b) 1(q 1 (a,b) ) = Z(_l)ka((L $) (a,b) 1(q q(a b) ) (23>
k=1 W (¢,z )Wn+k (%) = Wy (q, x)Werk(% )

where Qp(q,r) = (C + Dqz)---(C + D¢"'2)(C + DgFx) . In particular, we have the identity

m Wo_1(q, ¢z - Win-1(q, ¢" ')
)*Qi(q, ) Qr(g, = 24
; k (qa .T) n+k Q7 ; g Wk((L $)Wm+k(Q7 .%') ( )

and for © =1 and Qr(q) = Qr(q,1), we have the identity

= Wn—l(Qa qk+1) . Wm—l(Qp qk+1)
> (=F ettt =y (~DFQu(e) T (25)
p wp(@wntk(a) wk(q)Wm-+£(q)

Proof. Apply Theorem with X(x) = A+ Bgzx and Y(z) =C + Dzx. O

Then, we have

THEOREM 4.2 For every m,n € N, m,n > 1, we have the identities

m 2k+1
ZQk(q27$) Qk(qz,x/q) (;}[17/;2” l(q’ q(a b) ) =
k=1 W (¢, )W2n+2k((17 ™) (26)
n W i 2k+1x
= Z Qk(q2> $> Qk(q27 $/Q) (a,b)2 - <q q(a b) )
k=1 Wy, (q, x)W2m+2k(Q7 )
and .
Z Qk (q2’ qx) Qk (q2’ 1,‘) - ;;Vanl (q (qa?:)-ﬁ-Ql') _
k=1 ng;l(% x)W2n+2k;+1(Q7 ) (27)

Wam-1(gq, ¢**22)

q qr Qk(Qa ) a.b a,b
k=1 WZ(k:i-)l(q"r)WQ(m-22k+l(q’ )

where Qr(q,z) = (C 4 Dqx)---(C + D" '2)(C + Dq¢*x) . In particular, we have the identities

M:

2k+1(1§)

m , ) Won-1(q,q _
; Qk(q ,.CI}) Qk(q ,.CL'/(]) ng(q, $)W2n+2k(Q7 .%') B

Wom—-1(g, ¢***12)

_ - 2 x 2z
= ZQk(q ) )Qk(q ) /Q) W2k(q’aj)W2m+2k(Qa li)
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and -
“ WQn—l(q q + l’)
2 2 ’
,qx T =
;Qk(q 42) Qulq", @) Wort1(q, ) Wangor41(q, ©) 29)
. Wom—1(q, ¢**2x)
2 2 om—1(4,
= , qT y L .
;Qk(q 4x) Qila". @) Wort1(q, 2)Wamior+1(q, )
Proof. Apply Theorem with X (z) = A+ Bgr and Y(z) =C + Dz. O

Finally, we have

THEOREM 4.3 The q-polynomials Wéa’b)(q, x) have generating series
W(a,b) (q’ ‘/L'; t) — Z Wrga,b) (q’ :L‘) tn —
n>0
- (5 kg (a + (b—aA — aBqz)¢*t)(B + Dt)(B + Dqt) - -- (B + Dq" ')
(1 — At — Ct2)(1 — Agt — Cq?t?)--- (1 — AgFt — Cq2*tF)

k>0

In particular, the q-polynomials W, (q,z) have generating series

k41 (B + Dt)(B+ Dqt)--- (B + Dg"1t)
Wag,2)t" = g2 gkeh NS
Z:O (¢, 2) kgoq S T A O (1 - Agl— OB (1 - Agt — Oy BV
Proof. Let W (t) = W@ (q,z;t). By recurrence , we have
W(t) —a—bt _AW(t) —a Wi(qt) —a
t2 B t t
from which we obtain the identity
a+ (b—aA—aBqx)t N qrt(B + Dt)
1— At — Ct? 1— At — Ct?
By applying this identity repeatedly, we obtain

+ Bqx + CW (t) + DgzW (qt)

W(t) = W(qt).

= —ad — k . k-1
W) =Y g3kt (a+ (b— aA — aBqz)d"t)(B + Dt)(B + Dqt) - - (B + D"~ 1t)
— (1— At —Ct2)(1 — Agt — C@?t?)--- (1 — Agkt — C¢?*¢2)
"E2) el (a+ (b—aA — aBqx)q""'t)(B + Dt)(B + Dqt) - - - (B + Dq"t)
(1—At—Ct?)(1 — Agt — C@t?)--- (1 — Ag"t — Cq®>¢?)
Now, by taking the limit of both sides for n — 400, we get identity . Finally, since Wy(q,z) =1
and Wi(q,z) = A+ Bqz, identity implies identity . O
REMARK 4.4. By identity , we also have

+q( W (q"'t).

(B+ Dt)(B + Dqt) - -- (B + Dg*~'t)

(0,1) n _ (B39 ( ey pht1
;Wn (q,z)t kzmq 2/ (qz)"t (1— At — Ct2)(1 — Agt — C@2t2) - - (1 — AgFt — Cq?ktk) -

Notice that, by series , we have the identity W(O’l)(q, x;t) = tW(q,qx;t), from which we reobtain

that WY (g, 2) = Wi_1(q, qz).
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5 Examples

Several g-polynomials are a specialization of the ¢g-polynomials W, (g, x) considered in Section
Some of them can be defined in the following combinatorial setting. A linear partition of the linearly
ordered set [n] ={1,2,...,n} is a family m = {Bj, Bo,..., B} of non-empty intervals B; of [n]
such that B, N Bj = &, for every 4 # j, and By U By U---U By = [n]. A 2-filtering partition

of [n] is a linear partition of [n] where each block has size 1 or 2. Let 3P be the set of the

2-filtering partitions of [n] where the blocks are of two types, say black or white. Given 7 € @512) , let
m(m) = m(B1) + m(Bg) + --- + m(Byg) , where m(B;) =0 if B; is a block of the first kind (black),
m(B;) =s if B;={s} or B; ={s,s+ 1} is a block of the second kind (white); then, let w(m) be
the number of white blocks of .

5.1 g¢-Fibonacci and ¢-Lucas polynomials

Let ®,, be the subset of ‘1322) consisting of the 2-filtering partitions with only 1-blocks of the first
kind (black) and 2-blocks of the second kind (white). The g-Fibonacci polynomials are defined by

Fu(g,2) = ) ¢"Ma®™
7T€<I)n

and satisfy the recurrence
Foi2(q, @) = Fuyi(q, ) + " aFu(g, x)
with the initial values Fy(q,z) = Fi(q,x) = 1. In particular, for z = 1, we have the g-Fibonacci
numbers fulq) = Falg, 1) , 77, 10] [ ],
Similarly, we define the ¢-Lucas polynomials L, (q,z) by the recurrence

Ln+2(Qv CC) = Ln+1(Q) I‘) + anrlen(Q) l’)

with the initial values Lo(q,2) =1+ ¢ and Li(q,z) = 1. Then, for z =1, we have the ¢-Lucas
numbers {n(q) = Ln(g,1).

The g¢-Fibonacci polynomials are a special case of the g-polynomials W, (q,z). Indeed, we have
F,.(q,z) = Wy(q,z) for A=1, B=0, C =0, D=1. The g-Lucas polynomials satisfy the same
recurrence, but with different initial values. Then, by identities and (30, we have the generating
series

ke 2k

n __ qk2x
ZFn(q,x)t = Z (1—t)(1—qt)--- (1 — gFt)

n>0 k>0

nAL - — — oo (1 = gk
2 2 a0 —a) (-

from which we obtain L,(q,z) = (1 + q)F,(q,z) + qF,-1(q,qz), for n > 1. Moreover, we have

THEOREM 5.1 For every m,n € N, m,n > 1, we have the identities

m

S (1))t Foi(q, ¢ ) :Z":<_1)kq(k;1)xk Fin-1(a,4

_ kly)
1 Fk(Q7x)Fn+k(Qa .’E) Fk(va)Fm—i-k(qvx)
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m k+1 ok F,_ 1(q qk+1:1}) . - Y (k;l) k Fm—l(q qk—H )
2V Lo bten T Dbt
In particular, for x =1, we have the identities
m k(Y Fo1(q,¢") _ - _1yk, (53 M
2V et~ 2=V @ (34
n k(5 Fooa(g, ") _ - _ 1k, (55 M
2V @~ = @ (#5)

Proof. Since Qi(q,z) = ¢Fth—DH+2+1k — q(kgl)azk, identity becomes identity . Similarly,
identity becomes identity . O

Then, we have

THEOREM 5.2 For every m,n € N, m,n > 1, we have the identities

iqk(%ﬂ)xzk Fon_1(q,¢*" qu(Qk-i,-l o Fom—1(q,¢* ) (36)
= Fo(g, )f§n+mcq, — Foi(q, @) Fom+21 (¢, )
- k(2k+1), 2k Fon-1(q; 2k+1 = k(2k+1) .2k fﬁnwﬂ(Qdﬁk+1$)
> g v 7 => q 7 T (37)
= 2k(¢ ) Lonyor(g, ©) £ 2%(q, ©) Lom-+21(q, @)
and
S k(2k+3) .2k Fon-1(g, g*h? z) _ - k(2k+3) .2k Fom-1(g,4q k2 z)
L S a5
— Fopta(y, )an+2k+1(q,$) — Fopt1(q, ©) Fomy2k41(g, @)
~ kekis) 2k Fonoa(g, ¢ ) e bkt ok Pamoa(g, ¢ )
Zq x =) q x . (39)
— Lok41(¢, ) Lontoks1(g, ) = Lok+1(q, ) Lomtok+1(q, @)
Proof. Apply Theorem noticing that
Qu(g?, 2)Qu(e?, w/q) = g*('37) TRk = gk 52k
Qu(d?, q2)Qu(e? ) = ¢*('3 ) HEa2h = bR+, 20
O

REMARK 5.3. In the literature, there are other g-analogues of the Fibonacci polynomials and
numbers. For instance, we have the ¢-Fibonacci polynomials ¢, (q,z) defined by the recurrence
Oni2(q,z) = " wpni1(q, ) + ¢"2pn(q,r) with the initial values ¢o(g,z) =1 and ¢1(q,z) = z,
and the ¢-Fibonacci numbers ¢, (q) = ¢n(g,1) considered in [7]. In this case, we have ¢,(g,x) =
Wy(q,z) for A=0, B=1/q, C =0, D =1/q. So, we have the generating series

N enlg )t =3 g A+ )1+ gt) - (14

n>0 k>0
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and the identity

1)k () ok en-1(q,¢" ') _ - 1Yk (5) pm-1(4: 4
kzl( @2 enn(a,2) k:l( R s P

k-&-lx)

(40)

5.2 ¢-Pell polynomials

Let W, be the subset of @g) consisting of the 2-filtering partitions of [n] where the 1-blocks
are of both types (black and white), and the 2-blocks are only of the second type (white). The ¢-Pell

polynomials are defined by
r) = Z g™ ()

WE\I/n

and satisfy the recurrence

Pria(q,z) = (1+¢" 22) Poyi(q,2) + ¢" TPy (g, @)

with the initial conditions Py(q,z) =1 and Pi(q,z) =1+ gz . In particular, for = =1, we have the
q-Pell numbers pn(q) = Py(q,1), [16, 15, B]. For ¢ =1, we have the Pell numbers [18, A000129].

In this case, we have P,(q,x) = Wy(¢q,x) for A=1, B=1, C =0, D =1. Then, by identity
, we have the generating series

() k(L)AL +gt) - (1+45t)
DEACROVED SUERIA ;
= = (L—=t)(L—qt)--- (1 —g")
Moreover, we have

THEOREM 5.4 For every m,n € N, m,n > 1, we have the identity

m k+1 n k+1
S (- 1)kg(3) Po1(0,¢"" ) S (1)) ek Pna(g.0" @) (41)
P Pk(%x)PnJrk(Qwr) — Pi(q, 2) Prnyi(g; @)
In particular, for * =1, we have the identity
i k+1 n I(Qa qk+1) — . ( 1 kq(k-‘rl) mel((b qk+1) (42)
— Pe(@pnti(a) = Pe(O)Pm+1(q)
Proof. Since Qy(q,z) = gFtk—D+—+2+1k q(kgl)a:k, identity becomes identity . O
Then, we have
THEOREM 5.5 For every m,n € N, m,n > 1, we have the identities
~ k@kt) ok Ponci(g,¢* ) k2kt1) 2k Pom-1(9, ) 4
> d e Zq (43)
Por(q, ) Ponyor(q, @ Por(q, %) Pomy21(q, )
m
Pyn-1(q, 612"7+2 Pom—1(q, ¢* 2
0 ) 2k n—1( Z F+3),2 m—1( ) (44)

Poi1(q, ) Poptor+1(q P2k+1(¢]a z) Popyok1(q, )
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k41

Proof. By Theorem where Q(¢%,2)Qr(¢? z/q) = q4( 3) kg 2k qF(2kA1) 2k O

REMARK 5.6. In [12], we have other two g-analogues of the Pell polynomials: the g-polynomials
an(q,z) defined by the recurrence any2(q,z) = (1 + z)an+1(g, x) + ¢"za,(g,x) with the initial
values ap(q,x) = 0 and aj(q,z) = x, and the g-polynomials b,(q,z) defined by the recurrence
bui2(q,2) = (1+¢" 1 2)byy1(q, ) + ¢"ab, (g, x) with the initial values bo(q,z) =0 and bi(q,7) = x.
The g-polynomials b,41(q,x) satisfy the same recurrence of P, (q,x), but with different initial values,
while the g-polynomials ay1(q,z) do not satisfy an instance of recurrence (22)).

5.3 g¢-Jacobsthal polynomials

Let Z,, be the subset of <I>7(12) consisting of the 2-filtering partitions of [n] where the 1-blocks are
only of the first type (black) and the 2-blocks are of both types (black and white). The g-Jacobsthal
polynomials are defined by

Jnlq,z) = Z g™ pw(r)
TEEn

and satisfy the recurrence

Jn+2(Q7 .CE) = Jn+1(Q> .1‘) + (1 + qn—Hx)Jn(qa x)

with the initial values Jo(g,x) = Ji(q,z) = 1. In particular, for = = 1, we have the g-Jacobsthal
numbers jn(q) = Jn(g,1). Furthermore, for ¢ = 1, we have the Jacobsthal numbers j, = (2" +
(=1)™)/3 [18, A001045].

In this case, we have J,(q,z) = Wy,(q,z) for A=1, B=0, C =1, D =1. Then, by identity
, we have the generating series

thk

k2
E _ § : "z
Jn(g, )" = .
n>0 ) (L=t =12)(1—qt — 1) -+ (L — g¥"t — ¢*F1?)

Moreover, recalling that the g-Pochhammer symbol is defined by

(@5 q)k=(1—2)(1—qx)--- (1 —¢"'a),
we have

THEOREM 5.7 For every m,n € N, m,n > 1, we have the identity

U Jn_l(q qurl(I}) - k Jm—l(q qurlx)
—1)k —qx;q ’ = —1)"(—qx;q ’ . 45
2V Camae T e — 2 e e ()
In particular, for * =1, we have the identity
S Jn-1(q,¢" ! Jm—1(g, ¢"
SO g L) SNy g, Tl (46)
prt I @intila) = (@) Jm+(2)

Proof. Since Qi(q,z) = (14 qx)--- (1 + ¢ '2)(1 + ¢*x) = (—qx; q)p , identity becomes identity
). 0

Then, we have
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THEOREM 5.8 For every m,n € N, m,n > 1, we have the identities

- Jon—1(q, ¢** ) = Jom—1(q, ¢**+1x)
—qx; = g —qx; 47
kzzl( 95 Ok Jor (4, ©) Jon+2k(q, ) k:l( 9 Ok Jor (4, ©) S22k (¢, @) (47)

m Jon— (q q2k+2:n) n szq(q q2k+2$)

2 2n—1\4, 2 )
—qx; = —q°T; . 48
;( T )k Jok+1(4; ©) Jant2k+1(q, ) kzl( T Q)2 Jok11(q, ) Jom42k+1(q, ) (48)
Proof. By Theorem [4.2] where Qx(¢% 2/q9)Qk(q% =) = (—qz;¢*)e(—; ¢*)k = (—qz; q)2n, - O

5.4 The ¢-polynomials R,(q,x)

@

Let R,(q,x) be the g-polynomials associated to ®,,” , i.e. the g-polynomials defined by

Rn(q,z) = Z g™ (™ gw(m)
7T€<I>£L2)

These ¢g-polynomials satisfy the recurrence
Ryyo(q,2) = (1+¢"22)Ryga(q,2) + (1 + ¢"2) Ro(g, )

with the initial conditions Ry(q,z) =1 and Ry(q,z) = 1+ gx. In particular, for = = 1, we have
the g-numbers r,(q) = Ry(q,1). Furthermore, the coefficients of the polynomials R, (x) = R,(1,z)
form sequence A063967 in [I8], while the numbers 7, = r,(1) form sequence A026150 in [18].

In this case, we have R, (q,z) = Wy,(q,z) for A=1, B=1, C =1, D =1. Then, by identity
, we have the generating series

k+1 (1+t)(1+qt)--- (14 ¢ 1)
Rn t" = ( ) ktk .
7;0 (¢, ) kgoq 2/x (1—t—12)(1 — gt — ¢2t2) --- (1 — gkt — ¢?F12)

Moreover, we have

THEOREM 5.9 For every m,n € N, m,n > 1, we have the identity

- Ry 1(g,¢" ') — ok Rp-1(g,¢"'x)
—1)k(—qx;q = —1)"(—qx;q . 49
D S L o A R D e kS ey S
In particular, for © =1, we have the identity
< Ro1(q,6") Ry-1(g,¢"")
o e M D M oo oy 0)

Proof. Since Qk(q,z) = (1 +qx)--- (1 + ¢"12)(1 + ¢*x) = (—qz; q)x, identity becomes identity
). 0

Then, we have
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THEOREM 5.10 For every m,n € N, m,n > 1, we have the identities

= Ron—1(q,¢*1x) a Rom-1(q, ¢***1x)
—qa; = > (—am; 51
,;( 9 Ok Ry (¢, x) Rant2k(gq; ) ;( 4 G)ek Ry (¢, ©) Rom-+21 (¢, ) (51
m Rop_ (q q2k+2x) n Rzm_1(q q2k+2$)
2 2n—1\4, 2 5
kzzl( e Rok1(q, ©) Rongorr1(q, ) ;( bl Rok11(¢; ©) Ram-+2k+1(¢; @) (52)
Proof. By Theorem [4.2, where Q(¢?, 2/q)Qk(¢?, ) = (—qz; ¢*)i(—a*x; ¢*)k = (—qz; Q)2 - O

5.5 ¢-Chebyshev polynomials
We define the g-Chebyshev polynomials of the first kind T,(q,z) by the recurrence

Thra(q, ) = 2¢" 2 T y1(g,2) — Tu(g, )

with the initial conditions Ty(¢,z) = 1 and 7Ti(q,x) = =. Similarly, we define the g-Chebyshev
polynomials of the second kind Up(q,x) by the recurrence

Unta(q,z) = 2¢" 2 Upi1(q, ©) — Un(g, z)

with the initial conditions Up(q,x) =1 and Ui(q,z) = 2z.
In this case, we have U,(q,x) = Wy,(q,z) for A=0, B=2/q, C =—-1, D =0. Then, by
identities and , we have the generating series

Q7x t T q, —
7;) ;0 (14 t2)(1 + ¢%t2) - - - (1 + ¢?k¢2)
k
Q(Q)Qkxktk
,z3t) Un(g, |
v 7;) (0 kz>0 (14 2)(1 + ¢%t2) - - (1 + ¢2k¢2)

Notice that T(q,z;t) = Ul(q,z;t) — xtU(q, qz;t), and consequently that T),(¢,z) = Uy(q,z) —
xUn—1(q,qx) . Moreover, we have

THEOREM 5.11 For every m,n € N, m,n > 1, we have the identities

i Un k+1$) — o Um—l(Q) qk+1x) (53)

b1 Tk(q7 n—i—k(% ) h—1 Tk(Q? x)Tm—l-k((L x)

in: Un 7qk+lx) _ - Umfl(%qk—i-lx) (54)
U .

=1 k(Q7 +k(Q> ) 1 Uk‘(Qa $)Um+k(q,$)

Proof. Since Q(q,z) = (—1)*, identity becomes identity . Similarly, identity (23| becomes
identity . O
Then, we have
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THEOREM 5.12 For every m,n € N, m,n > 1, we have the identities

zm: Usn—1(g, ¢** ) _ zn: Usm—1(g, ') (55)
= Tor(q, 2)Tontor(q: ) £= Tor(q, ©) Tomy2r (g, ©)
in: Uan—1 ((L q2k+2$) _ Zn: Umel((L q2k+2x) (56)
= Tory1(¢: 0) Tongorr1(0,®) &= Tort1(q, 2) Tomyort1(q, )

and
Zm: Up-1(0, ')~ Uam-i(g, ¢ '2) (57)
= Use(q, ) Uznyon(q,2)  £= Uak(q, 2)Uzm2k(q, )
i Uza-1(q,¢**%2) <~ Usm-a(g,4%a) (53)
= Usi1(q, 2)Unnyoks1(¢: ) = User1 (¢, ©)Usm2r11(q, 2)

Proof. Apply Theorem O

REMARK 5.13. In [II] we have the ¢-polynomials Uéa)(q,x) (with a and x exchanged between
them) defined by the recurrence

U, (q,2) = (20 + ") U, (q,2) — UL (g, 2)

with the initial conditions Uéa) (¢,x) =1 and Ul(a) (¢,x) = 2a+x. So Ul (¢, x) = Wy(q,x) for
A=2a, B=1/q, C=—-1, D =0. Consequently, we have the generating series

q(g)xktk

U (q,2)t" = .
T;) n(4:) k:Z>0 (1 —2at +t2)(1 — 2aqt + ¢*t%) - - (1 — 2aqt + ¢*+t2)

and the same identities given by , and .

5.6 ¢-Morgan-Voyce polynomials
We define the ¢-Morgan-Voyce polynomials M,(q,x) by the recurrence
Tn+2(q7 .le) = (2 -+ qn+1x) Mn+1(Q7 x) - Mn(qv .CC)

with the initial conditions My(q,z) =1 and M;i(q,z) = 2+ x. Similarly, we define the g-Morgan-
Voyce polynomials N, (q,z) by the recurrence

Nn+2(Q7x) = (2 + qn—f—lx) Nn+1(Q7x) - Nn(Qvaj)

with the initial conditions Ny(g,z) =1 and Ni(q,z) =1+ =x.
In this case, we have M,(q,z) = W,(q,x) for A=2, B=1/q, C = -1, D =0. then, by
identities and , we have the generating series

q(g)xktk
(1 — 2t +t2)(1 — 2qt + ¢2t2) - - - (1 — 2¢Ft + ¢2k¢2)

M(q,z5t) = My(g2)t" =

n>0 k>0
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k
q(Z)xktk(l — ¢*t)
N(g,z;t) =Y _N, tn=> -
(@,z:1) w2 2) S (1= 2t + 12)(1 — 2qt + %) - (1 — 25 + ¢*1?)

Notice that N(q,z;t) = M(q,x;t) — tM(q,qx;t), and consequently that N,(q,z) = M,(q,x) —
M, —1(q,qx) . Moreover, we have

THEOREM 5.14 For every m,n € N, m,n > 1, we have the identities

in: Mn (Q7 qk+1 Zn: m 1 Q7 qk+1x) (59)
= My(q, x) Mnyr(q, @) = My(q, ©) M ik(g, )
=1 Nk(q7 )Nn+k(q7 ) 1 Nk(‘Lm M+k(Q7 )

Proof. Since Q(q,z) = (—1)*, identity becomes identity . Similarly, identity becomes
identity (60). 0
Then, we have

THEOREM 5.15 For every m,n € N, m,n > 1, we have the identities

in: M2n71(Q7q2k+1x) _ zn: M2m71(Qaq2k+1$) (61)
k=1 Mgk(q,$)M2n+2k(q,l’) MQk(an)M2m+2k:(Q7m)
m
M- 2k+2 M- 2k+2

Z 2n— 1((1 q Z 2m— 1(q7 q .CC) (62)
P Moy 11(q, )M2n+2k+1 q, « Mog1(q, @ ) Moy yor+1(q, )

and
27”: M2n—1(q7 q2k+1$) _ - MQm—l(qa q2k+1$) (63)
= Nok(q, ) Nopyor(q,2) €= Nok(q, 2) Name2r (¢, 7)
i Mon-1(q,¢* ) <~ Mom-1(q,.¢* ) (64)
= Nop1(¢, ) Nontoet1(¢,0) =1 Nowga(q, ) Nomort1(q, )

Proof. Apply Theorem |

5.7 Two ¢g-sums

As a final example, we consider the g-polynomials

n

=3 qGdd and  Tulgw) =Y (@iq)-
k=0

k=0

LEMMA 5.16 The g-polynomials Sy (q,z) satisfy the recurrence

Sni2(q, ) = (1 4+ ¢ @) Sny1(q, z) — ¢ aSn(q, x) (65)



116 E. MUNARINI

with the initial values Sy(q,x) =1 and Si(q,xz) = 1+ =, while the g-polynomials T,(q,x) satisfy
the recurrence
Tota(g, ) = (2= ¢" ') Tori(g, ) — (1 - ¢"Ha)Tu(g, @) (66)

with the initial values Ty(q,z) =1 and Ti(g,x) =2—x.
Proof. In the first case, we have the identities
Sns1(¢,@) — Sulg,x) = ("2 )z
n+2
Sn+2(Q7 l‘) - Sn+1(q7$) = q( 2 )xn+2 )

from which we obtain the equation

Sn+2(q7 LL‘) - Sn+1(Q7 l‘) = qn+1$(sn+1(Qa ZL‘) - Sn(q7 l‘))

equivalent to recurrence . Similarly, in the second case, we have the identities
T’n+1(q7 [B) - Tn(Qv Qf) = (IE, Q>n+1
Toy2(q, ) — Thy1(q, x) = (25¢)ns2,

from which we obtain the equation

Toi2(q,2) = Tny1(g, 2) = (1 — ") (Thya (g, 2) — Tolq, @)

equivalent to recurrence . O

By Lemma we have that also S, (q,z) and T,(q,x) are special cases of the g-polynomials
Wi(q,z). Specifically, we have S, (q,z) = Wy(q,z) for A=1, B=1/q, C =0, D= -1, and
To(q,x) = Wy(q,x) for A=2, B=-1/q, C=-1, D=1. So, we have

THEOREM 5.17 For every m,n € N, m,n > 1, we have the identities

i (*+1) Sn_1(q, " x (<) Sy k+1,
34 1(g, 9 Zq 1(g,¢" @) (67)
— Sk(q, ) Sp1k(q, 2 Sk (¢, 2) S+ (g, )
and k+1 k+1
" Tn-1(q,q¢"1x) - Tn-1(q,¢" ')
Z; = x; . 68
2 D oy ey — 2P O T T (e, (69

Proof. In the first case, we have Q(g,z) = q(kgl)(—m)k and identity becomes identity . In

the second case, we have Qp(q,z) = (—1)*(qz;q) and identity becomes identity . O
Finally, by Theorem (4.2), we have

THEOREM 5.18 For every m,n € N, m,n > 1, we have the identities

2k+1x) n

Som—1(q,¢q
_ k(2k41) 2k O2m=1(;
) Z 1 Sok(q, ) Sam+2k(q, )

2k+1x)

i qk 2k+1 2%k Sanl(% q

Sok(q, ) San+ok (g, x

k=1 k=1
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Em: k(2k+3) .2k Son—1(q, ¢** ) (oh+3),, Som—1(q, 2*22)
s S Zq s 5 (70)
=1 2%+1(¢, ) Sant2k+1(¢ ok41(q, ) S2maok11(q, T)
and
m n
3 Ton-1(q, ¢* ') -3 Tom—1(g, ¢ )
qr;q)2k qz; q 2% 71
k::l( ) T2k(qa )T2n+2k q,x el Tzk(q, .Z‘)T2m+2k,(q’ Qj) ( )
m n
) Ton—1 q’q%Hx Tom-1(q, ¢
(@7 ) . ) - > (d*739)21 m ) (72)

Tor41(q, ) Tontok+1(q, ) Tok+1(q, ®) Tomtok41(q, )

e
Il

1 k=1

REMARK 5.19. The Al-Salam and Ismail polynomials U, (x;a,b), [1], are defined by the recurrence
Unto(w;a,b) = (1+¢"a)e Unya (w5 a,0) — ¢ Up (w5 a,b)

with the initial values Up(x;a,b) =1 and Uj(x;a,b) = (1 4+ a)x. These polynomials do not satisfy
an instance of recurrence . However, if we consider the g-polynomials uy,(q,z) = U,(1;x,z), then
they satisfy the recurrence uny2(q, ) = (1+¢"'2) uny1(q, ) — ¢" 2 un(g, ) with the initial values
uo(g,x) =1 and wui(g,z) =1+ . This means that S,(q,z) = un(q,z) = Up(1; 2, ).
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