A generalization of André-Jeannin's symmetric identity

Emanuele Munarini
Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
email: emanuele.munarini@polimi.it

(Received: October 30, 2017, and in revised form May 11, 2018.)

Abstract

In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers W_{n}, defined by a three-term recurrence $W_{n+2}=P W_{n+1}-Q W_{n}$ with constant coefficients. In this paper, we extend this identity to sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ satisfying a three-term recurrence $a_{n+2}=p_{n+1} a_{n+1}+q_{n+1} a_{n}$ with arbitrary coefficients. Then, we specialize such an identity to several q-polynomials of combinatorial interest, such as the q-Fibonacci, q-Lucas, q-Pell, q-Jacobsthal, q-Chebyshev and q-Morgan-Voyce polynomials.

Mathematics Subject Classification(2010). Primary 05A19; Secondary 05A30, 11B65.
Keywords: combinatorial sums, sums of reciprocals, three-term recurrences, q-Fibonacci polynomials, q-Fibonacci numbers, q-Lucas polynomials, q-Lucas numbers, q-Pell polynomials, q-Pell numbers, q-Jacobsthal polynomials, q-Jacobsthal numbers, q-Chebyshev polynomials, q-Morgan-Voyce polynomials.

1 Introduction

Let $W_{n}=W_{n}(a, b ; P, Q)$ be the Horadam numbers [8, 9], defined by the linear recurrence

$$
W_{n+2}=P W_{n+1}-Q W_{n}
$$

with the initial conditions $W_{0}=a$ and $W_{1}=b$, where a, b, P and Q are constants (or symbols) with $P Q \neq 0$. Several classical combinatorial sequences are of this kind. This is true, for instance, for the Fibonacci, Lucas, Pell and Jacobsthal numbers, the Chebyshev polynomials and the Morgan-Voyce polynomials.

In [2], Richard André-Jeannin proved, for all $m, n \in \mathbb{N}$, the symmetric identity

$$
\begin{equation*}
U_{n} \sum_{k=1}^{m} \frac{Q^{k}}{W_{k} W_{n+k}}=U_{m} \sum_{k=1}^{n} \frac{Q^{k}}{W_{k} W_{m+k}} \tag{1}
\end{equation*}
$$

where $U_{n}=W_{n}(0,1 ; P, Q)$. For instance, for the Fibonacci numbers $F_{n}=W_{n}(0,1 ; 1,-1)$ and for the Lucas numbers $L_{n}=W_{n}(2,1 ; 1,-1)$, we have $U_{n}=W_{n}(0,1 ; 1,-1)=F_{n}$. Hence, in this case, we have the identities [6]

$$
\begin{aligned}
& F_{n} \sum_{k=1}^{m} \frac{(-1)^{k}}{F_{k} F_{n+k}}=F_{m} \sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{m+k}} \\
& F_{n} \sum_{k=1}^{m} \frac{(-1)^{k}}{L_{k} L_{n+k}}=F_{m} \sum_{k=1}^{n} \frac{(-1)^{k}}{L_{k} L_{m+k}} .
\end{aligned}
$$

Similarly, for the Chebyshev polynomials of the first and second kind $T_{n}(x)=W_{n}(1, x ; 2 x, 1)$ and $U_{n}(x)=W_{n}(1,2 x ; 2 x, 1)$ we have $U_{n}=W_{n}(0,1 ; 2 x, 1)=U_{n-1}(x)$ and

$$
\begin{aligned}
& U_{n-1}(x) \sum_{k=1}^{m} \frac{1}{T_{k}(x) T_{n+k}(x)}=U_{m-1}(x) \sum_{k=1}^{n} \frac{1}{T_{k}(x) T_{m+k}(x)} \\
& U_{n-1}(x) \sum_{k=1}^{m} \frac{1}{U_{k}(x) U_{n+k}(x)}=U_{m-1}(x) \sum_{k=1}^{n} \frac{1}{U_{k}(x) U_{m+k}(x)} .
\end{aligned}
$$

Finally, for the Morgan-Voyce polynomials [13] [19, 20]

$$
\begin{aligned}
& M_{n}(x)=W_{n}(1, x+2 ; x+2,1)=\sum_{k=0}^{n}\binom{n+k+1}{n-k} x^{k} \\
& N_{n}(x)=W_{n}(1, x+1 ; x+2,1)=\sum_{k=0}^{n}\binom{n+k}{n-k} x^{k}
\end{aligned}
$$

we have $U_{n}=W_{n}(0,1 ; x+2,1)=M_{n-1}(x)$ and

$$
\begin{aligned}
& M_{n-1}(x) \sum_{k=1}^{m} \frac{1}{M_{k}(x) M_{n+k}(x)}=M_{m-1}(x) \sum_{k=1}^{n} \frac{1}{M_{k}(x) M_{m+k}(x)} \\
& M_{n-1}(x) \sum_{k=1}^{m} \frac{1}{N_{k}(x) N_{n+k}(x)}=M_{m-1}(x) \sum_{k=1}^{n} \frac{1}{N_{k}(x) N_{m+k}(x)} .
\end{aligned}
$$

In this paper, we extend André-Jeannin's identity (1) to sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ satisfying a threeterm recurrence $a_{n+2}=p_{n+1} a_{n+1}+q_{n+1} a_{n}$ with arbitrary coefficients. Then, we specialize such an identity to the particular case in which the coefficients of the recurrence are given by $p_{n}=X\left(q^{n} x\right)$ and $q_{n}=Y\left(q^{n} x\right)$. Finally, we exemplify this identity for several q-polynomials of combinatorial interest, such as the q-Fibonacci, q-Lucas, q-Pell, q-Jacobsthal, q-Chebyshev and q-Morgan-Voyce polynomials.

2 The main result

André-Jeannin's identity (1) is a simple consequence of the next Lemma (whose proof is reported for completeness).
Lemma 2.1 Given a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, let $\left\{A_{n, k}\right\}_{n, k \in \mathbb{N}}$ be the sequence where $A_{n, k}=a_{k}-a_{n+k}$. Then, for every $m, n \in \mathbb{N}$, we have the identity

$$
\sum_{k=1}^{m} A_{n, k}=\sum_{k=1}^{n} A_{m, k}
$$

Proof. If $m \geq n$, then we have

$$
\sum_{k=1}^{m} A_{n, k}=\sum_{k=1}^{m}\left(a_{k}-a_{n+k}\right)=\left(a_{1}+\cdots+a_{m}\right)-\left(a_{n+1}+\cdots+a_{n+m}\right)
$$

$$
\begin{aligned}
& =\left(a_{1}+\cdots+a_{n}+a_{n+1}+\cdots+a_{m}\right)-\left(a_{n+1}+\cdots+a_{m}+a_{m+1}+\cdots+a_{m+n}\right) \\
& =\left(a_{1}+\cdots+a_{n}\right)-\left(a_{m+1}+\cdots+a_{m+n}\right)=\sum_{k=1}^{n}\left(a_{k}-a_{m+k}\right)=\sum_{k=1}^{n} A_{m, k}
\end{aligned}
$$

A similar argument holds for $n \geq m$. This completes the proof.
We also need the following result.
THEOREM 2.2 Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence satisfying a three-term recurrence

$$
\begin{equation*}
a_{n+2}=p_{n+1} a_{n+1}+q_{n+1} a_{n} \tag{2}
\end{equation*}
$$

with $a_{n} \neq 0$ for all $n \geq 1$. Then there exists a sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ with the following property: for every $k \in \mathbb{N}$, the sequence $\left\{B_{n}^{(k)}\right\}_{n \in \mathbb{N}}$, where

$$
B_{n}^{(k)}=A_{k} a_{n+k}-A_{n+k} a_{k}
$$

satisfies the three-term recurrence

$$
\begin{equation*}
B_{n+2}^{(k)}=p_{n+k+1} B_{n+1}^{(k)}+q_{n+k+1} B_{n}^{(k)} \tag{3}
\end{equation*}
$$

with the initial values $B_{0}^{(k)}=0$ and $B_{1}^{(k)}=(-1)^{k} q_{k}^{*}$, where $q_{k}^{*}=q_{k} q_{k-1} \cdots q_{2} q_{1}$.
Proof. Let us suppose that the sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ exists. Then, by recurrence (2), we have

$$
\begin{aligned}
B_{n+2}^{(k)}= & A_{k} a_{n+k+2}-A_{n+k+2} a_{k} \\
= & A_{k}\left(p_{n+k+1} a_{n+k+1}+q_{n+k+1} a_{n+k}\right)-A_{n+k+2} a_{k} \\
= & p_{n+k+1} A_{k} a_{n+k+1}+q_{n+k+1} A_{k} a_{n+k}-A_{n+k+2} a_{k} \\
= & p_{n+k+1}\left(A_{k} a_{n+k+1}-A_{n+k+1} a_{k}\right)+p_{n+k+1} A_{n+k+1} a_{k}+ \\
& \quad+q_{n+k+1}\left(A_{k} a_{n+k}-A_{n+k} a_{k}\right)+q_{n+k+1} A_{n+k} a_{k}-A_{n+k+2} a_{k} \\
= & p_{n+k+1} B_{n+1}^{(k)}+q_{n+k+1} B_{n}^{(k)}-\left(A_{n+k+2}-p_{n+k+1} A_{n+k+1}-q_{n+k+1} A_{n+k}\right) a_{k}
\end{aligned}
$$

Now, if we assume that the sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ satisfies the recurrence

$$
\begin{equation*}
A_{n+2}=p_{n+1} A_{n+1}+q_{n+1} A_{n} \tag{4}
\end{equation*}
$$

then, by the above remarks, we obtain identity (3). Moreover, for every $k \in \mathbb{N}$, we have

$$
\begin{aligned}
& B_{0}^{(k)}=A_{k} a_{k}-A_{k} a_{k}=0 \\
& B_{1}^{(k)}=A_{k} a_{k+1}-A_{k+1} a_{k}=\left|\begin{array}{cc}
a_{k+1} & a_{k} \\
A_{k+1} & A_{k}
\end{array}\right|
\end{aligned}
$$

Assuming $k \geq 1$ and using recurrence (2), we have

$$
B_{1}^{(k)}=\left|\begin{array}{cc}
p_{k} a_{k}+q_{k} a_{k-1} & a_{k} \\
p_{k} A_{k}+q_{k} A_{k-1} & A_{k}
\end{array}\right|=\left|\begin{array}{cc}
q_{k} a_{k-1} & a_{k} \\
q_{k} A_{k-1} & A_{k}
\end{array}\right|=-q_{k}\left|\begin{array}{cc}
a_{k} & a_{k-1} \\
A_{k} & A_{k-1}
\end{array}\right|=-q_{k} B_{1}^{(k-1)}
$$

Consequently, we have

$$
B_{1}^{(k)}=(-1)^{k} q_{k} q_{k-1} \cdots q_{2} q_{1} B_{1}^{(0)}=(-1)^{k} q_{k}^{*}\left(A_{0} a_{1}-A_{1} a_{0}\right) .
$$

Now, we choose A_{0} and A_{1} so that $A_{0} a_{1}-A_{1} a_{0}=1$. Specifically, since $a_{1} \neq 0$, we choose $A_{0}=\left(A_{1} a_{0}+1\right) / a_{1}$. In conclusion, there exists at least a sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ satisfying recurrence (4) and having the requested property.

Now, we can prove next
Theorem 2.3 Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence satisfying a three-term recurrence

$$
\begin{equation*}
a_{n+2}=p_{n+1} a_{n+1}+q_{n+1} a_{n} \tag{5}
\end{equation*}
$$

with $a_{n} \neq 0$ for all $n \geq 1$. Then, for every $m, n \in \mathbb{N}$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} q_{k}^{*} \frac{b_{n}^{(k)}}{a_{k} a_{n+k}}=\sum_{k=1}^{n}(-1)^{k} q_{k}^{*} \frac{b_{m}^{(k)}}{a_{k} a_{m+k}} \tag{6}
\end{equation*}
$$

where $q_{k}^{*}=q_{k} q_{k-1} \cdots q_{2} q_{1}$, and where the coefficients $b_{n}^{(k)}$ are defined by the recurrence

$$
\begin{equation*}
b_{n+2}^{(k)}=p_{n+k+1} b_{n+1}^{(k)}+q_{n+k+1} b_{n}^{(k)} \tag{7}
\end{equation*}
$$

with the initial values $b_{0}^{(k)}=0$ and $b_{1}^{(k)}=1$.
Proof. Consider the sequence $\left\{B_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ defined in Theorem 2.2. Since $B_{n}^{(k)}=A_{k} a_{n+k}-A_{n+k} a_{k}$ and $a_{n} \neq 0$ for all $n \geq 1$, we have

$$
\frac{B_{n}^{(k)}}{a_{k} a_{n+k}}=\frac{A_{k}}{a_{k}}-\frac{A_{n+k}}{a_{n+k}} .
$$

So, by Lemma 2.1, we have the identity

$$
\sum_{k=1}^{m} \frac{B_{n}^{(k)}}{a_{k} a_{n+k}}=\sum_{k=1}^{n} \frac{B_{m}^{(k)}}{a_{k} a_{m+k}} .
$$

Finally, since $B_{n}^{(k)}=(-1)^{k} q_{k}^{*} b_{n}^{(k)}$, we have identity (6).
Notice that the coefficients $b_{n}^{(k)}$ can be obtained by two linearly independent solutions of recurrence (5). Indeed, we have

Proposition 2.4 If $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ are two linearly independent solutions of recurrence (5), then the coefficients $b_{n}^{(k)}$ can be expressed as

$$
\begin{equation*}
b_{n}^{(k)}=\frac{x_{k} y_{n+k}-x_{n+k} y_{k}}{x_{k} y_{k+1}-x_{k+1} y_{k}} . \tag{8}
\end{equation*}
$$

Proof. The sequence $\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ satisfies recurrence (7). So, it belongs to the vector space generated by the two sequences $\left\{x_{n+k}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n+k}\right\}_{n \in \mathbb{N}}$. This means that there exist two scalars $\lambda, \mu \in \mathbb{R}$ such that

$$
b_{n}^{(k)}=\lambda x_{n+k}+\mu y_{n+k} \quad \forall n \in \mathbb{N} .
$$

By imposing the initial conditions $b_{0}^{(k)}=0$ and $b_{1}^{(k)}=1$, we obtain the system

$$
\left\{\begin{array}{l}
x_{k} \lambda+y_{k} \mu=0 \\
x_{k+1} \lambda+y_{k+1} \mu=1
\end{array}\right.
$$

whose unique solution (by Cramer's theorem) is given by

$$
\lambda=\frac{1}{\Delta_{k}}\left|\begin{array}{cc}
0 & y_{k} \\
1 & y_{k+1}
\end{array}\right|=-\frac{y_{k}}{\Delta_{k}} \quad \text { and } \quad \mu=\frac{1}{\Delta_{k}}\left|\begin{array}{cc}
x_{k} & 0 \\
x_{k+1} & 1
\end{array}\right|=\frac{x_{k}}{\Delta_{k}}
$$

where

$$
\Delta_{k}=\left|\begin{array}{cc}
x_{k} & y_{k} \\
x_{k+1} & y_{k+1}
\end{array}\right|=x_{k} y_{k+1}-x_{k+1} y_{k} .
$$

Notice that $\Delta_{k} \neq 0$ for all $k \in \mathbb{N}$, since we are considering two linearly independent solutions of recurrence (5). In conclusion, we have obtained identity (8).

3 A first specialization

Let $X(x)$ and $Y(x)$ be two expressions such that $X(x), Y(x) \neq 0$. Let $\left\{\mathcal{W}_{n}(q, x)\right\}_{n \in \mathbb{N}}$ be the sequence defined by the recurrence

$$
\begin{equation*}
\mathcal{W}_{n+2}(q, x)=X\left(q^{n+1} x\right) \mathcal{W}_{n+1}(q, x)+Y\left(q^{n+1} x\right) \mathcal{W}_{n}(q, x) \tag{9}
\end{equation*}
$$

with the initial values $\mathcal{W}_{0}(q, x)=1$ and $\mathcal{W}_{1}(q, x)=X(x)$. Furthermore, let $\left\{\mathcal{W}_{n}^{(a, b)}(q, x)\right\}_{n \in \mathbb{N}}$ be the sequence defined by recurrence (9) and by the initial values $\mathcal{W}_{0}^{(a, b)}(q, x)=a$ and $\mathcal{W}_{1}^{(a, b)}(q, x)=b$ (with $b \neq 0$).

Theorem 3.1 We have $\mathcal{W}_{n}^{(0,1)}(q, x)=\mathcal{W}_{n-1}(q, q x)$, for all $n \in \mathbb{N}$.
Proof. Set $U_{n}(q, x)=\mathcal{W}_{n-1}(q, q x)$. Replacing n by $n-1$ and x by $q x$ in recurrence (9), we have

$$
\mathcal{W}_{n+1}(q, q x)=X\left(q^{n+1} x\right) \mathcal{W}_{n}(q, q x)+Y\left(q^{n+1} x\right) \mathcal{W}_{n-1}(q, q x)
$$

that is

$$
U_{n+2}(q, x)=X\left(q^{n+1} x\right) U_{n+1}(q, x)+Y\left(q^{n+1} x\right) U_{n}(q, q x) .
$$

So, the terms $U_{n}(q, x)$ satisfy recurrence (9). Moreover $U_{1}(q, x)=\mathcal{W}_{0}(q, q x)=1$. Finally, for $n=$ -1 in (9), we have $\mathcal{W}_{1}(q, x)=X(x) \mathcal{W}_{0}(q, x)+Y(x) \mathcal{W}_{-1}(q, x)$, that is $X(x)=X(x)+Y(x) \mathcal{W}_{-1}(q, x)$, from which we have $U_{0}(q, x)=\mathcal{W}_{-1}(q, q x)=0$.

Theorem 3.2 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} Q_{k}(q, x) \frac{\mathcal{W}_{n-1}\left(q, q^{k+1} x\right)}{\mathcal{W}_{k}^{(a, b)}(q, x) \mathcal{W}_{n+k}^{(a, b)}(q, x)}=\sum_{k=1}^{n}(-1)^{k} Q_{k}(q, x) \frac{\mathcal{W}_{m-1}\left(q, q^{k+1} x\right)}{\mathcal{W}_{k}^{(a, b)}(q, x) \mathcal{W}_{m+k}^{(a, b)}(q, x)} \tag{10}
\end{equation*}
$$

where $Q_{k}(q, x)=Y(q x) Y\left(q^{2} x\right) \cdots Y\left(q^{k-1} x\right) Y\left(q^{k} x\right)$. In particular, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} Q_{k}(q, x) \frac{\mathcal{W}_{n-1}\left(q, q^{k+1} x\right)}{\mathcal{W}_{k}(q, x) \mathcal{W}_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} Q_{k}(q, x) \frac{\mathcal{W}_{m-1}\left(q, q^{k+1} x\right)}{\mathcal{W}_{k}(q, x) \mathcal{W}_{m+k}(q, x)} \tag{11}
\end{equation*}
$$

Proof. The terms $\mathcal{W}_{n}^{(a, b)}(q, x)$ satisfy recurrence (5) with $p_{n}=X\left(q^{n} x\right)$ and $q_{n}=Y\left(q^{n} x\right)$. So $q_{k}^{*}=Y\left(q^{k} x\right) Y\left(q^{k-1} x\right) \cdots Y\left(q^{2} x\right) Y(q x)=Q_{k}(q, x)$ and the coefficients $b_{n}^{(k)}=b_{n}^{(k)}(q, x)$ appearing in the statement of Theorem 2.3 are defined by the recurrence

$$
b_{n+2}^{(k)}(q, x)=X\left(q^{n+k+1} x\right) b_{n+1}^{(k)}(q, x)+Y\left(q^{n+k+1} x\right) b_{n}^{(k)}(q, x)
$$

with the initial values $b_{0}^{(k)}(q, x)=0$ and $b_{1}^{(k)}(q, x)=1$. Hence, by Theorem 3.1, we have

$$
b_{n}^{(k)}(q, x)=U_{n}\left(q, q^{k} x\right)=\mathcal{W}_{n-1}\left(q, q^{k+1} x\right)
$$

In conclusion, identity (6) becomes identity (11).
The results obtained in Theorem 3.2 can be extended to the bisection sequences $\left\{\mathcal{W}_{2 n}^{(a, b)}(q, x)\right\}_{n \in \mathbb{N}}$ and $\left\{\mathcal{W}_{2 n+1}^{(a, b)}(q, x)\right\}_{n \in \mathbb{N}}$. If $E_{n}^{(a, b)}(q, x)=\mathcal{W}_{2 n}^{(a, b)}(q, x)$ and $O_{n}^{(a, b)}(q, x)=\mathcal{W}_{2 n+1}^{(a, b)}(q, x)$, then we have TheOrem 3.3 The terms $E_{n}^{(a, b)}(q, x)$ and $O_{n}^{(a, b)}(q, x)$ satisfy the three-term recurrences

$$
\begin{align*}
& E_{n+2}(q, x)=R_{n+1}(q, x) E_{n+1}(q, x)+S_{n+1}(q, x) E_{n}(q, x) \tag{12}\\
& O_{n+2}(q, x)=R_{n+1}^{+}(q, x) O_{n+1}(q, x)+S_{n+1}^{+}(q, x) O_{n}(q, x) \tag{13}
\end{align*}
$$

where

$$
\begin{align*}
& R_{n+1}(q, x)=Y\left(q^{2 n+3} x\right)+X\left(q^{2 n+2} x\right) X\left(q^{2 n+3} x\right)+\frac{X\left(q^{2 n+3} x\right)}{X\left(q^{2 n+1} x\right)} Y\left(q^{2 n+2} x\right) \tag{14}\\
& S_{n+1}(q, x)=\frac{X\left(q^{2 n+3} x\right)}{X\left(q^{2 n+1} x\right)} Y\left(q^{2 n+1} x\right) Y\left(q^{2 n+2} x\right) \tag{15}
\end{align*}
$$

and $R_{n+1}^{+}(q, x)=R_{n+1}(q, q x)$ and $S_{n+1}^{+}(q, x)=S_{n+1}(q, q x)$.
Proof. By recurrence (9), we have the system

$$
\left\{\begin{array}{l}
E_{n+1}(q, x)=Y\left(q^{2 n+1} x\right) E_{n}(q, x)+X\left(q^{2 n+1} x\right) O_{n}(q, x) \\
O_{n+1}(q, x)=X\left(q^{2 n+2} x\right) E_{n+1}(q, x)+Y\left(q^{2 n+2} x\right) O_{n}(q, x)
\end{array}\right.
$$

from which it is straightforward to obtain recurrences $\sqrt[12]{ }$ and 13 .
Moreover, if $E_{n}(q, x)=\mathcal{W}_{2 n}(q, x)$ and $O_{n}(q, x)=\mathcal{W}_{2 n+1}(q, x)$, then we have

Theorem 3.4 For every $n \in \mathbb{N}$, we have

$$
\begin{align*}
& E_{n}^{(0,1)}(q, x)=\frac{O_{n-1}(q, q x)}{X(q x)}=\frac{\mathcal{W}_{2 n-1}(q, q x)}{X(q x)} \tag{16}\\
& O_{n}^{(0,1)}(q, x)=\frac{O_{n-1}\left(q, q^{2} x\right)}{X\left(q^{2} x\right)}=\frac{\mathcal{W}_{2 n-1}\left(q, q^{2} x\right)}{X\left(q^{2} x\right)} . \tag{17}
\end{align*}
$$

Proof. Since $R_{n}^{+}(q, q x)=R_{n+1}(q, x)$ and $S_{n}^{+}(q, q x)=S_{n+1}(q, x)$, also the terms $\frac{O_{n-1}(q, q x)}{X(q x)}$ satisfy recurrence (12) with the initial values 0 and 1 . So, we have identity (16). Similarly, since $R_{n}^{+}\left(q, q^{2} x\right)=R_{n+1}^{+}(q, x)$ and $S_{n}^{+}\left(q, q^{2} x\right)=S_{n+1}^{+}(q, x)$, also the terms $\frac{O_{n-1}\left(q, q^{2} x\right)}{X\left(q^{2} x\right)}$ satisfy recurrence (13) with the initial values 0 and 1 . So, we have identity (17).

Now, we can prove next
Theorem 3.5 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{\mathcal{W}_{2 n-1}\left(q, q^{2 k+1} x\right)}{\mathcal{W}_{2 k}^{(a, b)}(q, x) \mathcal{W}_{2 n+2 k}^{(a, b)}(q, x)}= \\
& \quad=\sum_{k=1}^{n} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{\mathcal{W}_{2 m-1}\left(q, q^{2 k+1} x\right)}{\mathcal{W}_{2 k}^{(a, b)}(q, x) \mathcal{W}_{2 m+2 k}^{(a, b)}(q, x)} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{\mathcal{W}_{2 n-1}\left(q, q^{2 k+2} x\right)}{\mathcal{W}_{2 k+1}^{(a, b)}(q, x) \mathcal{W}_{2 n+2 k+1}^{(a, b)}(q, x)}= \\
& =\sum_{k=1}^{n} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{\mathcal{W}_{2 m-1}\left(q, q^{2 k+2} x\right)}{\mathcal{W}_{2 k+1}^{(a, b)}(q, x) \mathcal{W}_{2 m+2 k+1}^{(a, b)}(q, x)} \tag{19}
\end{align*}
$$

where $Q_{k}(q, x)=Y(q x) Y\left(q^{2} x\right) \cdots Y\left(q^{k-1} x\right) Y\left(q^{k} x\right)$. In particular, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{\mathcal{W}_{2 n-1}\left(q, q^{2 k+1} x\right)}{\mathcal{W}_{2 k}(q, x) \mathcal{W}_{2 n+2 k}(q, x)}= \\
& \quad=\sum_{k=1}^{n} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{\mathcal{W}_{2 m-1}\left(q, q^{2 k+1} x\right)}{\mathcal{W}_{2 k}(q, x) \mathcal{W}_{2 m+2 k}(q, x)} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{\mathcal{W}_{2 n-1}\left(q, q^{2 k+2} x\right)}{\mathcal{W}_{2 k+1}(q, x) \mathcal{W}_{2 n+2 k+1}(q, x)}= \\
& \quad=\sum_{k=1}^{n} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{\mathcal{W}_{2 m-1}\left(q, q^{2 k+2} x\right)}{\mathcal{W}_{2 k+1}(q, x) \mathcal{W}_{2 m+2 k+1}(q, x)} \tag{21}
\end{align*}
$$

Proof. By recurrence (12), the terms $E_{n}(q, x)$ satisfy recurrence (5) with $p_{n}=R_{n}(q, x)$ and $q_{n}=S_{n}(q, x)$. So, by identity 15), we have

$$
q_{k}^{*}=\prod_{i=1}^{k} S_{k}(q, x)=\prod_{i=1}^{k} \frac{X\left(q^{2 i+1} x\right)}{X\left(q^{2 i-1} x\right)} Y\left(q^{2 i-1} x\right) Y\left(q^{2 i+1} x\right)
$$

$$
\begin{aligned}
& =\frac{X\left(q^{2 k+1} x\right)}{X(q x)} \prod_{i=1}^{k} Y\left(q^{2 i+1} x\right) \prod_{i=1}^{k} Y\left(q^{2 i-1} x\right) \\
& =\frac{X\left(q^{2 k+1} x\right)}{X(q x)} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x / q\right) .
\end{aligned}
$$

Moreover, by identities 14 and 15), the coefficients $b_{n}^{(k)}=b_{n}^{(k)}(q, x)$ appearing in the statement of Theorem 2.3 are defined by the recurrence

$$
\begin{aligned}
b_{n+2}^{(k)}(q, x) & =R_{n+k+1}(q, x) b_{n+1}^{(k)}(q, x)+S_{n+k+1}(q, x) b_{n}^{(k)}(q, x) \\
& =R_{n+1}\left(q, q^{2 k} x\right) b_{n+1}^{(k)}(q, x)+S_{n+1}\left(q, q^{2 k} x\right) b_{n}^{(k)}(q, x)
\end{aligned}
$$

with the initial values $b_{0}^{(k)}(q, x)=0$ and $b_{1}^{(k)}(q, x)=1$. So, by identity 16, we have

$$
b_{n}^{(k)}(q, x)=E_{n}^{(0,1)}\left(q, q^{2 k} x\right)=\frac{\mathcal{W}_{2 k-1}\left(q, q^{2 k+1} x\right)}{X\left(q^{2 k+1} x\right)} .
$$

Then, identity (6) becomes identity (20).
By recurrence (13), the terms $O_{n}(q, x)$ satisfy recurrence (5) with $p_{n}=R_{n}^{+}(q, x)=R_{n}(q, q x)$ and $q_{n}=S_{n}^{+}(q, x)=S_{n}(q, q x)$. So, as before, we have

$$
q_{k}^{*}=\frac{X\left(q^{2 k+2} x\right)}{X\left(q^{2} x\right)} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) .
$$

Moreover, the coefficients $b_{n}^{(k)}=b_{n}^{(k)}(q, x)$ are defined by the recurrence

$$
\begin{aligned}
b_{n+2}^{(k)}(q, x) & =R_{n+k+1}^{+}(q, x) b_{n+1}^{(k)}(q, x)+S_{n+k+1}^{+}(q, x) b_{n}^{(k)}(q, x) \\
& =R_{n+1}^{+}\left(q, q^{2 k} x\right) b_{n+1}^{(k)}(q, x)+S_{n+1}^{+}\left(q, q^{2 k} x\right) b_{n}^{(k)}(q, x)
\end{aligned}
$$

with the initial values $b_{0}^{(k)}(q, x)=0$ and $b_{1}^{(k)}(q, x)=1$. So, by identity 17), we have

$$
b_{n}^{(k)}(q, x)=O_{n}^{(0,1)}\left(q, q^{2 k} x\right)=\frac{\mathcal{W}_{2 k-1}\left(q, q^{2 k+2} x\right)}{X\left(q^{2 k+2} x\right)} .
$$

Then, identity (6) becomes identity (21).

4 Specialization to q-polynomials

Now, we specialize the results obtained in the previous section to some q-polynomials of combinatorial interest. Specifically, we consider the q-polynomials $W_{n}(q, x)$ defined by the recurrence

$$
\begin{equation*}
W_{n+2}(q, x)=\left(A+B q^{n+2} x\right) W_{n+1}(q, x)+\left(C+D q^{n+1} x\right) W_{n}(q, x) \tag{22}
\end{equation*}
$$

with the initial conditions $W_{0}(q, x)=1$ and $W_{1}(q, x)=A+B q x$, where $A B \neq 0$ and $C D \neq 0$. Notice that, by extending this recurrence to negative indices, we have $W_{-1}(q, x)=0$. In particular, for
$x=1$, we have the q-numbers $w_{n}(q)=W_{n}(q, 1)$. Furthermore, let $W_{n}^{(a, b)}(q, x)$ be the q-polynomials defined by recurrence 22) and by the initial values $W_{0}^{(a, b)}(q, x)=a$ and $W_{1}^{(a, b)}(q, x)=b$ (with $b \neq 0$).

First of all, we have
Theorem 4.1 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} Q_{k}(q, x) \frac{W_{n-1}\left(q, q^{k+1} x\right)}{W_{k}^{(a, b)}(q, x) W_{n+k}^{(a, b)}(q, x)}=\sum_{k=1}^{n}(-1)^{k} Q_{k}(q, x) \frac{W_{m-1}\left(q, q^{k+1} x\right)}{W_{k}^{(a, b)}(q, x) W_{m+k}^{(a, b)}(q, x)} \tag{23}
\end{equation*}
$$

where $Q_{k}(q, x)=(C+D q x) \cdots\left(C+D q^{k-1} x\right)\left(C+D q^{k} x\right)$. In particular, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} Q_{k}(q, x) \frac{W_{n-1}\left(q, q^{k+1} x\right)}{W_{k}(q, x) W_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} Q_{k}(q, x) \frac{W_{m-1}\left(q, q^{k+1} x\right)}{W_{k}(q, x) W_{m+k}(q, x)} \tag{24}
\end{equation*}
$$

and for $x=1$ and $Q_{k}(q)=Q_{k}(q, 1)$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} Q_{k}(q) \frac{W_{n-1}\left(q, q^{k+1}\right)}{w_{k}(q) w_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k} Q_{k}(q) \frac{W_{m-1}\left(q, q^{k+1}\right)}{w_{k}(q) w_{m+k}(q)} . \tag{25}
\end{equation*}
$$

Proof. Apply Theorem 3.2, with $X(x)=A+B q x$ and $Y(x)=C+D x$.
Then, we have
Theorem 4.2 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{W_{2 n-1}\left(q, q^{2 k+1} x\right)}{W_{2 k}^{(a, b)}(q, x) W_{2 n+2 k}^{(a, b)}(q, x)}= \\
& \quad=\sum_{k=1}^{n} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{W_{2 m-1}\left(q, q^{2 k+1} x\right)}{W_{2 k}^{(a, b)}(q, x) W_{2 m+2 k}^{(a, b)}(q, x)} \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{k=1}^{m} & Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{W_{2 n-1}\left(q, q^{2 k+2} x\right)}{W_{2 k+1}^{(a, b)}(q, x) W_{2 n+2 k+1}^{(a, b)}(q, x)}= \tag{27}\\
& =\sum_{k=1}^{n} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{W_{2 m-1}\left(q, q^{2 k+2} x\right)}{W_{2 k+1}^{(a, b)}(q, x) W_{2 m+2 k+1}^{(a, b)}(q, x)}
\end{align*}
$$

where $Q_{k}(q, x)=(C+D q x) \cdots\left(C+D q^{k-1} x\right)\left(C+D q^{k} x\right)$. In particular, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{W_{2 n-1}\left(q, q^{2 k+1} x\right)}{W_{2 k}(q, x) W_{2 n+2 k}(q, x)}= \\
& \quad=\sum_{k=1}^{n} Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right) \frac{W_{2 m-1}\left(q, q^{2 k+1} x\right)}{W_{2 k}(q, x) W_{2 m+2 k}(q, x)} \tag{28}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{k=1}^{m} & Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{W_{2 n-1}\left(q, q^{2 k+2} x\right)}{W_{2 k+1}(q, x) W_{2 n+2 k+1}(q, x)}= \tag{29}\\
& =\sum_{k=1}^{n} Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right) \frac{W_{2 m-1}\left(q, q^{2 k+2} x\right)}{W_{2 k+1}(q, x) W_{2 m+2 k+1}(q, x)}
\end{align*}
$$

Proof. Apply Theorem 3.5, with $X(x)=A+B q x$ and $Y(x)=C+D x$.
Finally, we have
Theorem 4.3 The q-polynomials $W_{n}^{(a, b)}(q, x)$ have generating series

$$
\begin{align*}
& W^{(a, b)}(q, x ; t)=\sum_{n \geq 0} W_{n}^{(a, b)}(q, x) t^{n}= \\
& \quad=\sum_{k \geq 0} q^{\binom{k+1}{2}} x^{k} t^{k} \frac{\left(a+(b-a A-a B q x) q^{k} t\right)(B+D t)(B+D q t) \cdots\left(B+D q^{k-1} t\right)}{\left(1-A t-C t^{2}\right)\left(1-A q t-C q^{2} t^{2}\right) \cdots\left(1-A q^{k} t-C q^{2 k} t^{k}\right)} . \tag{30}
\end{align*}
$$

In particular, the q-polynomials $W_{n}(q, x)$ have generating series

$$
\begin{equation*}
\left.\sum_{n \geq 0} W_{n}(q, x) t^{n}=\sum_{k \geq 0} q^{(k+1}\right) x^{k} t^{k} \frac{(B+D t)(B+D q t) \cdots\left(B+D q^{k-1} t\right)}{\left(1-A t-C t^{2}\right)\left(1-A q t-C q^{2} t^{2}\right) \cdots\left(1-A q^{k} t-C q^{2 k} t^{2}\right)} . \tag{31}
\end{equation*}
$$

Proof. Let $W(t)=W^{(a, b)}(q, x ; t)$. By recurrence 22, we have

$$
\frac{W(t)-a-b t}{t^{2}}=A \frac{W(t)-a}{t}+B q x \frac{W(q t)-a}{t}+C W(t)+D q x W(q t)
$$

from which we obtain the identity

$$
W(t)=\frac{a+(b-a A-a B q x) t}{1-A t-C t^{2}}+\frac{q x t(B+D t)}{1-A t-C t^{2}} W(q t) .
$$

By applying this identity repeatedly, we obtain

$$
\begin{aligned}
& W(t)=\sum_{k=0}^{n} q^{\binom{k+1}{2}} x^{k} t^{k} \frac{\left(a+(b-a A-a B q x) q^{k} t\right)(B+D t)(B+D q t) \cdots\left(B+D q^{k-1} t\right)}{\left(1-A t-C t^{2}\right)\left(1-A q t-C q^{2} t^{2}\right) \cdots\left(1-A q^{k} t-C q^{2 k} t^{2}\right)}+ \\
& \quad+q^{\binom{n+2}{2}} x^{n+1} t^{n+1} \frac{\left(a+(b-a A-a B q x) q^{n+1} t\right)(B+D t)(B+D q t) \cdots\left(B+D q^{n} t\right)}{\left(1-A t-C t^{2}\right)\left(1-A q t-C q^{2} t^{2}\right) \cdots\left(1-A q^{n} t-C q^{2 n} t^{2}\right)} W\left(q^{n+1} t\right) .
\end{aligned}
$$

Now, by taking the limit of both sides for $n \rightarrow+\infty$, we get identity (30). Finally, since $W_{0}(q, x)=1$ and $W_{1}(q, x)=A+B q x$, identity (30) implies identity (31).

Remark 4.4. By identity (30), we also have

$$
\sum_{n \geq 0} W_{n}^{(0,1)}(q, x) t^{n}=\sum_{k \geq 0} q^{\left({ }_{2}^{k+1}\right)}(q x)^{k} t^{k+1} \frac{(B+D t)(B+D q t) \cdots\left(B+D q^{k-1} t\right)}{\left(1-A t-C t^{2}\right)\left(1-A q t-C q^{2} t^{2}\right) \cdots\left(1-A q^{k} t-C q^{2 k} t^{k}\right)} .
$$

Notice that, by series 31), we have the identity $W^{(0,1)}(q, x ; t)=t W(q, q x ; t)$, from which we reobtain that $W_{n}^{(0,1)}(q, x)=W_{n-1}(q, q x)$.

5 Examples

Several q-polynomials are a specialization of the q-polynomials $W_{n}(q, x)$ considered in Section 4 , Some of them can be defined in the following combinatorial setting. A linear partition of the linearly ordered set $[n]=\{1,2, \ldots, n\}$ is a family $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ of non-empty intervals B_{i} of $[n]$ such that $B_{i} \cap B_{j}=\varnothing$, for every $i \neq j$, and $B_{1} \cup B_{2} \cup \cdots \cup B_{k}=[n]$. A 2-filtering partition of $[n]$ is a linear partition of $[n]$ where each block has size 1 or 2 . Let $\Phi_{n}^{(2)}$ be the set of the 2-filtering partitions of [n] where the blocks are of two types, say black or white. Given $\pi \in \Phi_{n}^{(2)}$, let $m(\pi)=m\left(B_{1}\right)+m\left(B_{2}\right)+\cdots+m\left(B_{k}\right)$, where $m\left(B_{i}\right)=0$ if B_{i} is a block of the first kind (black), $m\left(B_{i}\right)=s$ if $B_{i}=\{s\}$ or $B_{i}=\{s, s+1\}$ is a block of the second kind (white); then, let $w(\pi)$ be the number of white blocks of π.

$5.1 \quad q$-Fibonacci and q-Lucas polynomials

Let Φ_{n} be the subset of $\Phi_{n}^{(2)}$ consisting of the 2-filtering partitions with only 1-blocks of the first kind (black) and 2 -blocks of the second kind (white). The q-Fibonacci polynomials are defined by

$$
F_{n}(q, x)=\sum_{\pi \in \Phi_{n}} q^{m(\pi)} x^{w(\pi)}
$$

and satisfy the recurrence

$$
F_{n+2}(q, x)=F_{n+1}(q, x)+q^{n+1} x F_{n}(q, x)
$$

with the initial values $F_{0}(q, x)=F_{1}(q, x)=1$. In particular, for $x=1$, we have the q-Fibonacci numbers $f_{n}(q)=F_{n}(q, 1)$, [17, 10] [4, 55.

Similarly, we define the q-Lucas polynomials $L_{n}(q, x)$ by the recurrence

$$
L_{n+2}(q, x)=L_{n+1}(q, x)+q^{n+1} x L_{n}(q, x)
$$

with the initial values $L_{0}(q, x)=1+q$ and $L_{1}(q, x)=1$. Then, for $x=1$, we have the q-Lucas numbers $\ell_{n}(q)=L_{n}(q, 1)$.

The q-Fibonacci polynomials are a special case of the q-polynomials $W_{n}(q, x)$. Indeed, we have $F_{n}(q, x)=W_{n}(q, x)$ for $A=1, B=0, C=0, D=1$. The q-Lucas polynomials satisfy the same recurrence, but with different initial values. Then, by identities (31) and (30), we have the generating series

$$
\begin{aligned}
& \sum_{n \geq 0} F_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{k^{2}} x^{k} t^{2 k}}{(1-t)(1-q t) \cdots\left(1-q^{k} t\right)} \\
& \sum_{n \geq 0} L_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{k^{2}}\left(1+q-q^{k+1} t\right) x^{k} t^{2 k}}{(1-t)(1-q t) \cdots\left(1-q^{k} t\right)}
\end{aligned}
$$

from which we obtain $L_{n}(q, x)=(1+q) F_{n}(q, x)+q F_{n-1}(q, q x)$, for $n \geq 1$. Moreover, we have
Theorem 5.1 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} q^{\binom{k+1}{2}} x^{k} \frac{F_{n-1}\left(q, q^{k+1} x\right)}{F_{k}(q, x) F_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} x^{k} \frac{F_{m-1}\left(q, q^{k+1} x\right)}{F_{k}(q, x) F_{m+k}(q, x)} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} q^{\left(k_{2}^{k+1}\right)} x^{k} \frac{F_{n-1}\left(q, q^{k+1} x\right)}{L_{k}(q, x) L_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} x^{k} \frac{F_{m-1}\left(q, q^{k+1} x\right)}{L_{k}(q, x) L_{m+k}(q, x)} \tag{33}
\end{equation*}
$$

In particular, for $x=1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m}(-1)^{k} q^{\binom{k+1}{2}} \frac{F_{n-1}\left(q, q^{k+1}\right)}{f_{k}(q) f_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} \frac{F_{m-1}\left(q, q^{k+1}\right)}{f_{k}(q) f_{m+k}(q)} \tag{34}\\
& \sum_{k=1}^{m}(-1)^{k} q^{\binom{k+1}{2}} \frac{F_{n-1}\left(q, q^{k+1}\right)}{\ell_{k}(q) \ell_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} \frac{F_{m-1}\left(q, q^{k+1}\right)}{\ell_{k}(q) \ell_{m+k}(q)} \tag{35}
\end{align*}
$$

Proof. Since $Q_{k}(q, x)=q^{k+(k-1)+\cdots+2+1} x^{k}=q^{\binom{k+1}{2}} x^{k}$, identity 24 becomes identity 32 . Similarly, identity (23) becomes identity (33).

Then, we have
TheOrem 5.2 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} q^{k(2 k+1)} x^{2 k} \frac{F_{2 n-1}\left(q, q^{2 k+1} x\right)}{F_{2 k}(q, x) F_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+1)} x^{2 k} \frac{F_{2 m-1}\left(q, q^{2 k+1} x\right)}{F_{2 k}(q, x) F_{2 m+2 k}(q, x)} \tag{36}\\
& \sum_{k=1}^{m} q^{k(2 k+1)} x^{2 k} \frac{F_{2 n-1}\left(q, q^{2 k+1} x\right)}{L_{2 k}(q, x) L_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+1)} x^{2 k} \frac{F_{2 m-1}\left(q, q^{2 k+1} x\right)}{L_{2 k}(q, x) L_{2 m+2 k}(q, x)} \tag{37}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m} q^{k(2 k+3)} x^{2 k} \frac{F_{2 n-1}\left(q, q^{2 k+2} x\right)}{F_{2 k+1}(q, x) F_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+3)} x^{2 k} \frac{F_{2 m-1}\left(q, q^{2 k+2} x\right)}{F_{2 k+1}(q, x) F_{2 m+2 k+1}(q, x)} \tag{38}\\
& \sum_{k=1}^{m} q^{k(2 k+3)} x^{2 k} \frac{F_{2 n-1}\left(q, q^{2 k+2} x\right)}{L_{2 k+1}(q, x) L_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+3)} x^{2 k} \frac{F_{2 m-1}\left(q, q^{2 k+2} x\right)}{L_{2 k+1}(q, x) L_{2 m+2 k+1}(q, x)} . \tag{39}
\end{align*}
$$

Proof. Apply Theorem 4.2, noticing that

$$
\begin{aligned}
& Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right)=q^{4\binom{k+1}{2}-k} x^{2 k}=q^{k(2 k+1)} x^{2 k} \\
& Q_{k}\left(q^{2}, q x\right) Q_{k}\left(q^{2}, x\right)=q^{4\binom{k+1}{2}+k} x^{2 k}=q^{k(2 k+3)} x^{2 k}
\end{aligned}
$$

REMARK 5.3. In the literature, there are other q-analogues of the Fibonacci polynomials and numbers. For instance, we have the q-Fibonacci polynomials $\varphi_{n}(q, x)$ defined by the recurrence $\varphi_{n+2}(q, x)=q^{n+1} x \varphi_{n+1}(q, x)+q^{n} x \varphi_{n}(q, x)$ with the initial values $\varphi_{0}(q, x)=1$ and $\varphi_{1}(q, x)=x$, and the q-Fibonacci numbers $\varphi_{n}(q)=\varphi_{n}(q, 1)$ considered in [7]. In this case, we have $\varphi_{n}(q, x)=$ $W_{n}(q, x)$ for $A=0, B=1 / q, C=0, D=1 / q$. So, we have the generating series

$$
\sum_{n \geq 0} \varphi_{n}(q, x) t^{n}=\sum_{k \geq 0} q^{\binom{k}{2}} x^{k} t^{k}(1+t)(1+q t) \cdots\left(1+q^{k-1} t\right)
$$

and the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} q^{\binom{k}{2}} x^{k} \frac{\varphi_{n-1}\left(q, q^{k+1} x\right)}{\varphi_{k}(q, x) \varphi_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k}{2}} x^{k} \frac{\varphi_{m-1}\left(q, q^{k+1} x\right)}{\varphi_{k}(q, x) \varphi_{m+k}(q, x)} \tag{40}
\end{equation*}
$$

$5.2 \quad q$-Pell polynomials

Let Ψ_{n} be the subset of $\Phi_{n}^{(2)}$ consisting of the 2-filtering partitions of $[n]$ where the 1 -blocks are of both types (black and white), and the 2-blocks are only of the second type (white). The q-Pell polynomials are defined by

$$
P_{n}(q, x)=\sum_{\pi \in \Psi_{n}} q^{m(\pi)} x^{w(\pi)}
$$

and satisfy the recurrence

$$
P_{n+2}(q, x)=\left(1+q^{n+2} x\right) P_{n+1}(q, x)+q^{n+1} x P_{n}(q, x)
$$

with the initial conditions $P_{0}(q, x)=1$ and $P_{1}(q, x)=1+q x$. In particular, for $x=1$, we have the q-Pell numbers $p_{n}(q)=P_{n}(q, 1)$, [16, 15, 3]. For $q=1$, we have the Pell numbers [18, A000129].

In this case, we have $P_{n}(q, x)=W_{n}(q, x)$ for $A=1, B=1, C=0, D=1$. Then, by identity (31), we have the generating series

$$
\left.\sum_{n \geq 0} P_{n}(q, x) t^{n}=\sum_{k \geq 0} q^{(k+1}\right)^{k} x^{k} t^{k} \frac{(1+t)(1+q t) \cdots\left(1+q^{k-1} t\right)}{(1-t)(1-q t) \cdots\left(1-q^{k} t\right)}
$$

Moreover, we have
ThEOREM 5.4 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identity

$$
\begin{equation*}
\left.\sum_{k=1}^{m}(-1)^{k} q^{(k+1}{ }_{2}^{k}\right) x^{k} \frac{P_{n-1}\left(q, q^{k+1} x\right)}{P_{k}(q, x) P_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} x^{k} \frac{P_{m-1}\left(q, q^{k+1} x\right)}{P_{k}(q, x) P_{m+k}(q, x)} . \tag{41}
\end{equation*}
$$

In particular, for $x=1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k} q^{\binom{k+1}{2}} \frac{P_{n-1}\left(q, q^{k+1}\right)}{p_{k}(q) p_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k} q^{\binom{k+1}{2}} \frac{P_{m-1}\left(q, q^{k+1}\right)}{p_{k}(q) p_{m+k}(q)} \tag{42}
\end{equation*}
$$

Proof. Since $Q_{k}(q, x)=q^{k+(k-1)+\cdots+2+1} x^{k}=q^{\binom{k+1}{2}} x^{k}$, identity 24 becomes identity 41.
Then, we have
TheOrem 5.5 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} q^{k(2 k+1)} x^{2 k} \frac{P_{2 n-1}\left(q, q^{2 k+1} x\right)}{P_{2 k}(q, x) P_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+1)} x^{2 k} \frac{P_{2 m-1}\left(q, q^{2 k+1} x\right)}{P_{2 k}(q, x) P_{2 m+2 k}(q, x)} \tag{43}\\
& \sum_{k=1}^{m} q^{k(2 k+3)} x^{2 k} \frac{P_{2 n-1}\left(q, q^{2 k+2} x\right)}{P_{2 k+1}(q, x) P_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+3)} x^{2 k} \frac{P_{2 m-1}\left(q, q^{2 k+2} x\right)}{P_{2 k+1}(q, x) P_{2 m+2 k+1}(q, x)} . \tag{44}
\end{align*}
$$

Proof. By Theorem 4.2, where $Q_{k}\left(q^{2}, x\right) Q_{k}\left(q^{2}, x / q\right)=q^{4\binom{k+1}{2}-k} x^{2 k}=q^{k(2 k+1)} x^{2 k}$.
Remark 5.6. In [12], we have other two q-analogues of the Pell polynomials: the q-polynomials $a_{n}(q, x)$ defined by the recurrence $a_{n+2}(q, x)=(1+x) a_{n+1}(q, x)+q^{n} x a_{n}(q, x)$ with the initial values $a_{0}(q, x)=0$ and $a_{1}(q, x)=x$, and the q-polynomials $b_{n}(q, x)$ defined by the recurrence $b_{n+2}(q, x)=\left(1+q^{n+1} x\right) b_{n+1}(q, x)+q^{n} x b_{n}(q, x)$ with the initial values $b_{0}(q, x)=0$ and $b_{1}(q, x)=x$. The q-polynomials $b_{n+1}(q, x)$ satisfy the same recurrence of $P_{n}(q, x)$, but with different initial values, while the q-polynomials $a_{n+1}(q, x)$ do not satisfy an instance of recurrence (22).

5.3 -Jacobsthal polynomials

Let Ξ_{n} be the subset of $\Phi_{n}^{(2)}$ consisting of the 2-filtering partitions of [n] where the 1-blocks are only of the first type (black) and the 2-blocks are of both types (black and white). The q-Jacobsthal polynomials are defined by

$$
J_{n}(q, x)=\sum_{\pi \in \Xi_{n}} q^{m(\pi)} x^{w(\pi)}
$$

and satisfy the recurrence

$$
J_{n+2}(q, x)=J_{n+1}(q, x)+\left(1+q^{n+1} x\right) J_{n}(q, x)
$$

with the initial values $J_{0}(q, x)=J_{1}(q, x)=1$. In particular, for $x=1$, we have the q-Jacobsthal numbers $j_{n}(q)=J_{n}(q, 1)$. Furthermore, for $q=1$, we have the Jacobsthal numbers $j_{n}=\left(2^{n+1}+\right.$ $\left.(-1)^{n}\right) / 3$ [18, A001045].

In this case, we have $J_{n}(q, x)=W_{n}(q, x)$ for $A=1, B=0, C=1, D=1$. Then, by identity (31), we have the generating series

$$
\sum_{n \geq 0} J_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{k^{2}} x^{k} t^{2 k}}{\left(1-t-t^{2}\right)\left(1-q t-q^{2} t^{2}\right) \cdots\left(1-q^{k} t-q^{2 k} t^{2}\right)}
$$

Moreover, recalling that the q-Pochhammer symbol is defined by

$$
(x ; q)_{k}=(1-x)(1-q x) \cdots\left(1-q^{k-1} x\right)
$$

we have
Theorem 5.7 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k}(-q x ; q)_{k} \frac{J_{n-1}\left(q, q^{k+1} x\right)}{J_{k}(q, x) J_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k}(-q x ; q)_{k} \frac{J_{m-1}\left(q, q^{k+1} x\right)}{J_{k}(q, x) J_{m+k}(q, x)} \tag{45}
\end{equation*}
$$

In particular, for $x=1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k}(-q ; q)_{k} \frac{J_{n-1}\left(q, q^{k+1}\right)}{j_{k}(q) j_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k}(-q ; q)_{k} \frac{J_{m-1}\left(q, q^{k+1}\right)}{j_{k}(q) j_{m+k}(q)} \tag{46}
\end{equation*}
$$

Proof. Since $Q_{k}(q, x)=(1+q x) \cdots\left(1+q^{k-1} x\right)\left(1+q^{k} x\right)=(-q x ; q)_{k}$, identity 24) becomes identity (45).

Then, we have

Theorem 5.8 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m}(-q x ; q)_{2 k} \frac{J_{2 n-1}\left(q, q^{2 k+1} x\right)}{J_{2 k}(q, x) J_{2 n+2 k}(q, x)}=\sum_{k=1}^{n}(-q x ; q)_{2 k} \frac{J_{2 m-1}\left(q, q^{2 k+1} x\right)}{J_{2 k}(q, x) J_{2 m+2 k}(q, x)} \tag{47}\\
& \sum_{k=1}^{m}\left(-q^{2} x ; q\right)_{2 k} \frac{J_{2 n-1}\left(q, q^{2 k+2} x\right)}{J_{2 k+1}(q, x) J_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n}\left(-q^{2} x ; q\right)_{2 k} \frac{J_{2 m-1}\left(q, q^{2 k+2} x\right)}{J_{2 k+1}(q, x) J_{2 m+2 k+1}(q, x)} . \tag{48}
\end{align*}
$$

Proof. By Theorem 4.2, where $Q_{k}\left(q^{2}, x / q\right) Q_{k}\left(q^{2}, x\right)=\left(-q x ; q^{2}\right)_{k}\left(-q^{2} x ; q^{2}\right)_{k}=(-q x ; q)_{2 k}$.

5.4 The q-polynomials $R_{n}(q, x)$

Let $R_{n}(q, x)$ be the q-polynomials associated to $\Phi_{n}^{(2)}$, i.e. the q-polynomials defined by

$$
R_{n}(q, x)=\sum_{\pi \in \Phi_{n}^{(2)}} q^{m(\pi)} x^{w(\pi)} .
$$

These q-polynomials satisfy the recurrence

$$
R_{n+2}(q, x)=\left(1+q^{n+2} x\right) R_{n+1}(q, x)+\left(1+q^{n+1} x\right) R_{n}(q, x)
$$

with the initial conditions $R_{0}(q, x)=1$ and $R_{1}(q, x)=1+q x$. In particular, for $x=1$, we have the q-numbers $r_{n}(q)=R_{n}(q, 1)$. Furthermore, the coefficients of the polynomials $R_{n}(x)=R_{n}(1, x)$ form sequence A063967 in [18], while the numbers $r_{n}=r_{n}(1)$ form sequence A026150 in [18].

In this case, we have $R_{n}(q, x)=W_{n}(q, x)$ for $A=1, B=1, C=1, D=1$. Then, by identity (31), we have the generating series

$$
\sum_{n \geq 0} R_{n}(q, x) t^{n}=\sum_{k \geq 0} q^{\binom{k+1}{2}} x^{k} t^{k} \frac{(1+t)(1+q t) \cdots\left(1+q^{k-1} t\right)}{\left(1-t-t^{2}\right)\left(1-q t-q^{2} t^{2}\right) \cdots\left(1-q^{k} t-q^{2 k} t^{2}\right)} .
$$

Moreover, we have
Theorem 5.9 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k}(-q x ; q)_{k} \frac{R_{n-1}\left(q, q^{k+1} x\right)}{R_{k}(q, x) R_{n+k}(q, x)}=\sum_{k=1}^{n}(-1)^{k}(-q x ; q)_{k} \frac{R_{m-1}\left(q, q^{k+1} x\right)}{R_{k}(q, x) R_{m+k}(q, x)} . \tag{49}
\end{equation*}
$$

In particular, for $x=1$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{m}(-1)^{k}(-q ; q)_{k} \frac{R_{n-1}\left(q, q^{k+1}\right)}{r_{k}(q) r_{n+k}(q)}=\sum_{k=1}^{n}(-1)^{k}(-q ; q)_{k} \frac{R_{m-1}\left(q, q^{k+1}\right)}{r_{k}(q) r_{m+k}(q)} . \tag{50}
\end{equation*}
$$

Proof. Since $Q_{k}(q, x)=(1+q x) \cdots\left(1+q^{k-1} x\right)\left(1+q^{k} x\right)=(-q x ; q)_{k}$, identity 24) becomes identity (49).

Then, we have

Theorem 5.10 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m}(-q x ; q)_{2 k} \frac{R_{2 n-1}\left(q, q^{2 k+1} x\right)}{R_{2 k}(q, x) R_{2 n+2 k}(q, x)}=\sum_{k=1}^{n}(-q x ; q)_{2 k} \frac{R_{2 m-1}\left(q, q^{2 k+1} x\right)}{R_{2 k}(q, x) R_{2 m+2 k}(q, x)} \tag{51}\\
& \sum_{k=1}^{m}\left(-q^{2} x ; q\right)_{2 k} \frac{R_{2 n-1}\left(q, q^{2 k+2} x\right)}{R_{2 k+1}(q, x) R_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n}\left(-q^{2} x ; q\right)_{2 k} \frac{R_{2 m-1}\left(q, q^{2 k+2} x\right)}{R_{2 k+1}(q, x) R_{2 m+2 k+1}(q, x)} . \tag{52}
\end{align*}
$$

Proof. By Theorem 4.2, where $Q_{k}\left(q^{2}, x / q\right) Q_{k}\left(q^{2}, x\right)=\left(-q x ; q^{2}\right)_{k}\left(-q^{2} x ; q^{2}\right)_{k}=(-q x ; q)_{2 k}$.

$5.5 \quad q$-Chebyshev polynomials

We define the q-Chebyshev polynomials of the first kind $T_{n}(q, x)$ by the recurrence

$$
T_{n+2}(q, x)=2 q^{n+1} x T_{n+1}(q, x)-T_{n}(q, x)
$$

with the initial conditions $T_{0}(q, x)=1$ and $T_{1}(q, x)=x$. Similarly, we define the q-Chebyshev polynomials of the second kind $U_{n}(q, x)$ by the recurrence

$$
U_{n+2}(q, x)=2 q^{n+1} x U_{n+1}(q, x)-U_{n}(q, x)
$$

with the initial conditions $U_{0}(q, x)=1$ and $U_{1}(q, x)=2 x$.
In this case, we have $U_{n}(q, x)=W_{n}(q, x)$ for $A=0, B=2 / q, C=-1, D=0$. Then, by identities (30) and (31), we have the generating series

$$
\begin{aligned}
& T(q, x ; t)=\sum_{n \geq 0} T_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{\binom{k}{2}} 2^{k} x^{k} t^{k}\left(1-q^{k} x t\right)}{\left(1+t^{2}\right)\left(1+q^{2} t^{2}\right) \cdots\left(1+q^{2 k} t^{2}\right)} \\
& U(q, x ; t)=\sum_{n \geq 0} U_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{\left(\frac{k}{k}\right)} 2^{k} x^{k} t^{k}}{\left(1+t^{2}\right)\left(1+q^{2} t^{2}\right) \cdots\left(1+q^{2 k} t^{2}\right)} .
\end{aligned}
$$

Notice that $T(q, x ; t)=U(q, x ; t)-x t U(q, q x ; t)$, and consequently that $T_{n}(q, x)=U_{n}(q, x)-$ $x U_{n-1}(q, q x)$. Moreover, we have

Theorem 5.11 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{U_{n-1}\left(q, q^{k+1} x\right)}{T_{k}(q, x) T_{n+k}(q, x)}=\sum_{k=1}^{n} \frac{U_{m-1}\left(q, q^{k+1} x\right)}{T_{k}(q, x) T_{m+k}(q, x)} \tag{53}\\
& \sum_{k=1}^{m} \frac{U_{n-1}\left(q, q^{k+1} x\right)}{U_{k}(q, x) U_{n+k}(q, x)}=\sum_{k=1}^{n} \frac{U_{m-1}\left(q, q^{k+1} x\right)}{U_{k}(q, x) U_{m+k}(q, x)} . \tag{54}
\end{align*}
$$

Proof. Since $Q_{k}(q, x)=(-1)^{k}$, identity (24) becomes identity (54). Similarly, identity 23) becomes identity (53).

Then, we have

Theorem 5.12 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{U_{2 n-1}\left(q, q^{2 k+1} x\right)}{T_{2 k}(q, x) T_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} \frac{U_{2 m-1}\left(q, q^{2 k+1} x\right)}{T_{2 k}(q, x) T_{2 m+2 k}(q, x)} \tag{55}\\
& \sum_{k=1}^{m} \frac{U_{2 n-1}\left(q, q^{2 k+2} x\right)}{T_{2 k+1}(q, x) T_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} \frac{U_{2 m-1}\left(q, q^{2 k+2} x\right)}{T_{2 k+1}(q, x) T_{2 m+2 k+1}(q, x)} \tag{56}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{U_{2 n-1}\left(q, q^{2 k+1} x\right)}{U_{2 k}(q, x) U_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} \frac{U_{2 m-1}\left(q, q^{2 k+1} x\right)}{U_{2 k}(q, x) U_{2 m+2 k}(q, x)} \tag{57}\\
& \sum_{k=1}^{m} \frac{U_{2 n-1}\left(q, q^{2 k+2} x\right)}{U_{2 k+1}(q, x) U_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} \frac{U_{2 m-1}\left(q, q^{2 k+2} x\right)}{U_{2 k+1}(q, x) U_{2 m+2 k+1}(q, x)} . \tag{58}
\end{align*}
$$

Proof. Apply Theorem 4.2.
Remark 5.13. In [11] we have the q-polynomials $U_{n}^{(a)}(q, x)$ (with a and x exchanged between them) defined by the recurrence

$$
U_{n+2}^{(a)}(q, x)=\left(2 a+q^{n+1} x\right) U_{n+1}^{(a)}(q, x)-U_{n}^{(a)}(q, x)
$$

with the initial conditions $U_{0}^{(a)}(q, x)=1$ and $U_{1}^{(a)}(q, x)=2 a+x$. So $U_{n}^{(a)}(q, x)=W_{n}(q, x)$ for $A=2 a, B=1 / q, C=-1, D=0$. Consequently, we have the generating series

$$
\sum_{n \geq 0} U_{n}^{(a)}(q, x) t^{n}=\sum_{k \geq 0} \frac{\left.q^{(k)} \begin{array}{c}
k
\end{array}\right) x^{k} t^{k}}{\left(1-2 a t+t^{2}\right)\left(1-2 a q t+q^{2} t^{2}\right) \cdots\left(1-2 a q^{k} t+q^{2 k} t^{2}\right)} .
$$

and the same identities given by (54), (57) and (58).

$5.6 \quad q$-Morgan-Voyce polynomials

We define the q-Morgan-Voyce polynomials $M_{n}(q, x)$ by the recurrence

$$
T_{n+2}(q, x)=\left(2+q^{n+1} x\right) M_{n+1}(q, x)-M_{n}(q, x)
$$

with the initial conditions $M_{0}(q, x)=1$ and $M_{1}(q, x)=2+x$. Similarly, we define the q-MorganVoyce polynomials $N_{n}(q, x)$ by the recurrence

$$
N_{n+2}(q, x)=\left(2+q^{n+1} x\right) N_{n+1}(q, x)-N_{n}(q, x)
$$

with the initial conditions $N_{0}(q, x)=1$ and $N_{1}(q, x)=1+x$.
In this case, we have $M_{n}(q, x)=W_{n}(q, x)$ for $A=2, B=1 / q, C=-1, D=0$. then, by identities (31) and (30), we have the generating series

$$
M(q, x ; t)=\sum_{n \geq 0} M_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{\left.q^{(k)}\right)_{2}^{k} x^{k} t^{k}}{\left(1-2 t+t^{2}\right)\left(1-2 q t+q^{2} t^{2}\right) \cdots\left(1-2 q^{k} t+q^{2 k} t^{2}\right)}
$$

$$
N(q, x ; t)=\sum_{n \geq 0} N_{n}(q, x) t^{n}=\sum_{k \geq 0} \frac{q^{\binom{k}{2}} x^{k} t^{k}\left(1-q^{k} t\right)}{\left(1-2 t+t^{2}\right)\left(1-2 q t+q^{2} t^{2}\right) \cdots\left(1-2 q^{k} t+q^{2 k} t^{2}\right)} .
$$

Notice that $N(q, x ; t)=M(q, x ; t)-t M(q, q x ; t)$, and consequently that $N_{n}(q, x)=M_{n}(q, x)-$ $M_{n-1}(q, q x)$. Moreover, we have
Theorem 5.14 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{M_{n-1}\left(q, q^{k+1} x\right)}{M_{k}(q, x) M_{n+k}(q, x)}=\sum_{k=1}^{n} \frac{M_{m-1}\left(q, q^{k+1} x\right)}{M_{k}(q, x) M_{m+k}(q, x)} \tag{59}\\
& \sum_{k=1}^{m} \frac{M_{n-1}\left(q, q^{k+1} x\right)}{N_{k}(q, x) N_{n+k}(q, x)}=\sum_{k=1}^{n} \frac{M_{m-1}\left(q, q^{k+1} x\right)}{N_{k}(q, x) N_{m+k}(q, x)} \tag{60}
\end{align*}
$$

Proof. Since $Q_{k}(q, x)=(-1)^{k}$, identity 24 becomes identity (59). Similarly, identity (23) becomes identity 60).

Then, we have
Theorem 5.15 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{M_{2 n-1}\left(q, q^{2 k+1} x\right)}{M_{2 k}(q, x) M_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} \frac{M_{2 m-1}\left(q, q^{2 k+1} x\right)}{M_{2 k}(q, x) M_{2 m+2 k}(q, x)} \tag{61}\\
& \sum_{k=1}^{m} \frac{M_{2 n-1}\left(q, q^{2 k+2} x\right)}{M_{2 k+1}(q, x) M_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} \frac{M_{2 m-1}\left(q, q^{2 k+2} x\right)}{M_{2 k+1}(q, x) M_{2 m+2 k+1}(q, x)} \tag{62}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m} \frac{M_{2 n-1}\left(q, q^{2 k+1} x\right)}{N_{2 k}(q, x) N_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} \frac{M_{2 m-1}\left(q, q^{2 k+1} x\right)}{N_{2 k}(q, x) N_{2 m+2 k}(q, x)} \tag{63}\\
& \sum_{k=1}^{m} \frac{M_{2 n-1}\left(q, q^{2 k+2} x\right)}{N_{2 k+1}(q, x) N_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} \frac{M_{2 m-1}\left(q, q^{2 k+2} x\right)}{N_{2 k+1}(q, x) N_{2 m+2 k+1}(q, x)} . \tag{64}
\end{align*}
$$

Proof. Apply Theorem 4.2.

5.7 Two q-sums

As a final example, we consider the q-polynomials

$$
S_{n}(q, x)=\sum_{k=0}^{n} q^{\binom{k}{2}} x^{k} \quad \text { and } \quad T_{n}(q, x)=\sum_{k=0}^{n}(x ; q)_{k}
$$

Lemma 5.16 The q-polynomials $S_{n}(q, x)$ satisfy the recurrence

$$
\begin{equation*}
S_{n+2}(q, x)=\left(1+q^{n+1} x\right) S_{n+1}(q, x)-q^{n+1} x S_{n}(q, x) \tag{65}
\end{equation*}
$$

with the initial values $S_{0}(q, x)=1$ and $S_{1}(q, x)=1+x$, while the q-polynomials $T_{n}(q, x)$ satisfy the recurrence

$$
\begin{equation*}
T_{n+2}(q, x)=\left(2-q^{n+1} x\right) T_{n+1}(q, x)-\left(1-q^{n+1} x\right) T_{n}(q, x) \tag{66}
\end{equation*}
$$

with the initial values $T_{0}(q, x)=1$ and $T_{1}(q, x)=2-x$.
Proof. In the first case, we have the identities

$$
\begin{aligned}
& S_{n+1}(q, x)-S_{n}(q, x)=q^{\left(\begin{array}{c}
n+1
\end{array}\right)} x^{n+1} \\
& S_{n+2}(q, x)-S_{n+1}(q, x)=q^{\binom{n+2}{2}} x^{n+2}
\end{aligned}
$$

from which we obtain the equation

$$
S_{n+2}(q, x)-S_{n+1}(q, x)=q^{n+1} x\left(S_{n+1}(q, x)-S_{n}(q, x)\right)
$$

equivalent to recurrence 65). Similarly, in the second case, we have the identities

$$
\begin{aligned}
& T_{n+1}(q, x)-T_{n}(q, x)=(x ; q)_{n+1} \\
& T_{n+2}(q, x)-T_{n+1}(q, x)=(x ; q)_{n+2}
\end{aligned}
$$

from which we obtain the equation

$$
T_{n+2}(q, x)-T_{n+1}(q, x)=\left(1-q^{n+1} x\right)\left(T_{n+1}(q, x)-T_{n}(q, x)\right)
$$

equivalent to recurrence 66 .
By Lemma 5.16, we have that also $S_{n}(q, x)$ and $T_{n}(q, x)$ are special cases of the q-polynomials $W_{n}(q, x)$. Specifically, we have $S_{n}(q, x)=W_{n}(q, x)$ for $A=1, B=1 / q, C=0, D=-1$, and $T_{n}(q, x)=W_{n}(q, x)$ for $A=2, B=-1 / q, C=-1, D=1$. So, we have

Theorem 5.17 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{equation*}
\left.\sum_{k=1}^{m} q^{\binom{k+1}{2}} x^{k} \frac{S_{n-1}\left(q, q^{k+1} x\right)}{S_{k}(q, x) S_{n+k}(q, x)}=\sum_{k=1}^{n} q^{(k+1}{ }_{2}\right) x^{k} \frac{S_{m-1}\left(q, q^{k+1} x\right)}{S_{k}(q, x) S_{m+k}(q, x)} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{m}(q x ; q)_{k} \frac{T_{n-1}\left(q, q^{k+1} x\right)}{T_{k}(q, x) T_{n+k}(q, x)}=\sum_{k=1}^{n}(q x ; q)_{k} \frac{T_{m-1}\left(q, q^{k+1} x\right)}{T_{k}(q, x) T_{m+k}(q, x)} \tag{68}
\end{equation*}
$$

Proof. In the first case, we have $Q_{k}(q, x)=q^{\binom{k+1}{2}}(-x)^{k}$ and identity 24 becomes identity 67. In the second case, we have $Q_{k}(q, x)=(-1)^{k}(q x ; q)_{k}$ and identity (24) becomes identity 68).

Finally, by Theorem 4.2 , we have
ThEOREM 5.18 For every $m, n \in \mathbb{N}, m, n \geq 1$, we have the identities

$$
\begin{equation*}
\sum_{k=1}^{m} q^{k(2 k+1)} x^{2 k} \frac{S_{2 n-1}\left(q, q^{2 k+1} x\right)}{S_{2 k}(q, x) S_{2 n+2 k}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+1)} x^{2 k} \frac{S_{2 m-1}\left(q, q^{2 k+1} x\right)}{S_{2 k}(q, x) S_{2 m+2 k}(q, x)} \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{m} q^{k(2 k+3)} x^{2 k} \frac{S_{2 n-1}\left(q, q^{2 k+2} x\right)}{S_{2 k+1}(q, x) S_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n} q^{k(2 k+3)} x^{2 k} \frac{S_{2 m-1}\left(q, q^{2 k+2} x\right)}{S_{2 k+1}(q, x) S_{2 m+2 k+1}(q, x)} \tag{70}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{m}(q x ; q)_{2 k} \frac{T_{2 n-1}\left(q, q^{2 k+1} x\right)}{T_{2 k}(q, x) T_{2 n+2 k}(q, x)}=\sum_{k=1}^{n}(q x ; q)_{2 k} \frac{T_{2 m-1}\left(q, q^{2 k+1} x\right)}{T_{2 k}(q, x) T_{2 m+2 k}(q, x)} \tag{71}\\
& \sum_{k=1}^{m}\left(q^{2} x ; q\right)_{2 k} \frac{T_{2 n-1}\left(q, q^{2 k+2} x\right)}{T_{2 k+1}(q, x) T_{2 n+2 k+1}(q, x)}=\sum_{k=1}^{n}\left(q^{2} x ; q\right)_{2 k} \frac{T_{2 m-1}\left(q, q^{2 k+2} x\right)}{T_{2 k+1}(q, x) T_{2 m+2 k+1}(q, x)} . \tag{72}
\end{align*}
$$

Remark 5.19. The Al-Salam and Ismail polynomials $U_{n}(x ; a, b)$, 1 , are defined by the recurrence

$$
U_{n+2}(x ; a, b)=\left(1+q^{n+1} a\right) x U_{n+1}(x ; a, b)-q^{n+1} b U_{n}(x ; a, b)
$$

with the initial values $U_{0}(x ; a, b)=1$ and $U_{1}(x ; a, b)=(1+a) x$. These polynomials do not satisfy an instance of recurrence (22). However, if we consider the q-polynomials $u_{n}(q, x)=U_{n}(1 ; x, x)$, then they satisfy the recurrence $u_{n+2}(q, x)=\left(1+q^{n+1} x\right) u_{n+1}(q, x)-q^{n+1} x u_{n}(q, x)$ with the initial values $u_{0}(q, x)=1$ and $u_{1}(q, x)=1+x$. This means that $S_{n}(q, x)=u_{n}(q, x)=U_{n}(1 ; x, x)$.

References

[1] W. A. Al-Salam and M. E. H. Ismail, Orthogonal polynomials associated with the RogersRamanujan continued fraction, Pacific J. Math., 104 (1983) 269-283.
[2] R. André-Jeannin, Summation of reciprocals in certain second-order recurring sequences, Fibonacci Quart., 35 (1997) 68-74.
[3] K. S. Briggs, D. P. Little and J. A. Sellers, Tiling proofs of various q-Pell identities via tilings, Ann. Comb., 14 (2010) 407-418.
[4] L. Carlitz, Fibonacci notes 3: q-Fibonacci numbers, Fibonacci Quart., 12 (1974) 317-322.
[5] L. Carlitz, Fibonacci notes 4: q-Fibonacci polynomials, Fibonacci Quart., 13 (1975) 97102.
[6] I. J. Good, A symmetry property of alternating sums of products of reciprocals, Fibonacci Quart., 32 (1994) 284-287.
[7] A. M. Goyt and B. E. Sagan, Set partition statistics and q-Fibonacci numbers, European J. Combin., 30 (2009) 230-245.
[8] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965) 161-176.
[9] A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J., 32 (1965) 437-446.
[10] M. E. H. Ismail, H. Prodinger and D. Stanton, Schur's determinants and partition theorems, Sém. Lothar. Combin., B44a (2000) 10 pp.
[11] M. E. H. Ismail and D. Stanton, Ramanujan continued fractions via orthogonal polynomials, Adv. Math., 203 (2006) 170-193.
[12] T. Mansour and M. Shattuck, Restricted partitions and q-Pell numbers, Cent. Eur. J. Math., 9 (2011) 346-355.
[13] A. M. Morgan-Voyce, Ladder network analysis using Fibonacci numbers, IRE Transactions on Circuit Theory, 6.3 (1959) 321-322.
[14] E. Munarini, Generalized q-Fibonacci numbers, Fibonacci Quart., 43 (2005) 234-242.
[15] H. Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discrete Math., 306 (2006) 2118-2127.
[16] J. O. Santos and A. V. Sills, q-Pell sequences and two identities of V. A. Lebesgue, Discrete Math., 257 (2002) 125-142.
[17] I. Schur, Gesmmelte Abhandungen, Vol. 2, Springer-Verlag, Berlin, 1973, pp. 117-136.
[18] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/.
[19] M. N. S. Swamy, Properties of the polynomials defined by Morgan-Voyce, Fibonacci Quart., 4 (1966) 73-81.
[20] M. N. S. Swamy, Further properties of Morgan-Voyce polynomials, Fibonacci Quart., 6 (1968) 167-175.

