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Abstract. This paper is one of a series whose goal is to enumerate the avoiders, in the sense of classical pattern
avoidance, for each triple of 4-letter patterns. There are 317 symmetry classes of triples of 4-letter patterns, avoiders
of 267 of which have already been enumerated. Here we enumerate avoiders for all small Wilf classes that have a
representative triple containing the pattern 1342, giving 40 new enumerations and leaving only 13 classes still to be
enumerated. In all but one case, we obtain an explicit algebraic generating function that is rational or of degree 2. The
remaining one is shown to be algebraic of degree 3. We use standard methods, usually involving detailed consideration of
the left to right maxima, and sometimes the initial letters, to obtain an algebraic or functional equation for the generating
function.
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1 Introduction

This paper is a sequel to [6] and continues the investigation of permutations avoiding a given triple
of 4-letter patterns. All large Wilf classes (those consisting of more than one symmetry class) have
been enumerated [8, 9]. Here we enumerate avoiders for all triples that contain the pattern 1342, lie
in a small Wilf class, and are not amenable to the INSENC algorithm. The results are presented in
Table 1, where the numbering follows that of Table 2 in the appendix of [7]. As a consequence, only
13 symmetry classes remain to be enumerated.
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In this abbreviated paper, we prove a selection of the results in Table 1, illustrating a variety of
methods. The full paper, containing all proofs, is posted to the ArXiv [4]. Section 2 contains some
preliminary remarks, and Section 3 contains our selection of proofs.

Table 1: Small Wilf classes of three 4-letter patterns not counted by
INSENC that include the pattern 1342

No. Pattern set T Generating function FT (x) Thm./[Ref]

77 {1243, 2314, 3412} 1−11x+53x2−145x3+248x4−274x5+192x6−80x7+17x8

(1−x)6(1−2x)3
[4]

86 {1324, 3412, 4132} 1−7x+19x2−24x3+16x4−4x5−x6+2x7

(1−x)3(1−2x)(1−3x+x2)
[6]

90 {1243, 2431, 3412} 1−11x+51x2−129x3+195x4−183x5+104x6−30x7+3x8

(1−x)4(1−2x)(1−3x+x2)2
[4]

103 {1423, 2341, 3124} 1−9x+35x2−77x3+107x4−97x5+55x6−17x7+x8

(1−x)5(1−4x+5x2−3x3)
C(x) Thm. 3.4

106 {1342, 2143, 3412} (1−2x)(1−6x+12x2−9x3+4x4)

(1−x)3(1−3x)(1−3x+x2)
[4]

118 {1423, 1234, 3412} 1−12x+64x2−198x3+393x4−521x5+463x6−269x7+95x8−17x9

(1−x)7(1−2x)3
[4]

130 {3412, 3124, 1342} 1−9x+32x2−58x3+58x4−33x5+8x6

(1−x)4(1−2x)(1−4x+2x2)
[4]

131 {2134, 1423, 2341} 2x5+x4−6x3+7x2−4x+1
(1−2x)(1−x)3

C(x)−x(2x4−x3+x2−2x+1)

(1−2x)(1−x)4
Thm. 3.8

133 {1342, 2143, 2314} (1−2x)(1−3x+x2)

1−6x+11x2−7x3 Thm. 3.9

150 {4312, 4132, 1324} 1−11x+52x2−136x3+214x4−204x5+111x6−28x7

(1−x)3(1−2x)3(1−3x+2x2)
[6]

151 {4312, 1324, 1423} 1−12x+61x2−169x3+275x4−263x5+136x6−29x7+x8

(1−3x+x2)(1−2x)4(1−x)2
[6]

153 {4231, 1324, 1423} 1−10x+41x2−87x3+101x4−61x5+15x6−x7

(1−x)2(1−2x)3(1−3x+x2)
[6]

156 {1324, 2341, 2431} 1−8x+23x2−25x3+3x4+7x5

(1−2x)2(1−3x+x2)(1−2x−x2)
[6]

158 {1324, 1342, 3412} 1−10x+40x2−81x3+88x4−50x5+11x6

(1−x)3(1−2x)(1−3x)(1−3x+x2)
[6]

159 {1243, 1342, 3412} 1−11x+48x2−104x3+115x4−61x5+13x6

(1−x)(1−2x)(1−3x)(1−3x+x2)2
[4]

162 {3412, 1423, 2341} 1−7x+18x2−21x3+11x4

(1−2x)(1−6x+12x2−11x3+3x4)
[4]

163 {1342, 2314, 3412} (1−3x+3x2)2C(x)−x(1−x)(1−3x+5x2−4x3)

(1−x)5(1−2x)
Thm. 3.11

164 {1432, 2431, 3214} (1−x)4(1−2x)C(x)−x(1−4x+6x2−5x3)
(1−x)(1−2x)(1−4x+5x2−3x3)

Thm. 3.13

165 {1342, 2314, 3421} (1−2x)(1−x)4C(x)−x(1−4x+6x2−5x3+x4)

(1−x)4(1−3x+x2)
Thm. 3.14

172 {2143, 4132, 1324} (2−10x+16x2−8x3+x4)C(x)−1+4x−5x2+x3

(1−x)2(1−3x+x2)
[5]

175 {1423, 2341, 3142} 1−6x+12x2−11x3+5x4

1−7x+17x2−20x3+12x4−2x5 Thm. 3.15

176 {1342, 2431, 3412} (1−x)2(1−4x+6x2−5x3+x4)C(x)−1+6x−14x2+15x3−8x4+x5

x(1−3x+x2)(1−x+x3)
Thm. 3.16

178 {1342, 2314, 2431} (1−x)2(1−4x+6x2−5x3+x4)C(x)−1+6x−14x2+15x3−8x4+x5

x(1−3x+x2)(1−x+x3)
Thm. 3.17

180 {1342, 2314, 4231} 1−7x+18x2−22x3+16x4−6x5+x6−(x−5x2+8x3−2x4−2x5+x6)C(x)

(1−2x)(1−x)2(1−5x+4x2−x3)
[6]
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No. Pattern set T Generating function FT (x) Thm./[Ref]

182 {2314, 2431, 3412} 1+x2(1−x)C(x)4

1−x(1−2x)C(x)2
[4]

184 {1324, 2431, 3241} 1−8x+24x2−32x3+19x4−3x5

(1−x)(1−2x)(1−3x+x2)2
[6]

187 {1324, 2314, 2431} 1−9x+31x2−49x3+34x4−7x5

(1−3x+x2)2(1−2x)2
[6]

190 {3142, 2314, 1423} (1−2x)(1−3x+x2)2

(1−x)(1−8x+22x2−24x3+8x4−x5)
[4]

192 {1243, 1342, 2431} (1−5x+9x2−6x3)(C(x)−1)−x3

x(1−2x)(1−x)2
[4]

193 {1324, 2431, 3142} x−1+(x2−5x+2)C(x)

1−3x+x2
[6]

194 {3124, 4123, 1243} (1−5x+9x2−8x3+4x4)C(x)−(1−5x+9x2−6x3+x4)
x(1−2x)2

Thm. 3.22

197 {2413, 3241, 2134} 1−5x+9x2−7x3+x4+(1−5x+9x2−9x3+3x4)
√

1−4x

(1−x)(1−6x+12x2−11x3+3x4+(1−4x+6x2−5x3+x4)
√

1−4x)
[4]

198 {1234, 1423, 2341} (1−7x+18x2−19x3+6x4)C(x)−(1−6x+12x2−8x3+x4)
x2(1−x)(1−2x)

[4]

199 {1243, 1423, 2341} x(x−1)2(2x−1)C(x)+3x4−7x3+9x2−5x+1

(xC(x)−(x−1)2)(x−1)2(2x−1)
[4]

204 {1243, 1423, 2314} x(2x2−2x+1)C(x)−(3x2−3x+1)
x(2x2−2x+1)C(x)−(1−x)(3x2−3x+1)

[4]

207 {2134, 1423, 1243} 1−x(1−x)C(x)

(1−x)(2−C(x))+x2 [5]

208 {1234, 1342, 3124} (1−2x)(1−6x+12x2−10x3+2x4)−x2(1−2x+2x2)2C(x)
1−9x+30x2−49x3+38x4−8x5−4x6 [4]

210 {1243, 1324, 2431} 1−6x+13x2−11x3+4x4

x2(1−x)2
C(x)− 1−6x+12x2−8x3+2x4

x2(1−x)(1−2x)
[6]

212 {1324, 2413, 2431} 1 + x(1−4x+4x2−x3−x(1−4x+2x2)C(x))

(1−3x+x2)(1−3x+x2−x(1−2x)C(x))
[6]

213 {2431, 1324, 1342} (1−5x+8x2−5x3)C(x)−1+4x−4x2+x3

x2(1−2x)
[6]

214 {1342, 2341, 3412} (1−2x)
(

(1−5x+9x2−6x3)
√

1−4x−(1−9x+29x2−38x3+18x4)
)

2(1−x)2x(1−7x+14x2−9x3)
Thm. 3.25

217 {4132, 1342, 1243} (1−x)(1−3x+x2)
√

1−4x−(1−8x+20x2−15x3+4x4)
2x(1−x)(1−5x+4x2−x3)

[4]

219 {1342, 2413, 3412} 1 + x(1−x)2(1−2x)

(x2−3x+1)(2x2−2x+1)−x(1−2x)(1−x)C(x)
[4]

220 {2431, 2314, 3142} 1 + x(1−x)2(1−2x)

(1−3x)(1−x)3−x(1−2x)(1−x+x2)(C(x)−1)
Thm. 3.26

222 {3412, 3421, 1342} 2−11x+13x2−6x3+x(1−x)(1−6x+4x2)(1−4x)−1/2

2(1−6x+8x2−4x3)
Thm. 3.30

223 {1243, 1342, 2413} (1−2x)(1−2x−
√

1−8x+20x2−20x3+4x4)

2x(1−4x+5x2−x3)
Thm. 3.33

224 {4132, 1342, 1423} 2−10x+9x2−3x3+x(1−x)(2−x)
√

1−4x

2(1−5x+4x2−x4)
Thm. 3.34

226 {1342, 2143, 2413} 1−3x+x2−
√

(1−7x+13x2−8x3)(1−3x+x2)

2x(1−x)(1−2x)
[4]

231 {1324, 1342, 2341} (1−3x)(1−2x−xC(x))
(1−4x)(1−3x+x2)

[6]

232 {1234, 1342, 2341} 1−4x+2x2−(1−6x+9x2)C(x)
x(1−4x)

[4]

242 {2341, 2431, 3241} FT (x)= 1 + xFT (x)

1−xF2

T
(x)

Thm. 3.35
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2 Preliminaries

For every pattern set T considered, FT (x) denotes the generating function
∑

n≥0 |Sn(T )|xn for T -

avoiders and Gm(x) the generating function for T -avoiders π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with
m left-right maxima i1, i2, . . . , im = n; thus FT (x) =

∑

m≥0 Gm(x). Then G0(x) = 1 and whenever
no pattern in T starts with a 4, we have G1(x) = xFT (x). For most of the triples T , our efforts are
directed toward finding an expression for Gm(x), usually distinguishing the case m = 2 and sometimes
m = 3 from larger values of m. As usual, C(x) denotes the generating function for the Catalan
numbers 1

n+1

(2n
n

)

, which counts τ -avoiders for each 3-letter pattern τ (see [11]).

Given nonempty sets of numbers S and T , we will write S < T to mean max(S) < min(T ) (with
the inequality vacuously holding if S or T is empty). In this context, we will often denote singleton
sets simply by the element in question. Also, for a number k, S − k means the set {s− k : s ∈ S}.

3 Proofs

3.1 Case 103: {1423, 2341, 3124}

Let Gm(x) denote the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) = 1
and G1(x) = xFT (x). The skew sum [2, 3] of two permutations π ∈ Sm and σ ∈ Sn is defined by

(π ⊖ σ)(i) =

{

π(i) + n
σ(i−m)

if 1 ≤ i ≤ m,
if m+ 1 ≤ i ≤ m+ n,

and a permutation is skew indecomposable if it is nonempty and cannot be written as the skew sum of
two nonempty permutations. The skew sum operation is associative and every nonempty permutation
π is uniquely expressible as a skew sum of skew indecomposables. For example, for π = 564132, we
have π = 12⊖ 1⊖ 132, all skew indecomposable, and the corresponding segments of π, here 56, 4, 132,
are called the skew components of π. Note that all patterns in T contain 123.

Lemma 3.1 If π ∈ Sn(T ) has only 2 left-right maxima, then the first skew component of π avoids 123.

Proof. It suffices to show that if π ∈ Sn(T ) with 2 left-right maxima contains a 123 pattern, then the
minimum 123 pattern abc (the positions of the letters a, b, c in π are minimum in lex order) does not
lie in the first skew component. Consider the matrix diagram of π as illustrated in Figure 1, where
shaded regions are empty for the reason indicated (min refers to the minimum property of abc). If
a is a left-right maximum, then so are b and c, violating the hypothesis. Hence, a is not a left-right
maximum, and so A 6= ∅. Also, A > B (or ab is the 12 of a 3124). This forces A to consist of a square
block at the upper left of the diagram and we are done. �
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A B

min

min

min

a

b

c

•abc
3124

a•bc
1423

Figure 1: A T -avoider with 2 LR max and a 123

Lemma 3.2 We have

G2(x) =
(

xC(x)− x
)

FT (x) .

Proof. Suppose π ∈ Sn(T ) has 2 left-right maxima. The first skew component of π has length ≥ 2
and, from Lemma 3.1, avoids 123. The rest of π is an arbitrary T -avoider and so G2(x) = R(x)FT (x),
where R(x) is the generating function for skew indecomposable 123-avoiders of length ≥ 2. We have
R(x) = xC(x)− x: given the matrix diagram of a skew indecomposable {123}-avoider π of length n,
the map “form lattice path from (0, n) to (n, 0) enclosing the right-left maxima of π” is a bijection to
indecomposable Dyck paths, whose enumeration is well known. �

Lemma 3.3 We have

G3(x) =
x3

(1− x)5
, and

∑

m≥4

Gm(x) =
1

1− t− t3
− 1− t− t2 − 2t3 − 2t4 ,

where t = x/(1− x).

Proof. Suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 3 left-right maxima. We have π(s) > is−2

for s = 3, 4, . . . ,m since u ∈ π(s) with u < is−2 makes is−2is−1isu a 2341. Also, π(s) is decreasing for
all s (a violator uv makes isuvis+1 a 3124 for s = 1, 2, . . . ,m− 1 and im−2imuv a 1423 for s = m). So
π has the form illustrated for m = 4 in Figure 2a), where the down arrows indicate decreasing entries.
Moreover, αsβs+1 is decreasing for all s (a violator uv makes isuvis+2 a 3124 for s = 1, 2, . . . ,m − 2
and is−1isuv a 1423 for s = 2, 3, . . . ,m − 1, covering all cases) and so π decomposes further as in
Figure 2b).
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α1 ↓

α2 ↓

α3 ↓

αm ↓

β2 ↓

β3 ↓

βm ↓

i1

i2

i3

im

i1

i2

i3

im

−→

α1 ↓

α2 ↓

α3 ↓
αm ↓

β2 ↓

β3 ↓

βm ↓

a) b)

Figure 2: A T -avoider with m ≥ 3 LR max

If m = 3, there are no further restrictions and so there are 5 boxes to be filled each with an
arbitrary number of dots, and G3(x) =

x3

(1−x)5
as required.

However, if m ≥ 4, then there is one more restriction: no two consecutively-indexed β’s, say βs
and βs+1, are both nonempty (u ∈ βs and v ∈ βs+1 makes is−2isuv a 1423 for s = 3, 4, . . . ,m− 1 and
isuvim a 3124 for s = 2, 3, . . . ,m − 2; note that neither condition says anything when m = 3). The
contribution with k nonempty β’s is xm+k/(1 − x)m−k. A specification of empty/nonempty for each
β corresponds to a binary string w1w2 · · ·wm with w1 = 0 and ws = 1 if and only if βs 6= ∅ for s ≥ 1.
Let Hm(t) denote the generating function for binary strings w1w2 · · ·wm with first bit 0 and no two
consecutive 1’s, where t marks the number of 1’s. Then Gm(x) =

(

x
1−x

)m
Hm

(

x
1−x

)

for m ≥ 4.
To find

∑

m≥4 Gm(x), set H(t, y) =
∑

m≥1 Hm(t)ym. We have the recurrence Hm(t) = Hm−1(t) +
tHm−2(t) for m ≥ 3 with initial conditions H1(t) = 1 and H2(t) = 1 + t. It follows routinely that
H(t, y) = y(1 + ty)/(1 − y − ty2). Now, with t := x/(1 − x),

∑

m≥4Gm(x) =
∑

m≥4 t
mHm(t) =

H(t, t)−∑3
m=1 t

mHm(t), which simplifies to the stated expression. �

Lemmas 3.2 and 3.3 now give an expression for the right side in the identity FT (x) =
∑

m≥0 Gm(x).
Solving for FT (x) yields the following result.

Theorem 3.4 Let T = {1423, 2341, 3124}. Then

FT (x) =
1− 9x+ 35x2 − 77x3 + 107x4 − 97x5 + 55x6 − 17x7 + x8

(1− x)5(1− 4x+ 5x2 − 3x3)
C(x).

3.2 Case 131: {2134, 1423, 2341}
We focus on the first two letters of an avoider. Set a(n) = |Sn(T )| and define a(n; i1, i2, . . . , im) to
be the number of permutations π = π1π2 · · · πn in Sn(T ) such that π1π2 · · · πm = i1i2 · · · im. Clearly,
a(n; 1) = |Sn−1({312, 2134, 2341})|. Let g(x) =

∑

n≥0 a(n; 1)x
n and ℓi = |Si({213, 1423, 2341})|. It

is known [1] that g(x) = x4−x3+4x2−3x+1
(1−x)4

and that ℓi = 2i − i. Set b(n; i) = a(n; i, n − 1) and

b′(n; i) = a(n; i, n). There are the following recurrences (proof omitted).
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Lemma 3.5 We have ℓi = |Si({213, 1423, 2341})| = 2i − i. Then

a(n; i, j) = a(n− 1; i, j), if 2 ≤ i < j ≤ n− 2,

a(n; i, j) = a(n− 1; i, j) +

j−1
∑

k=1

a(n− 1; j, k), if 1 ≤ j < i ≤ n− 1 and (i, j) 6= (n− 1, 1),

a(n;n, i) = a(n− 1; i), if 1 ≤ i ≤ n− 1,

b(n; i) = b(n− 1; i) + ℓi−1, 1 ≤ i ≤ n− 2,

b′(n; i) = b′(n− 1; i) +

i−1
∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 1,

a(n;n − 1, n) = a(n− 2),

a(n;n− 1, 1) = a(n− 1; 1).

Define a′(n; i) =
∑i−1

j=1 a(n; i, j) and a′′(n; i) =
∑n

j=i+1 a(n; i, j). Let

Bn(v) =

n−2
∑

i=1

b(n; i)vi−1, B′
n(v) =

n−1
∑

i=1

b′(n; i)vi−1,

A′
n(v) =

n
∑

i=1

a′(n; i)vi−1, A′′
n(v) =

n
∑

i=1

a′′(n; i)vi−1,

An(v) =
n
∑

i=1

a(n; i)vi−1.

Define generating functions

B(x, v) =
∑

n≥2

Bn(v)x
n, B′(x, v) =

∑

n≥2

B′
n(v)x

n,

A(x, v) = 1 + x+
∑

n≥2

An(v)x
n, A′(x, v) =

∑

n≥2

A′
n(v)x

n,

A′′(x, v) =
∑

n≥2

A′′
n(v)x

n.

Lemma 3.6 We have

B(x, v) =
(3v2x2 − 3vx+ 1)x3

(1− x)2(1− vx)2(1− 2vx)
, and

B′(x, v) =
x2

1− x
+

x

1− x
A′(x, v).

Proof. By Lemma 3.5,

b′(n; i) = a′(n− 1; i) + b′(n− 1; i), 1 ≤ i ≤ n− 1.
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Multiplying by vi−1 and summing over i = 1, 2, . . . , n− 1 gives

B′
n(v) = A′

n−1(v) +B′
n−1(v),

with B′
2(v) = 1. Thus, the generating function for B′

n(v) satisfies B
′(x, v)−x2 = xA′(x, v)+xB′(x, v),

which leads to B′(x, v) = x2

1−x + x
1−xA

′(x, v).
Also by Lemma 3.5,

b(n; i) = b(n− 1; i) + ℓi−1, 1 ≤ i ≤ n− 2.

Multiplying by vi−1 and summing over i = 1, 2, . . . , n− 2, we have

Bn(v) = Bn−1(v) +

n−2
∑

i=1

ℓi−1v
i−1,

which leads to B(x, v) = 1
1−x

∑

n≥2

∑n−2
i=1 (2

i−1 − (i− 1))vi−1xn and the first assertion. �

Lemma 3.7 We have

A′(x, v) =
x

1− v

(

A′(x, v) − 1

v
A′(vx, 1)

)

+
x(1 + v)

v
(A(xv, 1) − 1)− x2A(xv, 1), and

A′′(x, v) = xA′′(x, v) + (1− x)x
(

g(x) − 1
)

+B(x, v)−B(x, 0) + (1− x)(B′(x, v) −B′(x, 0)) .

Proof. Lemma 3.5 gives

a′(n; i) = a′(n− 1; 1) + a′(n− 1; 2) + · · ·+ a′(n− 1; i),

with a′(n;n) = An−1(1) and a′(n;n−1) = An−1(1)−An−2(1). Multiplying by vi−1 and summing over
i = 1, 2, . . . , n − 2, we have

A′
n(v) =

1

1− v
(A′

n−1(v)−A′
n−1(1)v

n−2) + (An−1(1)−An−2(1))v
n−2 +An−1(1)v

n−1,

with A′
1(v) = 1. The first assertion follows by multiplying by xn and summing over n ≥ 2.

Lemma 3.5 also gives

a′′(n; i) =

n−2
∑

j=i+1

a(n; i, j) + b(n; i) + b′(n; i) =

n−2
∑

j=i+1

a(n− 1; i, j) + b(n; i) + b′(n; i),

which leads to a′′(n; i) = a′′(n − 1; i) + b(n; i) + b′(n; i) − b′(n − 1; i) for all i = 2, 3, . . . , n − 1,
where a′′(n; 1) = a(n; 1) = |Sn−1({312, 2134, 2341})|. Thus, multiplying by vi−1 and summing over
i = 2, 3, . . . , n − 1, we have

A′′
n(v) = A′′

n−1(v) +A′′
n(0) −A′′

n−1(0) +Bn(v)−Bn(0) +B′
n(v) −B′

n(0) −B′
n−1(v)−B′

n−1(0),

with A′′
1(v) = 0 and B′

1(v) = B′
2(v) = 1. Multiplying by xn and summing over n ≥ 2, we obtain

A′′(x, v) = xA′′(x, v) + (1− x)A′′(x, 0) +B(x, v)−B(x, 0) + (1− x)
(

B′(x, v) −B′(x, 0)),
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where A′′(x, 0) = x
∑

n≥1 |Sn({312, 2134, 2341})|xn = x
(

g(x) − 1
)

, and the second assertion follows.
�

From Lemmas 3.6 and 3.7, we have

(

1− x

v(1 − v)

)

A′
(x

v
, v
)

= − x

v2(1− v)
A′(x, 1) +

x(1 + v)

v2
(

A(x, 1) − 1
)

− x2

v2
A(v, 1).

Substituting v = 1/C(x) implies

A′(x, 1) = x(1− x)C(x)A(x, 1) − xC(x)− x. (1)

Moreover, we have

(1− x)A′′(x, 1) = x(1− x)
(

g(x)− 1
)

+B(x, 1) −B(x, 0) + (1− x)
(

B′(x, 1) −B′(x, 0)
)

, (2)

where

B(x, 1) =
(3x2 − 3x+ 1)x3

(1 − x)4(1− 2x)
, B(x, 0) =

x3

(1 − x)2
, B′(x, 1) =

x2

1− x
+

x

1− x
A′(x, 1)

and

B′(x, 0) =
∑

n≥2

a(n; 1, n)xn =
x2

1− x
.

By solving the three equations (1), (2) and A(x, 1) = 1 + x+A′(x, 1) +A′′(x, 1) for A(x, 1), A′(x, 1),
A′′(x, 1), we obtain the following result.

Theorem 3.8 Let T = {2134, 1423, 2341}. Then

FT (x) =
2x5 + x4 − 6x3 + 7x2 − 4x+ 1

(1− 2x)(1 − x)3
C(x)− x(2x4 − x3 + x2 − 2x+ 1)

(1− 2x)(1 − x)4
.

3.3 Case 133: {1342, 2143, 2314}
Theorem 3.9 Let T = {1342, 2143, 2314}. Then

FT (x) =
(1− 2x)(1 − 3x+ x2)

1− 6x+ 11x2 − 7x3
.

Proof. Let Gm(x) be the generating function for members of Sn(T ) with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x).

To find G2(x), consider π = iπ′nπ′′ ∈ Sn(T ) with left-right maxima i and n. If π′ is not empty,
then i = n−1 (to avoid 2143) and i can be safely deleted, leaving nonempty T -avoiders with maximum
entry not in first position. Hence, the contribution is x

(

FT (x) − 1 − xFT (x)
)

. If π′ is empty, then
π2 = n can be safely deleted and the contribution is x

(

FT (x)− 1
)

. Thus,

G2(x) = x
(

FT (x)− 1− xFT (x)
)

+ x
(

FT (x)− 1
)

.
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To find Gm(x) with m ≥ 3, consider a T -avoider π = i1π
(1) · · · imπ(m) with m left-right maxima.

It decomposes as in Figure 3, where the shaded regions are empty for the reason indicated and αm lies
to the left of βm (or i1im−1 is the 23 of a 2314). If αj 6= ∅ for some j ∈ [1,m− 1], then αi = ∅ for all
i 6= j (2143), αj avoids 231 and 2143, and βm avoids T , and so the contribution is xm

(

K(x)−1
)

FT (x),
where K(x) = 1−2x

1−3x+x2 is the generating function for {231, 2143}-avoiders [14, Seq. A001519]. On the
other hand, if αi = ∅ for all i ∈ [1,m − 1], then αm avoids 231 and 2143 while βm avoids T , giving
xmK(x)FT (x).

α1

α2

αm−1

αm

βm

i1

i2

im−1

im

2 3 1 4•

1 3 4 2•

. .
.

Figure 3: A T -avoider with m ≥ 3 left-right maxima

Hence, Gm(x) = (m− 1)xm
(

K(x) − 1
)

FT (x) + xmK(x)FT (x) . Summing over m ≥ 3 and substi-
tuting for G0(x), G1(x) and G2(x), we obtain

FT (x) = 1 + xFT (x) + x
(

FT (x)− 1− xFT (x)
)

+ x
(

FT (x)− 1
)

+
x3(1 + x)FT (x)

1− 3x+ x2
,

and solving for FT (x) completes the proof. �

3.4 Case 163: {1342, 2314, 3412}
Note that all three patterns contain 231.

Lemma 3.10 The generating function for T -avoiders with 2 left-right maxima is given by

H(x) =
x
(

(1− 4x+ 7x2 − 7x3 + 4x4)C(x)− 1 + 4x− 8x2 + 9x3 − 4x4
)

(1− x)4(1− 2x)
.

Proof. Let Hd(x) be the generating function for T -avoiders iπ′nπ′′ with 2 left-right maxima where π′′

has d letters smaller than i. If d = 0, then π′ and π′′ independently avoid 231, and soH0(x) = x2C(x)2.
Now let d ≥ 1 and j1, j2, . . . , jd be the letters in π′′ smaller than i. These letters occur in decreasing
order (to avoid 3412). Since π avoids 1342, we can write π as

π = iα0α1 · · ·αdnβ0j1β1 · · · jdβd ,

where i > α0 > j1 > α1 > · · · > jd > αd. Since π avoids 2314, we also have β0 > β1 > · · · > βd.
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By considering the cases (i) αd = βd = ∅, (ii) αd 6= ∅, βd = ∅, (iii) αd = ∅, βd 6= ∅, and (iv) αd 6=
∅, βd 6= ∅, we obtain the respective contributions xHd−1(x),

xd+2

(1−x)d+1

(

C(x) − 1
)

, xd+2

(1−x)d+1

(

C(x) − 1
)

,

and xd+2

(1−x)2

(

C(x)− 1
)2
. Thus,

Hd(x) = xHd−1(x) +
2xd+2

(1− x)d+1

(

C(x)− 1
)

+
xd+2

(1− x)2
(

C(x)− 1
)2
.

Summing over d ≥ 1 and using the expression for H0(x), we obtain

H(x)− x2C(x)2 = xH(x) +
2x3

(1− x)(1− 2x)

(

C(x)− 1
)

+
x3

(1− x)3
(

C(x)− 1
)2

,

and the result follows by solving for H(x). �

Theorem 3.11 Let T = {1342, 2314, 3412}. Then

FT (x) =
(1− 3x+ 3x2)2C(x)− x(1− x)(1− 3x+ 5x2 − 4x3)

(1− x)5(1− 2x)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1, G1(x) = xFT (x), and Lemma 3.10 gives G2(x). For Gm(x) with m ≥ 3, suppose π =
i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 3 left-right maxima. Since π avoids 1342, we see that

π(s) > is−1 for all s = 2, 3, . . . ,m− 1, and π(m) can be written as αβ, where α > im−1 and π(1) > β
(to avoid 1342) and β is decreasing (to avoid 3412). Note that π avoids T if and only if each of

π(1), . . . , π(m−1), α avoids 231. Hence, Gm(x) = xmC(x)m

1−x . Summing over m ≥ 3, we obtain

FT (x)− 1− xFT (x)−G2(x) =
x3C(x)3

(1− x)
(

1− xC(x)
) =

x3C(x)4

1− x
.

Substituting for G2(x), and solving for FT (x), completes the proof. �

3.5 Case 164: {1432, 2431, 3214}

We count by initial letters and define a(n) = |Sn(T )| and a(n; i1, i2, . . . , im) to be the number of
T -avoiders in Sn whose first m letters are i1, i2, . . . , im. Clearly, a(n;n) = a(n−1). Note that all three
patterns in T contain 321.

Lemma 3.12 The following two tables give a recurrence for a(n; i, j) according as i < j or i > j, valid
whenever they make sense:
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i = 1 a(n; 1, j) =
j − 1

n− 1

(

2n− 2− j

n− 2

)

j = i+ 1 a(n; i, i + 1) = a(n− 1; i)

j = i+ 2 a(n; i, i + 2) = a(n; i− 1, i + 2)
i ≥ 2

j ≥ i+ 3 a(n; i, j) =

n−1
∑

k=j−1

a(n− 1; i, k)

Recurrence for a(n; i, j) when i < j

j = 1 a(n; i, 1) = a(n; 1, i) + 2i−2 + 1− i

i ≤ n− 2 a(n; i, j) = a(n − 1; i, j)

j ≥ 2 i = n− 1 a(n;n− 1, j) = a(n − 1;n− 2, j) + 2n−3−j

i = n a(n;n, j) = a(n − 1; j)

Recurrence for a(n; i, j) when i > j

Proof. We prove the first entry in each table and leave the other proofs to the reader. An avoider
π = 1jπ′ is counted by a(n; 1, j). Since π avoids 1432, St(jπ′) avoids 321, has length n − 1 and
first letter j − 1. Such permutations are known to be counted by the “Catalan triangle” and so
a(n; 1, j) = j−1

n−1

(

2n−2−j
n−2

)

, the first item in the top table, see [10].

Now, consider a(n; i, 1). Let π = i1π′ ∈ Sn(T ). Either there is no occurrence of 321 in π that
starts with i, or there is such an occurrence. In the first case, the map i1π′ → 1iπ′ is a bijection, so
we have a contribution of a(n; 1, i). Thus, a(n; i, 1) = a(n; 1, i) + b(n, i), where b(n, i) is the number
of permutations i1π′ ∈ Sn(T ) containing an occurrence of 321 that starts with i.

Now let us find a formula for b(n, i). Let π = i1π′ ∈ Sn(T ) with iπpπq an occurrence of 321 where
p is minimal and p + q is minimal. Say πp = u and πq = v. Thus iuv is the leftmost (minimal)
occurrence of 321 in π, and π has the form shown in Figure 4, where the shaded regions are empty
for the reason indicated (min refers to the minimal property of iuv), n occurs before v (or n is the 4
of a 3214) and in fact immediately before v (or n is the 4 of a 1432), α is increasing by the minimal
property of iuv, β is increasing (or v is the 2 of a 1432), and γ is increasing (or n is the 4 of a 1432).
The generating function for the part of π below i is

x3

(1− x)2(1− 2x)

and for the part at or above i is x2/(1 − x). Hence,

b(n, i) = [xi−1]
x3

(1 − x)2(1− 2x)
× [xn−i+1]

x2

1− x
,

which implies that b(n, i) = 2i−2 + 1− i, as required. �
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α ր

β ր

γ ր

n

i

1

u

v
min

i•uv
1432

iuv•
3214

1uv•
1432

Figure 4: A T -avoider counted by b(n, i)

Define

A+
n (i) =

n
∑

j=i+1

a(n; i, j), A+
n =

n−1
∑

i=1

A+
n (i), A+(x) =

∑

n≥2

A+
n x

n.

Similarly, define

A−
n (i) =

i−1
∑

j=1

a(n; i, j), A−
n =

n
∑

i=2

A−
n (i), A−(x) =

∑

n≥2

A−
n x

n.

Thus, with A(x) =
∑

n≥0 a(n)x
n, we have

A(x) = 1 + x+A+(x) +A−(x).

From Lemma 3.12, we have

a(n; i, j) =
j − 1

n− 1

(

2n− 2− j

n− 2

)

,

for all i ≤ j − 2 (independent of i), and consequently,

n
∑

j=i+2

a(n; i, j) =
i+ 2

n

(

2n− i− 3

n− 1

)

.

Hence, for i ≤ n− 1,

A+
n (i) = a(n− 1; i) +

i+ 2

n

(

2n− i− 3

n− 1

)

.

Summing over i,

A+
n = a(n − 1) +

n− 2

2n − 1
Cn
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for n ≥ 2. Multiplying by xn and summing over n ≥ 2, we find

A+(x) = xA(x) + (1− 2x)C(x) − 1 . (3)

Finding A−(x) is a little more tedious. By Lemma 3.12, we have

A−
n (n− 1) = 2n−3 +

n−3
∑

j=2

a(n;n − 1, j) + a(n − 3)

= 2n−3 + a(n− 3) +

n−3
∑

j=2

a(n − 1;n − 2; j) + (20 + 21 + · · · + 2n−5)

= 2n−3 + a(n− 3) +A−
n−1(n− 2)− 2n−4 + 2n−4 − 1

= A−
n−1(n− 2) + a(n− 3) + 2n−3 − 1,

and induction on n implies

A−
n (n− 1) =

n−3
∑

j=0

a(j) + 2n−2 − n+ 1 . (4)

Now for n ≥ 6, using Lemma 3.12,

A−
n = A−

n (2) +A−
n (3) +

n−2
∑

i=4

A−
n (i) +A−

n (n− 1) +A−
n (n)

= Cn−2 + (Cn−2 + 1) +
n−2
∑

i=4

i−1
∑

j=1

a(n; i, j) +A−
n (n− 1) + a(n− 1)

= 2Cn−2 + 1 + a(n− 1) +A−
n (n− 1) +

n−2
∑

i=4

i−1
∑

j=1

a(n− 1; i, j) +

n−2
∑

i=4

(an(n; i, 1) − a(n− 1; i, 1))

= 2Cn−2 + 1 + a(n− 1) +A−
n (n− 1) +A−

n−1 −A−
n−1(2)−A−

n−1(3) −A−
n−1(n− 1)

+

n−2
∑

i=4

(

an(n; i, 1) − a(n− 1; i, 1)
)

= 2Cn−2 + 1 + a(n− 1) +A−
n (n− 1) +A−

n−1 − 2Cn−3 − 1− a(n− 2)

+

n−2
∑

i=4

(

an(n; 1, i) − a(n− 1; 1, i)
)

= 2Cn−2 + a(n− 1) +A−
n (n− 1) +A−

n−1 − 2Cn−3 − a(n− 2)

+Cn−1 − 3Cn−2 + 2Cn−3 − n+ 2

= A−
n−1 + a(n− 1)− a(n− 2) +A−

n (n− 1) + Cn−1 −Cn−2 − n+ 2.

Thus, by (4), we have

A−
n = A−

n−1 − 2a(n − 2) +

n−1
∑

j=0

a(j) + Cn−1 − Cn−2 + 2n−2 − 2n + 3 , (5)



76 D. CALLAN, T. MANSOUR

where A−
1 = 0 and A−

2 = 1, and this formula is also seen to hold for n = 3, 4, 5.
Multiplying (5) by xn and summing over n ≥ 3, we get

A−(x)− x2 = xA−(x)− 2x2
(

A(x)− 1
)

+
x

1− x

(

A(x)− 1− 2x
)

+ x
(

C(x)− 1− x
)

− x2
(

C(x)− 1
)

− x3(1− 3x)

(1− x)2(1− 2x)
,

which leads to

A−(x) =
−x

1− x
+

x

(1− x)2
A(x) − 2x2

1− x
A(x) + x

(

C(x)− 1
)

− x3(1− 3x)

(1− x)3(1− 2x)
. (6)

From (3) and (6), we have

A(x)− 1− x =
−x

1− x
+

x

(1− x)2
A(x)− 2x2

1− x
A(x) + x

(

C(x)− 1
)

− x3(1− 3x)

(1− x)3(1− 2x)

+ xA(x) + (1− 2x)C(x) − 1.

Solving this equation for A(x) = FT (x) yields the following result.

Theorem 3.13 Let T = {1432, 2431, 3214}. Then

FT (x) =
(1− x)4(1− 2x)C(x)− x(1− 4x+ 6x2 − 5x3)

(1− x)(1− 2x)(1 − 4x+ 5x2 − 3x3)
.

3.6 Case 165: {1342, 2314, 3421}
Note that all three patterns contain 231.

Theorem 3.14 Let T = {1342, 2314, 3421}. Then

FT (x) =
(1− 2x)(1 − x)4C(x)− x(1− 4x+ 6x2 − 5x3 + x4)

(1− x)4(1− 3x+ x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x).

Let us first write an equation for G2(x). Let π = iπ′nπ′′ ∈ Sn(T ) with 2 left-right maxima.
Say there are k letters j1, j2, . . . , jk in π′′ that are smaller than i. Since π avoids 3421, we see that
j1 < j2 < · · · < jk. Since π avoids 2314 and 1342, one can write π as

iα(1)α(2) · · ·α(k+1)nβ(1)j1β
(2) · · · jkβ(k+1)

such that i > α(1) > j1 > α(2) > j2 > · · · > α(k) > jk > α(k+1) and n > β(1) > β(2) > · · · > β(k+1) > i.
Furthermore, each of α(1), α(k+1), β(1), β(k+1) avoids 231 and all other α’s and β’s avoid 12. We consider
three cases:

• If α(1) has a rise, then α(j) = β(j) = ∅ for all j = 2, 3, . . . , k + 1. So we have a contribution of
xk+2C(x)

(

C(x)− 1/(1 − x)
)

.
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• If α(1) is decreasing and β(1) has a rise, then α(j) = β(j) = ∅ for all j = 2, 3, . . . , k + 1. So we
have a contribution of xk+2/(1− x)C(x)

(

C(x)− 1/(1 − x)
)

.

• If α(1) and β(1) are decreasing, then α(j), β(j) are decreasing for all j = 2, 3, . . . , k. So we have a
contribution of xk+2/(1− x)2k C(x)2.

Hence,

G2(x) =
∑

k≥1

xk+2C(x)

(

C(x)− 1

1− x

)

+
∑

k≥1

xk+2

1− x
C(x)

(

C(x)− 1

1− x

)

+
∑

k≥0

xk+2

(1− x)2k
C(x)2 ,

which implies

G2(x) =
x2((1− x)(1 − 3x+ 2x2)C(x)2 − x(1− 3x+ x2))

(1− x)3(1− 3x+ x2)
.

For Gm(x) with m ≥ 3, a T -avoider π decomposes as in Figure 3 in Case 133 since that case also
avoids 1342 and 2314, and furthermore, α1, . . . , αm−1 all avoid 231 (or im is the 4 of a 2314), αm

avoids 231 (or i1 is the 1 of a 1342), and βm is increasing (or i1im is the 34 of a 3421). Hence,

Gm(x) =
xm

1− x
C(x)m.

Summing over m ≥ 3 and using the expressions for G0(x), G1(x) and G2(x), we obtain

FT (x) = 1 + xFT (x) +
x2
(

(1− x)(1− 3x+ 2x2)C(x)2 − x(1− 3x+ x2)
)

(1− x)3(1− 3x+ x2)
+

x3C(x)3

(1− x)
(

1− xC(x)
) .

Solve for FT (x) and use the identity C(x) = 1 + xC(x)2 repeatedly to complete the proof. �

3.7 Case 175: {1423, 2341, 3142}
The first and last patterns contain 312 and {312, 2341}-avoiders have generating function L(x) given
by [14, A116703]

L(x) =
(1− x)3

1− 4x+ 5x2 − 3x3
.

Let Lm(x) denote the generating function for {312, 2341}-avoiders with m left-right maxima so that
L(x) =

∑

m≥0 Lm(x).

Theorem 3.15 Let T = {1423, 2341, 3142}. Then

FT (x) =
1− 6x+ 12x2 − 11x3 + 5x4

1− 7x+ 17x2 − 20x3 + 12x4 − 2x5
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x).

For G2(x), define G2(x; r) to be the generating function for T -avoiders of the form π = (n−r)π′nπ′′

so that G2(x) =
∑

r≥1 G2(x; r). Since π avoids 1423, we see that n − 1, n − 2, . . . , n − r + 1 occur in
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that order and so π has the form π = (n− r)α1nα2(n− 1) · · ·αr(n− r+ 1)αr+1. Since π avoids 3142,
we see that α1 > α2 > · · · > αr.

If αr+1 is not empty, then αj is decreasing for j = 1, 2, . . . , r since π avoids 2341, and αr+1 avoids

T . So we have a contribution of xr+1

(1−x)r

(

FT (x) − 1
)

. If αr+1 is empty, then by removing the letter

n− r + 1, we have a contribution of xG2(x; r − 1). Thus, for r ≥ 2,

G2(x; r) = xG2(x; r − 1) +
xr+1

(

FT (x)− 1
)

(1− x)r
. (7)

Considering whether π′′ is empty or not, we find that G2(x; 1) = x2FT (x) +
x2

1−x

(

FT (x)− 1
)

.
Summing (7) over r ≥ 2, we obtain

G2(x) =
x2

1− x
FT (x) +

x2

(1− x)2
FT (x) +

x3

(1− x)2(1− 2x)

(

FT (x)− 1
)

.

For Gm(x) with m ≥ 3, suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 3 left-right maxima.
Since π avoids 2341, certainly π(j) > i1 for j ≥ 3.

If π(2) > i1, then i2π
(2) · · · imπ(m) avoids 312 (or i1 is the 1 of a 1423) and the contribution is

xFT (x)Lm−1(x).
If π(2) 6> i1, then i1 > 1 and π(j) > i2 for j ≥ 3 and 1 ∈ π(2) (or i11i2 is the 314 of a 3142). Thus,

i1π
(1)i2π

(2) and i3π
(3) · · · imπ(m) respectively contribute factors of G2(x)−xFT (x)L1(x) and Lm−2(x).

Hence, for all m ≥ 3,

Gm(x) = xFT (x)Lm−1(x) +
(

G2(x)− xFT (x)L1(x)
)

Lm−2(x).

Summing over m ≥ 3 gives

FT (x)−G2(x)−G1(x)− 1 = xFT (x)
(

L(x)− L1(x)− 1
)

+
(

G2(x)− xFT (x)L1(x)
)(

L(x)− 1
)

.

Clearly, L1(x) =
x

1−x . Substitute for G1, G2, L, L1 and solve for FT (x). �

3.8 Case 176: {1342, 2431, 3412}
Note that all three patterns contain 231, and the first two contain 132.

Theorem 3.16 Let T = {1342, 2431, 3412}. Then

FT (x) =
(1− x)2(1− 4x+ 6x2 − 5x3 + x4)C(x)− 1 + 6x− 14x2 + 15x3 − 8x4 + x5

x(1− 3x+ x2)(1− x+ x3)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x).

For G2(x), suppose π = iπ′nπ′′ ∈ Sn(T ) has 2 left-right maxima. If π′′ > i, then π′′ avoids 231 (or
i is the 1 of a 1342) while π′ avoids T , and the contribution is x2FT (x)C(x). Otherwise, π′′ has d ≥ 1
letters smaller than i and these letters are decreasing left to right (or in is the 34 of a 3412) and form
an interval of integers (or n is the 4 of a 2431). So π decomposes as in Figure 5, where γ is to the left
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of δ (or in is the 24 of a 2431) and is decreasing and nonempty, while α is to the left of β (or nj1 is
the 42 of a 1342). Also, δ avoids 231 (or i is the 1 of a 1342), while α avoids both 132 (or j1 is the 4
of a 2431) and 3412 and β avoids T .

α

β

γց

δi

n

Figure 5: A T -avoider iπ′nπ′′ with 2 left-right maxima and π′′ 6> i

If α is decreasing, the contribution is x3

(1−x)2
C(x)FT (x). If α is not decreasing, then β is decreasing

(to avoid 3412) and the contribution is x3

1−xC(x)
(

K(x)− 1
1−x

)

, whereK(x) = 1−2x
1−3x+x2 is the generating

function for {132, 3412}-avoiders [14, Seq. A001519]. Hence,

G2(x) = x2C(x)FT (x) +
x3

(1− x)2
C(x)FT (x) +

x3

1− x
C(x)

(

K(x)− 1

1− x

)

.

For Gm(x) with m ≥ 3, suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 3 left-right maxima.
If π(m) > im−1, then π avoids T if and only if i1π

(1) · · · im−1π
(m−1) avoids T and π(m) avoids 231,

which gives a contribution of xGm−1(x)C(x).
If π(m) 6> im−1, then π decomposes as in Figure 6, where the shaded regions are empty for the

reason indicated, αm is left of δ (or im−1im is the 24 of a 2431), α1 > α2 (a violator uv and a in αm

makes ui2va a 2431), and α2 · · ·αm is decreasing (or i1i2 is the 34 of a 3412). Also, α1 avoids both

132 (since αm 6= ∅) and 3412, and δ avoids 231. Thus, we have a contribution of xm+1

(1−x)m−1K(x)C(x).

. .
.

. . .

α1

α2 ց

αm−1ց
αmց

δ

i1

i2

i3

im−1

im

•2 4 3 1 •1 3 4 2

Figure 6: A T -avoider with m ≥ 3 left-right maxima and π(m) 6> im−1
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Hence, for m ≥ 3,

Gm(x) = xGm−1(x)C(x) +
xm+1

(1− x)m−1
K(x)C(x).

Summing this recurrence over m ≥ 3, we obtain

FT (x) = 1 + xFT (x) +G2(x) + xC(x)
(

FT (x)− 1− xFT (x)
)

+
x4

(1− x)2

(

K(x)− 1

1− x

)

C(x) ,

and, substituting for G2(x), the result follows by solving for FT (x). �

3.9 Case 178: {1342, 2314, 2431}
Note that all three patterns contain 231.

Theorem 3.17 Let T = {1342, 2314, 2431}. Then

FT (x) =
(1− x)2(1− 4x+ 6x2 − 5x3 + x4)C(x)− 1 + 6x− 14x2 + 15x3 − 8x4 + x5

x(1− 3x+ x2)(1− x+ x3)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x).

For G2(x), suppose π = iπ′nπ′′ ∈ Sn(T ). If i = n−1, the contribution is x(FT (x)−1). Otherwise,
we denote the contribution by H. So G2(x) = x

(

FT (x) − 1
)

+H. Now let us write a formula for H.
Here, i < n − 1 and π decomposes as in Figure 7a), where α is left of β (or in is the 24 of a 2431),
β 6= ∅ and avoids 231 (or i is the 1 of a 1342), and π′α also avoids 231 (or n is the 4 of a 2314).

π′ α

β

γ

δ

β

i

n i

n

i − 1

a) general form b) i > 1 and i− 1 after n

Figure 7: A T -avoider iπ′nπ′′ with 2 left-right maxima and i < n− 1

We consider four cases:

• If i = 1, then π′α = ∅ and the contribution is x2
(

C(x)− 1
)

.

• If i > 1 and i− 1 occurs in the second position, the contribution is xH.
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• If i > 1 and i− 1 occurs before n but not in the second position, let a denote the smallest letter
that occurs before i−1. We have a = 1 (or a(i−1)1b is a 2314 for b in β) and α = ∅ (or a(i−1)n
is the 134 of a 1342). So π′ is a 231-avoider of length ≥ 2 in which 1 precedes its maximal letter,

and β > i > π′ is a nonempty 231-avoider, giving a contribution of x2
(

(

C(x)−1−x
)

−x
(

C(x)−
1
)

)

(

C(x)− 1
)

= x5C(x)5 in compact form.

• If i > 1 and i − 1 occurs after n, then π has the form in Figure 7b) where γ < δ because
γ(i− 1)δ = π′α avoids 231. Since (i− 1)δ is counted by xC(x), the contribution is xC(x)H.

Thus
H = x2(C(x)− 1) + xH + x5C(x)5 + xC(x)H,

which has solution

H =
x2(C(x)− 1) + x5C(x)5

1− x− xC(x)
= x(C(x)− 1)2 + x4C(x)5(C(x)− 1) .

For Gm(x) with m ≥ 3, a T -avoider π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn decomposes as illustrated in
Figure 8 for m = 5, where α is left of β (or im−1im is the 24 of a 2431).

α

β

i1

i2

i3

i4

im

π(1)

π(2)

π(3)

π(4)

1 3 4 2•

2 3 1 4•

Figure 8: A T -avoider with m ≥ 3 left-right maxima

If π(2) = π(3) = · · · = π(m) = ∅, then π(1) avoids 231, and the contribution is xmC(x).
Otherwise, there is a maximal p ∈ [2,m ] such that π(p) 6= ∅. There are two cases:

• 1 ≤ p ≤ m − 1. Here, π avoids T if and only if π(j) avoids 231 for all j = 1, 2, . . . , p, giving a
contribution of xmC(x)p−1

(

C(x)− 1
)

.

• p = m. Here, π(m) = αβ 6= ∅. Hence, since a ∈ α and b ∈ β makes i1i2ab a 2314, exactly one of
α and β is nonempty.

If α 6= ∅, then π(2)π(3) · · · π(m−1) = ∅ (to avoid 2431), π(1) > α (to avoid 1342), π(1) avoids
{132, 231}, and α is nonempty and avoids T , giving a contribution xmL

(

FT (x) − 1
)

, where
L = 1−x

1−2x is the generating function for {132, 231}-avoiders [13].

If β 6= ∅, then π(j) avoids 231 for j = 1, . . . ,m, and we have a contribution of xmC(x)m−1
(

C(x)−
1
)

.
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Adding all the contributions, we have

Gm(x) = xmC(x) + xm L
(

FT (x)− 1
)

+

m
∑

p=2

xmC(x)p−1
(

C(x)− 1
)

.

Summing over m ≥ 3 and using the expressions for G0, G1, G2, L, we obtain

FT (x) = 1− x+ 2xFT (x) + x
(

C(x)− 1
)2

+ x4C(x)5
(

C(x)− 1
)

+
x3(FT (x)− 1)

1− 2x
+ x3C4(x) .

Solving for FT (x) gives an expression which can be written as in the statement of the theorem. �

3.10 Case 194: {3124, 4123, 1243}
We define a(n) = |Sn(T )| and define a(n; i1, i2, . . . , im) to be the number of permutations π =
π1π2 · · · πn in Sn(T ) such that π1π2 · · · πm = i1i2 · · · im. Note that a(n; 1) = |Sn−1({3124, 4123, 132})|
and H(x) :=

∑

n≥0 |Sn({132, 3124, 4123})|xn is given by H(x) = 1 + x(1−x)2

(1−2x)2 .

Set b(n; i) = a(n; i, i+1) and b′(n; i) = a(n; i, n). As in the other cases, one can obtain the following
relations.

Lemma 3.18 For n ≥ 4,

a(n; i, n) = a(n; i, n − 1), 1 ≤ i ≤ n− 2,

a(n; i, j) = a(n− 1; i, j) + b(n; i− 1), 2 ≤ i < j ≤ n− 1,

a(n; i, j) =

j
∑

k=1

a(n− 1; i− 1, k), 1 ≤ j < i− 1 ≤ n− 2,

a(n; i, i− 1) = a(n− 1; i − 1), 2 ≤ i ≤ n,

b(n; i) =

i
∑

k=1

b(n− 1; k), 1 ≤ i ≤ n− 1,

a(n;n− 1) = a(n− 1),

a(n;n) = a(n− 1),

b(n;n) = 0.

Define A−(x;w, v) =
∑

n≥2

∑n
i=1

∑i−1
j=1 a(n; i, j)w

ivj−1.

Proposition 3.19
A−(x; 1, 1) = xC(x)

(

FT (x)− 1
)

.

Proof. By Lemma 3.18, we have a(n; i, j) =
∑j

k=1 a(n − 1; i − 1, k) for 1 ≤ j < i − 1 ≤ n − 1.

Define A−
n,i(v) =

∑i−1
j=1 a(n; i, j)v

j−1. Multiplying the last recurrence by vj−1 and summing over
j = 1, 2, . . . , i− 2, we obtain

A−
n,i(v)− a(n; i, i − 1)vi−2 =

1

1− v
(A−

n−1,i−1(v)− vi−2A−
n−1,i−1(1)),
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which implies

A−
n,i(v) =

1

1− v
(A−

n−1,i−1(v) − vi−2A−
n−1,i−1(1)) + a(n; i− 1)vi−2,

by Lemma 3.18, with A−
n,1(v) = 0.

Define A−
n (w, v) =

∑n
i=1 A

−
n;i(v)w

i and An(v) =
∑n

i=1 a(n; i)v
i−1. Multiplying the last recurrence

by wi and summing over i = 2, 3, . . . , n, we obtain

A−
n (w, v) =

w

v(1 − v)
(vA−

n−1(w, v) −A−
n−1(wv, 1)) + w2An−1(wv),

with A−
1 (w, v) = 0. Hence,

A−(x;w, v) =
wx

v(1− v)
(vA−(x;w, v) −A−(x;wv, 1)) + xw2(A(x;wv) − 1).

By taking w = (1− v)/x, we obtain

A−(x; (1 − v)v/x, 1) = v(1 − v)2/x(A(x; (1 − v)v/x) − 1),

which, by taking v = 1/C(x), leads to A−(x; 1, 1) = xC(x)
(

A(x; 1)− 1
)

, as required. �

Define B′
n(v) =

∑n−1
i=1 b′(n; i)vi−1 and Bn(v) =

∑n−1
i=1 b(n; i)vi−1, and their generating functions by

B′(x; v) =
∑

n≥3 B
′
n(v)x

n and B(x; v) =
∑

n≥2Bn(v)x
n.

Lemma 3.20 We have

B(x; v) =
x2
(

1− vC(xv)
)

1− x− v

and

B′(x; v) =
2x3 + vB(x; v) − x2(v + x)C(xv)

1− 2x
.

Proof. By Lemma 3.18, we have b(n;n) = 0 and b(n; i) = b(n − 1; 1) + · · · + b(n − 1; i). Multiplying
by vi−1 and summing over i = 1, 2, . . . , n− 1, we obtain

Bn(v) =
1

1− v
(Bn−1(v)− vn−1Bn−2(1)),

where B2(v) = 1. Hence,

B(x/v; v) = x2/v2 +
x

v(1 − v)
(B(x/v; v) −B(x; 1)).

By taking v = 1/C(x), we have B(x; 1) = x2C2(x) = x(C(x)− 1), and thus

B(x; v) =
x2(1− vC(xv))

1− x− v
.

By Lemma 3.18, we have b′(n;n− 1) = b′(n;n− 2) = Cn−2 and

b′(n; i) = a(n; i, n) = a(n; i, n − 1) = a(n − 1; i, n − 1) + a(n− 1; i, n − 2) + b(n; i− 1),
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which gives
b′(n; i) = 2b′(n− 1; i) + b(n; i− 1),

where b′(n;n − 1) = b′(n;n − 2) = Cn−2. By multiplying the last recurrence by vi−1 and summing
over i = 1, 2, . . . , n− 3, we obtain

B′
n(v) = Cn−2(v

n−2 + vn−3) + 2(B′
n−1(v)− Cn−3v

n−3)

+ v(Bn(v)− b(n;n− 3)vn−4 − b(n;n− 2)vn−3 − b(n;n− 1)vn−2).

From the first part of the proof, we get b(n;n−1) = b(n;n−2) = Cn−2 and b(n;n−3) = Cn−2−Cn−3.
Thus, B′

3(v) = 1 + v and

B′
n(v) = 2B′

n−1(v) + vBn(v)− (Cn−3 + Cn−2v
2)vn−3.

Hence,

B′(x; v) = (1+ v)x3 +2xB′(x; v)+ v(B(x; v)− (1+ v)x3 −x2)−x3(C(xv)− 1)− vx2(C(xv)− 1−xv),

which leads to

B′(x; v) =
2x3 + vB(x; v) − x2(v + x)C(xv)

1− 2x
,

as claimed. �

Define A+(x; v) =
∑

n≥2

∑n
i=1

∑n
j=i+1 a(n; i, j)v

j−1−i.

Proposition 3.21 We have

A+(x; 1) =
(x4 − 2x3 + 5x2 − 4x+ 1)C(x)− x3 − 2x2 + 3x− 1

(1− 2x)2
.

Proof. By Lemma 3.18, we have a(n; i, n) = b′(n; i) and

a(n; i, j) = a(n− 1; i, j) + a(n − 1; i, j − 1) + b(n; i− 1),

for all 2 ≤ i < j ≤ n− 1. Define A+
n;i(v) =

∑n
j=i+1 a(n; i, j)v

j−1−i. Thus,

A+
n;i(v)− b′(n; i)vn−1−i = A+

n−1;i(v) + v
(

A+
n−1;i(v)− b′(n − 1; i)vn−2−i

)

+
1− vn−1−i

1− v
b(n; i− 1),

which leads to

A+
n;i(v) = b′(n; i)vn−1−i − b′(n− 1; i)vn−1−i + (1 + v)A+

n−1;i(v) +
1− vn−1−i

1− v
b(n; i− 1), (8)

for all i = 2, 3, . . . , n− 2. Note that A+
n;n−1(v) = a(n;n− 1, n) = Cn−2. Moreover, A+

n;n(v) = 0.

Define A+
n (v) =

∑n
i=1A

+
n;i(v). By summing (8) over i = 2, 3, . . . , n − 2, using b′(n; 1) = 2n−3 and

b′(n;n− 1) = b(n;n− 2) = Cn−2 (see Lemma 3.20), we have

A+
n (v) = A+

n;1(v) +
(

B′
n(1/v) − 2n−3

)

vn−2 −
(

B′
n−1(1/v) − 2n−4

)

vn−2

+ (1 + v)
(

A+
n−1(v)−A+

n−1;1(v)
)

+
1

1− v

(

Bn(1)− vn−3Bn(1/v)
)

+Cn−2/v.
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Let
∑

n≥2A
+
n;1(v)x

n = G(x; v). Multiplying by xn and summing n ≥ 4, we obtain

(

1− (1 + v)x
)

A+(x; v) =
(

1− (1 + v)x
)

G(x; v) +
1− vx

v2
B′(vx; 1/v) − x3v − v2x4

1− 2vx

+
1

1− v
(B(x; 1)− 1

v3
B(vx; 1/v)) +

x2

v
C(x).

By Lemma 3.20, we have

lim
v→1

1

1− v
(B(x; 1)− 1

v3
B(vx; 1/v)) + x2C(x) = (1− 3x+ x2)C(x)− 1 + 2x.

Since G(x; 1) = xH(x)− x− x2, we have

A+(x; 1) = xH(x) +
1− x

1− 2x
B′(x; 1) − x(1− x)2

1− 2x
− x4

(1− 2x)2

+
1− 3x+ x2

1− 2x
C(x)− 1.

By Lemma 3.20 and the formula for H(x), we complete the proof. �

Theorem 3.22 Let T = {3124, 4123, 1243}. Then

FT (x) =
(1− 5x+ 9x2 − 8x3 + 4x4)C(x)− (1− 5x+ 9x2 − 6x3 + x4)

x(1− 2x)2
.

Proof. By Propositions 3.19 and 3.21, we have

FT (x)− 1− x = xC(x)
(

FT (x)− 1
)

+
(x4 − 2x3 + 5x2 − 4x+ 1)C(x)− x3 − 2x2 + 3x− 1

(1− 2x)2
.

Solving for FT (x) completes the proof. �

3.11 Case 214: {1342, 2341, 3412}
Most of the work is in finding an equation for G2(x).

Lemma 3.23

G2(x) = x2FT (x)C(x) +
x3C(x)2

(

FT (x)− 1
)

1− 2x
+

x3C(x)2

1− 2x
− x3C(x)2

(1 − x)2
+

x3C(x)

(1− x)
(

1− x− xC(x)
) .

Proof. Refine G2(x) to G2(x; d), the generating function for permutations π = iπ′nπ′′ ∈ Sn(T ) with 2
left-right maxima and such that π′′ has d ≥ 0 letters smaller than i. For d = 0, π′′ > i and π′′ avoids
231 (or i is the “1” of a 1342), while π′ avoids T . Hence, G2(x; 0) = x2FT (x)C(x).

Now assume d ≥ 1. The letters in π′′ smaller than i, say j1, j2, . . . , jd, are decreasing (or in is the
34 of a 3412) and π has the form illustrated in Figure 9, where α1α2 · · ·αd is decreasing (or njd is the
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41 of a 2341) and αm lies to the left of αm+1 for 1 ≤ m ≤ d (or njm is the 42 of a 1342) and β1β2 · · · βd
is decreasing (or ijd is the 21 of a 2341).

β1 β2 βd βd+1

α1ց
α2ց

αdց
αd+1

. . . . . .

. . .

. . .

i

n

j1
j2

jd

Figure 9: A general T -avoider with 2 left-right maxima

If α2 · · ·αdαd+1 6= ∅, then β2 · · · βd = ∅ (since u ∈ α2 · · ·αd and v ∈ β2 · · · βd makes uj1vjd a 2341,
while u ∈ αd+1 and v ∈ β2 · · · βd makes uj1vjd a 1342). Thus, with β1 = k1k2 · · · kp where p ≥ 0, π
has the form illustrated in Figure 10, where γm+1 lies to the left of γm for 1 ≤ m ≤ p (or ikm is the
13 of a 1342) and all the γ’s avoid 231 (or i is the “1” of a 1342).

γ1
γ2

γp
γp+1

α1ց
α2ց

αdց
αd+1

. . . . . .

. . . . .
.

i

n

j1
j2

jd

k1
k2

kp

Figure 10: A T -avoider with 2 left-right maxima and α2 · · ·αdαd+1 6= ∅

Now we consider three cases (Figure 10 applies to the first two of them):

• αd+1 6= ∅. In this case, we get a contribution of x2+d+p from i, n and the j’s and k’s, of FT (x)−1
from αd+1, of 1/(1 − x)d from the other α’s, and of C(x)p+1 from the γ’s. Summing over p ≥ 0
gives a total contribution of

x2+d
(

FT (x)− 1
)

C(x)

(1− x)d
(

1− xC(x)
) .

• αm 6= ∅ and αm+1 = · · · = αd+1 = ∅ for some m ∈ {2, 3, . . . , d}. This case is similar to the
previous except that we have m decreasing α’s to consider and the last of these is nonempty.
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Thus, we get a contribution of
x3+dC(x)

(1− x)m(1− xC(x))
.

• α2 = · · · = αd+1 = ∅. In this case, π has the form i(i − 1) · · · (d + 1)nβ1d · · · βd1βd+1, where
β1 · · · βd = k1k2 · · · kp is decreasing and βd+1 = γp+1γp · · · γ1 with γ’s separated by the k’s and
γs avoiding 231 for all s. This leads, by a similar analysis, to a contribution of

x2+dC(x)

(1− x)
(

1− xC(x)
)d

.

Hence, for d ≥ 1,

G2(x; d) =
x2+d(FT (x)− 1)C(x)

(1− x)d
(

1− xC(x)
) +

(

d
∑

m=2

x3+dC(x)

(1− x)m
(

1− xC(x)
)

)

+
x2+dC(x)

(1− x)
(

1− xC(x)
)d

=
x2+d(FT (x)− 1)C(x)2

(1− x)d
+

(

d
∑

m=2

x3+dC(x)2

(1− x)m)

)

+
x2+dC(x)

(1− x)
(

1− xC(x)
)d

.

Since G2(x) =
∑

d≥0 G2(x; d) and G2(x; 0) = x2FT (x)C(x), the result follows. �

Lemma 3.24 For m ≥ 3,
Gm(x) = xm−2C(x)m−2G2(x) .

Proof. Suppose m ≥ 3 and π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) has m left-right maxima. Since π
avoids 2341 and 1342, we have π(s) > is−1 for all s = 3, 4, . . . ,m. Thus, π avoids T if and only if (i)
i1π

(1)i2π
(2) avoids T and has exactly 2 left-right maxima, and (ii) π(s) avoids 231 for all s = 3, 4, . . . ,m.

The result follows. �

Theorem 3.25 Let T = {1342, 2341, 3412}. Then

FT (x) =
(1− 2x)

(

(1− 5x+ 9x2 − 6x3)
√
1− 4x− (1− 9x+ 29x2 − 38x3 + 18x4)

)

2(1 − x)2x(1− 7x+ 14x2 − 9x3)
.

Proof. Using Lemma 3.24 and summing over m ≥ 3 leads to

FT (x)− 1− xFT (x) = G2(x) +
xC(x)G2(x)

1− xC(x)
=

G2(x)

1− xC(x)
= G2(x)C(x) .

Lemma 3.23 now implies

FT (x)− 1− xFT (x)

= x2FT (x)C(x)2 +
x3C(x)3(FT (x)− 1)

1− 2x
+

x3C(x)3

1− 2x
− x3C(x)3

(1− x)2
+

x3C(x)4

1− x
.

Solving for FT (x) and simplifying completes the proof. �
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3.12 Case 220: {2431, 2314, 3142}
Theorem 3.26 Let T = {2431, 2314, 3142}. Then

FT (x) = 1 +
x(1− x)2(1− 2x)

(1− 3x)(1− x)3 − x(1− 2x)(1 − x+ x2)
(

C(x)− 1
) .

Proof. To write an equation for Gm(x) where m ≥ 2, suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with
m left-right maxima. Then π has the form illustrated in Figure 11a) below where the shaded region
is empty (a letter u in the shaded region implies i1i2 u im is a 2314).

i1

i2

i3

i4

im

. . .

π(1)

π(2)

π(3) π(m)

. .
.

−→
if π(m) 6> i1

π(1)

α

β

a

..
.

i1

i2

im

a) b)

Figure 11: A T -avoider with m ≥ 2 left-right maxima

Note that π(1) avoids 231 (or im is the “4” of a 2314). If π(m) > i1, then we get a contribution of
xC(x)Gm−1(x) where C(x) accounts for π(1).

Now suppose π(m) has a letter a smaller than i1. Then π(2)π(3) · · · π(m−1) = ∅ (if u ∈ π(s), 2 ≤
s ≤ m− 1, then is−1 is ua is a 2431) and π(1) > a (if u ∈ π(1) with u < a, then i1 u i2 a is 3142). Also,
π(m) < i2. To see this, suppose u ∈ π(m) with u > i2. If u occurs before a in π, then i2 im ua is a
2431, while if u occurs after a, then i1 i2 a u is a 2314. So π has the form illustrated in Figure 11b),
where all entries in α lie to the left of all entries in β (or uv with u ∈ β and v ∈ α implies i1 i2 u v is
a 2431).

We now consider two cases:

• β = ∅. Here, π avoids T if and only if π(1) avoids 132 (to avoid 2431) and 231, and α avoids T ,
giving a contribution of xm

(

FT (x) − 1
)

L(x), where L(x) = 1−x
1−2x is the generating function for

{132, 231}-avoiders.
• β 6= ∅. Here, π(1) is decreasing (uv in π(1) with u < v ⇒ uvab is a 2314 for b ∈ β), α avoids 231

(to avoid 2314), and β avoids T , giving a contribution of xm

1−x

(

C(x)− 1
)(

FT (x)− 1
)

.

Thus, for all m ≥ 2,

Gm(x) = xC(x)Gm−1(x) + xm(FT (x)− 1)L(x) +
xm

1− x

(

C(x)− 1
)(

FT (x)− 1
)

.

Summing over m ≥ 2, we obtain

FT (x)− 1− xFT (x) = xC(x)
(

FT (x)− 1
)

+
x2

1− x

(

L(x) +
1

1− x

(

C(x)− 1
)

)

(

FT (x)− 1
)

,

which implies FT (x) is as stated. �
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3.13 Case 222: {3412, 3421, 1342}
Here, we use the notion of a generating tree (West [15]), and consider the generating forest whose
vertices are identified with S :=

⋃

n≥2 Sn(T ), where 12 and 21 are the roots and each non-root π ∈ S
is a child of the permutation obtained from π by deleting its largest element. We will show that it
is possible to label the vertices so that if v1 and v2 are any two vertices with the same label and ℓ is
any label, then v1 and v2 have the same number of children with label ℓ. Indeed, we will specify (i)
the labels of the roots, and (ii) a set of succession rules explaining how to derive from the label of a
parent the labels of all of its children. This will determine a labelled generating forest.

A permutation π = π1π2 · · · πn ∈ Sn determines n + 1 positions, called sites, between its entries.
The sites are denoted 1, 2, . . . , n + 1 from left to right. In particular, site i is the space between πi−1

and πi for 2 ≤ i ≤ n. Site i of π is said to be active (with respect to T ) if, by inserting n+ 1 into site
i of π, we get a permutation in Sn+1(T ), otherwise it is inactive. For π ∈ Sn(T ), sites 1 and n+1 are
always active, and if πn = n, then site n is active.

For π ∈ Sn(T ), define A(π) to be the set of all active sites for π and L(π) to be the set of active
sites lying to the left of n. For example, L(13254) = {1, 2, 4} since there are 4 possible sites in which
to insert 6 to the left of n = 5 and, of these insertions, only 136254 is not in S6(T ).

Lemma 3.27 For π ∈ Sn(T ), we have A(π) = L(π) ∪ {n + 1} unless πn < n and site n is active, in

which case A(π) = L(π) ∪ {n, n+ 1}.
Proof. No site to the right of n is active except (possibly) site n and (definitely) site n+1, for if n+1
is inserted after n in a site ≤ n− 1, then n (n+ 1)πn−1 πn is a 3412 or a 3421, both forbidden. �

If site n is inactive, then 1 and n + 1 are the only active sites iff π1 = n. In particular, there are
at least 3 active sites unless site n is inactive and π1 = n.

For n ≥ 2, say π ∈ Sn is special if it has the form π = n(n − 1) · · · (j + 1)π′j for some j with
2 ≤ j ≤ n, where j = n means π = π′n.

We now assign labels. Suppose n ≥ 2 and π ∈ Sn(T ) has k active sites. Then π is labelled k, k, k
according to whether site n is active and whether π is special as follows. If site n is inactive, then

label π by k. Otherwise, if π is special, then label π by k, and if π is not special, then label it by k.
For instance, all 3 sites are active for both 12 and 21 and only the former is special, so their labels

are 3̄ and 3, respectively; 12 has three children 312, 132 and 123 with active sites {1, 3, 4}, {1, 2, 4}
and {1, 2, 3, 4}, respectively, hence labels 3̄, ¯̄3 and 4̄ because only the first and third are special; 21
has three children 321, 231 and 213 with active sites {1, 3, 4}, {1, 2, 3, 4} and {1, 2, 3, 4}, respectively,
hence labels 3, 4 and 4̄ because only the last is special.

To establish the succession rules, we have the following proposition. The proof is left to the reader.

Proposition 3.28 Fix n ≥ 2. Suppose π ∈ Sn(T ) has k active sites and site n is active so that

A(π) = {1 = L1 < L2 < · · · < Lk−1 = n} ∪ {n+ 1} .

If π is special, then A(πL1) = {L1, n+1, n+2} and A(πLi) = {L1, . . . , Li, n+2} for 2 ≤ i ≤ k−1.
If π is not special, then A(πLi) = {L1, . . . , Li, n+ 1, n+ 2} for 1 ≤ i ≤ k − 1.
In both cases, A(πn+1) = {L1, . . . , Lk−1, n+ 1, n+ 2}.
Next, suppose π ∈ Sn(T ) has k active sites and site n is inactive so that

A(π) = {1 = L1 < L2 < · · · < Lk−1 ≤ n− 1} ∪ {n+ 1} .
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Then A(πLi) = {L1, . . . , Li, n + 2} for 1 ≤ i ≤ k − 1 and A(πn+1) = {L1, . . . , Lk−1, n+ 1, n + 2}.

As an immediate consequence, we obtain the following result.

Corollary 3.29 The labelled generating forest F is given by

Roots: 3, 3̄

Rules: k  3, 4, . . . , k, k + 1, k + 1 for k ≥ 3,

k̄  3̄, ¯̄3, ¯̄4, . . . , ¯̄k, k + 1 for k ≥ 3,
¯̄k  ¯̄2, ¯̄3, . . . , ¯̄k, k + 1 for k ≥ 2.

Theorem 3.30 Let T = {3412, 3421, 1342}. Then

FT (x) =
2− 11x+ 13x2 − 6x3 + (1− x)x(1− 6x+ 4x2)(1− 4x)−1/2

2(1 − 6x+ 8x2 − 4x3)
.

Proof. Let ak(x), bk(x) and ck(x) denote the generating functions for the number of permutations in
the nth level of the labelled generating forest F with label k, k̄ and ¯̄k, respectively. By Corollary 3.29,
we have

ak(x) = x
∑

j≥k−1

aj(x) ,

bk(x) = x
(

ak−1(x) + bk−1(x) + ck−1(x)
)

,

ck(x) = x
∑

j≥k

(

bj(x) + cj(x)
)

,

with a3(x) = x2 + x
∑

j≥3 aj(x), b3(x) = x3 + xc2(x) + x
∑

j≥3 bj(x) and c2(x) = x
∑

j≥2 cj(x).

Now let A(x, v) =
∑

k≥3 ak(x)v
k, B(x, v) =

∑

k≥2 bk(x)v
k and C(x, v) =

∑

k≥3 ck(x)v
k. The above

recurrences can then be written as

A(x, v) = a3(x)v
3 +

x

1− v
(v4A(x, 1) − v2A(x, v)), (9)

B(x, v) = b3(x)v
3 + xv(v3A(x, v) +B(x, v) + C(x, v)− c2(x)v

2), (10)

C(x, v) = c2(x)v
2 +

x

1− v
(v3B(x, 1)− vB(x, v)) +

x

1− v
(v3C(x, 1)− vC(x, v)), (11)

where a3(x) = x2 + xA(x, 1), b3(x) = x2 + xB(x, 1) + x2C(x, 1) and c2(x) = xC(x, 1).
By finding A(x, v) from (9) and B(x, v) from (10) and then substituting into (11), we obtain

(1− v + xv2)2

(1− xv)(1− v)2
C(x, t)

+
xv2(1− v + xv2)(2v2x2 − 2x2v + 2x− 1)

(1− v)2(1− 2x)(1 − xv)
C(x, 1)

− (2v2x2 − 2xv + 1)x2v3

(1− xv)(1− 2x)(1 − v)
A(x, 1) − (2v2x2 − v + 1)v3x3

(1− xv)(1 − 2x)(1 − v)
= 0.
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To solve the preceding functional equation, we apply the kernel method and take v = C(x). This gives

A(x, 1) = xC(x)− x.

Now, by differentiating the functional equation with respect to t and then substituting t = C(x) and
A(x, 1) = xC(x)− x, we obtain

C(x, 1) = − 1− 7x+ 12x2 − 8x3

2(1− 6x+ 8x2 − 4x3)
+

1− 9x+ 24x2 − 20x3 + 8x4

2(1− 6x+ 8x2 − 4x3)
√
1− 4x

.

Thus, by (10), we have

B(x, 1) =
x3(1− 2x−

√
1− 4x)

(1− x)(1− 4x)2 − (1− 2x)(1 − 5x+ 2x2)
√
1− 4x

.

Since FT (x) = A(x, 1) + B(x, 1) + C(x, 1), the result follows by adding the last three displayed
expressions and simplifying. �

3.14 Case 223: {1243, 1342, 2413}
To find an explicit formula for FT (x), we define Am(x) (resp. Bm(x)) to be the generating function for
T -avoiders π = i1π

(1) · · · imπ(m) (i1, . . . , im are the left-right maxima) such that π(s) < i1 for all s 6= 2
and π(2) < i1 (resp. π(2) has a letter greater than i1). Also, we define Gm(x) to be the generating
function for T -avoiders with m left-right maxima. Clearly, G0(x) = 1 and G1(x) = xFT (x). Recall
L(x) := 1−x

1−2x is the generating function for {132, 231}-avoiders [13].

Lemma 3.31 A1(x) = G1(x) and for all m ≥ 2,

Am(x) = xAm−1(x) + x
∑

j≥m

Gj(x) .

Proof. Clearly, A1(x) = G1(x). To find an equation for Am(x) where m ≥ 2, suppose π =
i1π

(1) · · · imπ(m) ∈ Sn(T ) with m left-right maxima satisfies π(s) < i1 for all s. If π(1) = ∅, we
have a contribution of xAm−1(x). Otherwise, assume that π(1) has d ≥ 1 left-right maxima. Since π
avoids 1342 and 1243, we see that π can be written as

π = i1j1α
(1)j2α

(2) · · · jdα(d)i2π
(2) · · · imπ(m),

where α(s) < j1 for all s = 1, 3, . . . , d, α(2) < j2, and π(s) < j1 for all s = 2, 3, . . . ,m. Thus, we have a
contribution of xGm+d−1(x). Summing over all the contributions, we obtain

Am(x) = xAm−1(x) + x
∑

d≥1

Gm+d−1(x),

as required. �

Lemma 3.32 For all m ≥ 2,

Bm(x) = x
(

L(x)− 1
)

Am−1(x) +
x3

(1− 2x)2
Am−1(x) .
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Proof. Let us write an equation for Bm(x), m ≥ 2. Suppose π = i1π
(1) · · · imπ(m) ∈ Sn(T ) and that

π(1) contains d letters. Note that π(1) is decreasing (π avoids 1243) and π(2) has the form αβ with
α > i1 and β < i1.

If d = 0, then π avoids T if and only if α is nonempty and avoids 132 and 231, with the section
i2βi3π

(3) · · · imπ(m) avoiding T . Thus, we have a contribution of x
(

L(x)− 1
)

Am−1(x).
For the case d ≥ 1, since π avoids T , π has the form

π = i1j1j2 · · · jdi2α(0)α(1) · · ·α(d)βi3π
(3) · · · imπ(m)

such that j0 := i1 > j1 > · · · > jd ≥ 1, js−1 > α(s) > js for all s = 0, 1, . . . , d with j−1 = i2, and
β, π(3), . . . , π(m) < jd. Here, we consider three cases:

• α(s) is decreasing for all s = 0, 1, . . . , d− 1. The contribution is xd+2

(1−x)d
L(x)Am−1(x).

• α(0) is not decreasing (i.e., has a rise). Then α(s) = ∅ for all s = 1, 2, . . . , d. Hence, we have a
contribution of xd+1

(

L(x)− 1/(1 − x)
)

Am−1(x).

• there is a minimal p ∈ [1, d − 1] such that α(p) is not decreasing. Then α(s) is decreasing for
all s = 0, 1, . . . , p − 1 and α(s) = ∅ for all s = p + 1, . . . , d. Thus, we have a contribution of
xd+2

(1−x)p

(

L(x)− 1
1−x

)

Am−1(x).

Hence,

Bm(x) = x
(

L(x)− 1
)

Am−1(x)

+
∑

d≥1





xd+2

(1− x)d
L(x) +



xd+1 +

d−1
∑

p=1

xd+2

(1− x)p





(

L(x)− 1/(1 − x)
)



Am−1(x)

= x
(

L(x)− 1
)

Am−1(x) +
x3

(1− 2x)2
Am−1(x),

as required. �

Now, we are ready to find a formula for FT (x).

Theorem 3.33 Let T = {1243, 1342, 2413}. Then

FT (x) =
(1− 2x)

(

1− 2x−
√
1− 8x+ 20x2 − 20x3 + 4x4

)

2x(1 − 4x+ 5x2 − x3)
.

Proof. Define

G(x, y) =
∑

m≥0

Gm(x)ym, A(x, y) =
∑

m≥1

Am(x)ym, B(x, y) =
∑

m≥2

Bm(x)ym.

From the definitions of Am and Bm, we have Gm(x) = Am(x) +Bm(x) for all m ≥ 1 with G0(x) = 1
and B1(x) = 0, which implies

G(x, y) = 1 +A(x, y) +B(x, y) . (12)
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Lemma 3.31 asserts that

Am(x) = xAm−1(x) + x
∑

j≥m

Gj(x), A1(x) = G1(x).

Multiplying by ym, summing over m ≥ 2 and using the fact G(x, 1) = FT (x) implies

(1− xy)A(x, y) = xy +
xy

1− y
(FT (x)−G(x, y)) . (13)

Similarly, Lemma 3.32 yields

B(x, y) =
x2(1− x)y

(1− 2x)2
A(x, y) . (14)

From (12), (13) and (14), we obtain

(1− xy)G(x, y) = 1− xy + xy

(

1 +
x2(1− x)y

(1− 2x)2

)(

1 +
FT (x)−G(x, y)

1− y

)

.

This equation can be solved by the kernel method, giving the stated result. �

3.15 Case 224: {4132, 1342, 1423}
Here, we consider (right-left) cell decompositions, which allow a useful characterization of R-avoiders,
where R := {1342, 1423} is a subset of T . So suppose

π = π(m)imπ(m−1)im−1 · · · π(1)i1 ∈ Sn

has m ≥ 2 right-left maxima n = im > im−1 > · · · > i1 ≥ 1. The right-left maxima determine a cell

decomposition of the matrix diagram of π as illustrated in Figure 12 for m = 4. There are
(

m+1
2

)

cells
Cij , where i, j ≥ 1 and i+ j ≤ m+1, indexed by (x, y) coordinates. For example, C21 and C32 are as
shown.

C21

C32

i4

i3

i2

i1

Figure 12: Cell decomposition

Cells with i = 1 or j = 1 are referred to as boundary cells, the others are interior. A cell is occupied
if it contains at least one letter of π, otherwise it is empty. Let αij denote the subpermutation of entries
in Cij .

The reader may verify the following characterization of R-avoiders in terms of the cell decomposi-
tion. A permutation π is an R-avoider if and only if
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1. For each occupied cell C, all cells that lie both strictly east and strictly north of C are empty.

2. For each pair of occupied cells C,D with D directly north of C (same column), all entries in C
lie to the right of all entries in D.

3. For each pair of occupied cells C,D with D directly east of C (same row), all entries in C are
larger than all entries in D.

4. αij avoids R for all i, j.

Condition (1) imposes restrictions on occupied cells as follows. A major cell for π is an interior cell C
that is occupied and such that all cells directly north or directly east of C are empty. The set of major
cells (possibly empty) determines a Dyck path of semilength m− 1 such that cells in the first column
correspond to vertices in the first ascent of the path and major cells correspond to valley vertices as
illustrated in Figure 13. (If there are no major cells, the Dyck path covers the boundary cells and has
no valleys.)

b

b

b

b

b

b

b

b

b

b

b

b

b

rotate 135◦

and reverse

= major cell
Dyck path
= valley vertex

Figure 13: Dyck path from cell diagram

If π avoids R, then condition (1) implies that all cells not on the Dyck path are empty, and
condition (4) implies St(αij) is an R-avoider for all i, j. Conversely, if n = im > im−1 > · · · > i1 ≥ 1
are given and we have a Dyck path in the associated cell diagram, and an R-avoider πC is specified
for each cell C on the Dyck path, with the additional proviso πC 6= ∅ for valley cells, then conditions
(2) and (3) imply that an R-avoider with this Dyck path is uniquely determined.

Now we can find an equation for the generating function Lm(x) for T -avoiders with exactly m+1
right-left maxima. Clearly, L1(x) = xFT (x). So assume m ≥ 2. If an R-avoider also avoids 4132, then
all cells not in the leftmost column avoid 132 and all cells in the leftmost column below the topmost
nonempty cell also avoid 132. Also, the associated Dyck path has no valleys above the x-axis. Thus,
we may assume that the Dyck path has the form

P = Ua1Da1Ua2Da2 · · ·Uas+1Das+1 ,

with s ≥ 0 valleys, all on the x-axis. By the cell decomposition each valley contributes C(x)− 1.
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Consider the first a1 + 1 cells, say C1, C2, . . . , Ca1+1, from top to bottom in the leftmost column:

• if C1 = · · · = Ca1 = ∅, then we have a contribution of xmFT (x)C(x)
(

C(x)− 1
)s
;

• if C1 = · · · = Cj−1 = ∅ and Cj 6= ∅, then Cj+2 = · · · = Ca1+1 = ∅, which gives a contribution
xm
(

FT (x)− 1
)

C(x)2
(

C(x)− 1
)s
.

Summing over all Dyck paths of form P with fixed m, a1 and s, we find that the generating function
for T -avoiders having a fixed diagram associated with a Dyck path of 2m− 2 steps, no valleys above
x-axis, first ascent of length a1 steps and s valleys is given by
{

xmFT (x)C(x) + (m− 1)xm
(

FT (x)− 1
)

C(x)2, a1 = m− 1 ( i.e., s = 0)
xmFT (x)C(x)

(

C(x)− 1
)s

+ a1x
m
(

FT (x)− 1
)

C(x)2
(

C(x)− 1
)s

, 1 ≤ a1 ≤ m− 2 .

Thus, by summing over all s and a1, we obtain

Lm(x) =

m−2
∑

s=0

(

m− 2

s

)

xmFT (x)C(x)
(

C(x)− 1
)s

+

m−1
∑

s=1

(

m− 1

s

)

xm
(

FT (x)− 1
)

C2(x)
(

C(x)− 1
)s−1

= xmCm−1(x)FT (x) +
xmC(x)m+1

(

FT (x)− 1
)

C(x)− 1
− xm

(

FT (x)− 1
)

C(x)2 ,

which implies

Lm(x) = xm
(

xCmFT (x) + (Cm(x)− 1)(FT (x)− 1)
)

.

Summing over m ≥ 1, and noting L0(x) = 1, gives

FT (x) = 1 + xC(x)FT (x) +

(

C(x)− 1

1− x

)

(FT (x)− 1) .

Solving for FT (x) and simplifying leads to the following result.

Theorem 3.34 Let T = {4132, 1342, 1423}. Then

FT (x) =
2− 10x+ 9x2 − 3x3 + x(1− x)(2− x)

√
1− 4x

2(1− 5x+ 4x2 − x4)
.

3.16 Case 242: {2341, 2431, 3241}
Theorem 3.35 Let T = {2341, 2431, 3241}. Then FT (x) satisfies

FT (x) = 1 +
xFT (x)

1− xF 2
T (x)

.

Explicitly,

FT (x) = 1 +
∑

n≥1

xn

(

n
∑

i=1

1

i

(

n− 1

i− 1

)(

2n− i

i− 1

)

)

.
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Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let m ≥ 2. To find an equation for Gm(x), write π ∈ Sn(T ) with
m left-right maxima as i1π

(1)i2π
(2) · · · imπ(m). Since π avoids 2341, ij < π(j+2) for j = 1, 2, . . . ,m− 2.

Since π avoids 2431 and 3241, π is further restricted to have the form illustrated in Figure 14 for
m = 5 (blank regions empty).

b

b

b

b
b

π(1)

β2

β3

β4

β5

α2

α3

α4

α5

i1

i2

i3

i4

i5

Figure 14: A T -avoider with m = 5

Conversely, within a permutation of this form, if all 2m− 1 labelled regions are T -avoiders, then
so is the permutation. Hence, Gm(x) = xmF 2m−1

T (x) for m ≥ 2, which is also seen to hold for m = 1.
Summing over m ≥ 0 yields the stated equation for FT (x).

Define a function g(x, y) via g(x, y) = xy(g(x,y)+1)
1−x(g(x,y)+1)2

, where g(x, 1) = FT (x) − 1. The Lagrange

Inversion formula [16, Sec. 5.1] yields

g(x, y) =
∑

i≥1

yi
∑

j≥0

xi+j

i

(

i− 1 + j

i− 1

)(

i+ 2j

i− 1

)

,

and extracting the coefficient of xn in g(x, 1) completes the proof. �

For other combinatorial objects with this counting sequence, see [14, Seq. A106228].

References

[1] Permutation pattern, at https://en.wikipedia.org/wiki/Permutation pattern.

[2] Skew and direct sums of permutations, Published electronically at
https://en.wikipedia.org/wiki/Skew and direct sums of permutations.

[3] M. H. Albert, M. D. Atkinson and V. Vatter, Subclasses of the separable permutations,
Bull. London Mathematical Society, 43 (2011) 859–870.

[4] D. Callan and T. Mansour, Enumeration of small Wilf classes avoiding 1342 and two

other 4-letter patterns, at http://arxiv.org/abs/1708.00832, 2017.

[5] D. Callan and T. Mansour, On permutations avoiding 1243, 2134, and another 4-letter

pattern, Pure Math. Appl. (PU.M.A.), 26 (2017) 11–21.



SMALL WILF CLASSES AVOIDING 1342 AND TWO OTHER 4-LETTER PATTERNS 97

[6] D. Callan and T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two

other 4-letter patterns, Pure Math. Appl. (PU.M.A.), to appear.

[7] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter

patterns, preprint, http://arxiv.org/abs/1605.04969.

[8] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter

patterns I, Discrete Math. Theoret. Comput. Sci., 19:1 (2017) #5, 35 pp.

[9] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter

patterns II, Discrete Math. Theoret. Comput. Sci., 19:1 (2017) #6, 44 pp.

[10] G. Firro and T. Mansour, Three-letter-pattern avoiding permutations and functional

equations, Electron. J. Combin., 13 (2006) #R51.

[11] D. E. Knuth, The Art of Computer Programming, 3rd edition, Addison Wesley, Reading,
MA, 1997.

[12] T. Mansour and A. Vainshtein, Restricted 132-avoiding permutations, Adv. in Appl.
Math., 26 (2001) 258–269.

[13] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6
(1985) 383–406.

[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically
at http://oeis.org/.

[15] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math., 146
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