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Abstract. The purpose of this paper is to investigate identities with Jordan ∗-derivations in semiprime
∗-rings. Let R be a 2-torsion free semiprime ∗-ring. In this paper it has been shown that, if R admits an additive
mapping D : R → R satisfying either D(xyx) = D(xy)x∗ + xyD(x) for all x, y ∈ R, or D(xyx) = D(x)y∗x∗ + xD(yx)
for all pairs x, y ∈ R, then D is a ∗-derivation. Moreover this result makes it possible to prove that if R satis�es
2D(xn) = D(xn−1)x∗ + xn−1D(x) + D(x)(x∗)n−1 + xD(xn−1) for all x ∈ R and some �xed integer n ≥ 2, then D is
a Jordan ∗-derivation under some torsion restrictions. Finally, we apply these purely ring theoretic results to standard
operator algebras A(H). In particular, we prove that ifH be a real or complex Hilbert space, with dim(H) > 1, admitting
a linear mapping D : A(H)→ B(H) (where B(H) stands for the bounded linear operators) such that

2D(An) = D(An−1)A∗ +An−1D(A) +D(A)(A∗)n−1 +AD(An−1)

for all A ∈ A(H). Then D is of the form D(A) = AB − BA∗ for all A ∈ A(H) and some �xed B ∈ B(H), which means
that D is Jordan ∗-derivation.
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1 Introduction

Throughout this paper R will denote an associative ring with center Z(R). Recall that a ring R
is said to be n-torsion free, where n > 1 is an integer, if nx = 0 implies x = 0 for all x ∈ R. For any
x, y ∈ R, the symbol [x, y] will denote the commutator xy−yx. A ring R is said to be prime if for any
a, b ∈ R, aRb = {0} implies a = 0 or b = 0, and R is semiprime if for any a ∈ R, aRa = {0} implies
a = 0. An additive mapping x 7→ x∗ on a ring R is called involution in case (xy)∗ = y∗x∗ and (x∗)∗ = x
hold for all x, y ∈ R. A ring equipped with an involution is called a ring with involution or ∗-ring (see
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[13]). An additive mapping D : R → R is said to be a derivation on R if D(xy) = D(x)y + xD(y) for
all x, y ∈ R and is called a Jordan derivation if D(x2) = D(x)x + xD(x) for all x ∈ R. A derivation
D is inner if there exists a ∈ R such that D(x) = [a, x] holds for all x ∈ R. A Jordan triple derivation
D : R → R is an additive mapping if D(xyx) = D(x)yx + xD(y)x + xyD(x) for all x, y ∈ R. It is
clear that any derivation is a Jordan derivation. The converse is in general not true. A classical result
of Herstein [11] asserts that every Jordan derivation on a prime ring of characteristic di�erent from
two is a derivation. A brief proof of Herstein's result can be found in [6]. If R is 2-torsion free, it
can be easily proved that any Jordan derivation D : R → R is a Jordan triple derivation (see [12]).
A famous result due to Bre²ar [5, Theorem 4.3], asserts that a Jordan triple derivation on a 2-torsion
free semiprime ring is a derivation. Following the same line, a number of results have been obtained
by several authors (see [2], [3], [4], [9], [18],[19], [22], [23]), where further references can be found.

Let R be a ∗-ring. An additive mapping D : R → R is said to be a ∗-derivation on R if D(xy) =
D(x)y∗ + xD(y) for all x, y ∈ R and is called a Jordan ∗-derivation if D(x2) = D(x)x∗ + xD(x) holds
for all x ∈ R Note that the mapping x 7→ xa − ax∗, where a is a �xed element in R, is a Jordan
∗-derivation. Such a Jordan ∗-derivation is said to be inner. The study of Jordan ∗-derivations has
been motivated by the problem of the representativity of quadratic forms by bilinear forms (for the
results concerning this problem we refer the reader to [8], [15], and [16]). It turns out that the question,
whether each quadratic form can be represented by some bilinear form, is connected with the question,
whether every Jordan ∗-derivation is inner, as shown by �emrl [15].

A Jordan triple ∗-derivation is an additive mapping D : R → R with the property D(xyx) =
D(x)y∗x∗ + xD(y)x∗ + xyD(x) for all x, y ∈ R. One might expect that any Jordan ∗-derivation on a
2-torsion free semiprime ∗-ring is a ∗-derivation, but this is not the case. It is easy to prove that there
are no nonzero ∗-derivations on noncommutative prime ∗-rings (see [7] for the details). Any Jordan
∗-derivation D : R → R on a 2-torsion free ∗-ring R is a Jordan triple ∗-derivation. However, the
converse of this statement is not true in general (see [1]). In [24], Vukman showed that the converse
holds ifR is 6-torsion free semiprime ∗-ring. Recently, Fo²ner and Ili²evi£ [10] proved that every Jordan
triple ∗-derivation on a 2-torsion free semiprime ∗-ring is a Jordan ∗-derivation. In view of these results
we begin our investigation with additive mapping D on a semiprime ∗-ring R which satis�es either of
the identities D(xyx) = D(xy)x∗ + xyD(x) or D(xyx) = D(x)y∗x∗ + xD(yx) and show that D is a
∗-derivation on R. Further, it is shown that if the additive mapping D satis�es either of the properties
D(xyx) = D(xy)x∗ − xyD(x) or D(xyx) = D(x)y∗x∗ − xD(yx), then D is a Jordan ∗-derivation.
Finally, a result concerning the identity 2D(xn) = D(xn−1)x∗ + xn−1D(x) +D(x)(x∗)n−1 + xD(xn−1)
has also been obtained.

2 Results on semiprime ∗-ring

We begin with the following results which are crucial for developing the proof of our main results.

Lemma 2.1 [22, Lemma 3] Let R be a semiprime ring and f : R → R be an additive mapping such
that either f(x)x = 0 or xf(x) = 0 for all x ∈ R. Then f = 0.

Now we will prove the following main results.
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Theorem 2.2 Let R be a 2-torsion free semiprime ∗-ring and D : R → R be an additive mapping
such that either

D(xyx) = D(xy)x∗ + xyD(x) , for all x, y ∈ R (1)

or

D(xyx) = D(x)y∗x∗ + xD(yx) , for all x, y ∈ R. (2)

Then D is a Jordan ∗-derivation, whence D is a ∗-derivation. In fact, we can conclude that D(R)
generates a central ideal of R.

Proof. We will restrict our attention on the relation (1), the proof in case when R satis�es the relation
(2) is similar and will therefore be omitted. Linearization of the relation (1) gives

D(xyz + zyx) = D(xy)z∗ +D(zy)x∗ + xyD(z) + zyD(x),

for all x, y, z ∈ R. In particular for z = x2, the above relation gives

D(xyx2 + x2yx) = D(xy)x∗
2
+D(x2y)x∗ + xyD(x2) + x2yD(x), (3)

for all x, y,∈ R. Putting xy + yx for y in (1) and applying the relation (1), we obtain

D(xyx2 + x2yx) = D(x2y)x∗ +D(xy)x∗
2
+ xyD(x)x∗ (4)

+x2yD(x) + xyxD(x),

for all x, y ∈ R. By comparing (3) and (4), we have

xyA(x) = 0, for all x, y ∈ R, (5)

where A(x) stands for D(x2)−D(x)x∗−xD(x). Right multiplication of (5) by x and left multiplication
by A(x) gives,

A(x)xyA(x)x = 0, for all x, y ∈ R.

By the semiprimeness of R, it follows that

A(x)x = 0, for all x ∈ R. (6)

The substitution of A(x)yx for y in the relation (5), gives xA(x)yxA(x) = 0 for all pairs x, y ∈ R.
Hence, we obtain

xA(x) = 0, for all x ∈ R. (7)

The linearization of the relation (6) gives

B(x, y)x+A(x)y +B(x, y)y +A(y)x = 0
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for all pairs x, y ∈ R, where B(x, y) denotes D(xy+yx)−D(x)y∗−xD(y)−D(y)x∗−yD(x). Putting
in the above relation −x for x and comparing the relation so obtained with the above relation one
obtains

B(x, y)x+A(x)y = 0, for all x, y ∈ R.

In view of the relation (7), right multiplication by A(x) gives, A(x)yA(x) = 0 for all pairs x, y ∈ R.
Hence it follows that A(x) = 0 for all x ∈ R. In other words, D is a Jordan ∗-derivation. Hence it
follows that D is a Jordan triple ∗-derivation. Now, comparing the relation D(xyx) = D(x)y∗x∗ +
xD(y)x∗ + xyD(x), for all x, y ∈ R, with the relation (1), we get(

D(xy)−D(x)y∗ − xD(y)
)
x∗ = 0, for all x, y ∈ R.

For any �xed y ∈ R, we have an additive mapping x 7→ D(xy)−D(x)y∗−xD(y) on R. Thus from the
above relation and by the consequence of Lemma 2.1, it follows that
D(xy) − D(x)y∗ − xD(y) = 0, for all pairs x, y ∈ R. In other words, D is a ∗-derivation. Hence
by [14, Theorem 3.1], D(R) ⊆ Z(R). This completes the proof. 2

For the sake of brevity, we omit the proof of the following statement.

Theorem 2.3 Let R be a 2-torsion free semiprime ∗-ring. Suppose D : R → R is an additive mapping
such that either

D(xyx) = D(xy)x∗ − xyD(x) , for all x, y ∈ R (8)

or

D(xyx) = D(x)y∗x∗ − xD(yx) , for all x, y ∈ R. (9)

Then D is a Jordan ∗-derivation. If, in addition, 1 ∈ R, then D = 0.

Disadvantage of Theorem 2.2 is that in identities (1) and (2) there is no symmetry. Therefore,
Theorem 2.2, together with the desire for symmetry leads to the following conjecture.

Conjecture 2.4 Let R be a 2-torsion free semiprime ∗-ring and D : R → R be an additive mapping
such that

2D(xyx) = D(xy)x∗ + xyD(x) +D(x)y∗x∗ + xD(yx), (10)

holds for all pairs x, y ∈ R. Then D is a Jordan ∗-derivation.

Note that in case a ring has the identity element, the proof of the above conjecture is immediate.
The substitution y = e in the relation (10), where e stands for the identity element, gives that D is a
Jordan ∗-derivation.

The substitution of y = xn−2 in the relation (10) gives

2D(xn) = D(xn−1)x∗ + xn−1D(x) +D(x)(x∗)n−1 + xD(xn−1),

which leads to the following conjecture.
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Conjecture 2.5 Let R be a semiprime ∗-ring with a suitable torsion restriction and D : R → R be
an additive mapping such that

2D(xn) = D(xn−1)x∗ + xn−1D(x) +D(x)(x∗)n−1 + xD(xn−1),

holds for all x ∈ R and some �xed integer n ≥ 2. Then D is a Jordan ∗-derivation.

Now we prove the above conjecture in case a ring has the identity element.

Theorem 2.6 Let R be a 2(n − 1)!-torsion free semiprime ∗-ring with identity e and D : R → R be
an additive mapping such that

2D(xn) = D(xn−1)x∗ + xn−1D(x) +D(x)(x∗)n−1 + xD(xn−1),

for all x ∈ R and some �xed integer n ≥ 2. Then D is a Jordan ∗-derivation.

Proof. We have the relation

2D(xn) = D(xn−1)x∗ + xn−1D(x) +D(x)(x∗)n−1 + xD(xn−1), (11)

holds for all x ∈ R. The substitution of x = e in the relation (11) gives D(e) = 0. Let y be any
element of the center Z(R). Putting x+ y for x in the above relation, we obtain

2

n∑
i=0

(
n

i

)
D(xn−iyi) =

( n−1∑
i=0

(
n− 1

i

)
D(xn−1−iyi)

)
(x∗ + y∗)

+

( n−1∑
i=0

(
n− 1

i

)
xn−1−iyi

)
D(x+ y)

+D(x+ y)

( n−1∑
i=0

(
n− 1

i

)
(x∗)n−1−i(y∗)i

)

+(x+ y)

( n−1∑
i=0

(
n− 1

i

)
D(xn−1−iyi)

)
.

Using (11) in the above relation and rearranging it in sense of collecting together terms involving equal
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number of factors of y, we obtain

0 = 2

(
n

1

)
D(xn−1y)−

(
n− 1

0

){
D(xn−1y∗) + xn−1D(y) +D(y)(x∗)n−1 + yD(xn−1)

}
−
(
n− 1

1

){
D(xn−2y)x∗ + xn−2yD(x) +D(x)(x∗)n−2y∗ + xD(xn−2y)

}
+2

(
n

2

)
D(xn−2y2)−

(
n− 1

1

){
D(xn−2y)y∗ + xn−2yD(y) +D(y)(x∗)n−2y∗

+yD(xn−2y)

}
−
(
n− 1

2

){
D(xn−3y2)x∗ + xn−3y2D(x) +D(x)(x∗)n−3(y∗)2

+xD(xn−3y2)

}
+ · · ·+ 2

(
n

n− 1

)
D(xyn−1)−

(
n− 1

n− 2

){
D(xyn−2)y∗

+xyn−2D(y) +D(y)x∗(y∗)n−2 + yD(xyn−2)

}
−
(
n− 1

n− 1

){
D(yn−1)x∗ + yn−1D(x) +D(x)(y∗)n−1 + xD(yn−1)

}
.

This can be written as

f0(x, y) + f1(x, y) + f2(x, y) + · · ·+ fn−1(x, y) = 0, (12)

where fi(x, y) stands for the expression of terms involving i factors of y. Replace x by x+ 2y, x+ 3y,
. . . , x+(n−1)y in the relation (11)and expressing the resulting system of n−2 homogeneous equations
of variables fi(x, y) for i = 1, 2, . . . n− 1 together with (12), we see that the coe�cient matrix of the
system of n− 1 homogenous equations is a Van-der Monde matrix

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n− 1 (n− 1)2 . . . (n− 1)n−1

 .

Since the determinant of this matrix is di�erent from zero, it follows that the system has only a trivial
solution, i.e., fi(x, y) = 0 for i = 1, 2, . . . n− 1. In particular, if y is replaced with the identity element
e in fn−2(x, y) , we obtain

fn−2(x, e) = 2

(
n

n− 2

)
D(x2)−

(
n− 1

n− 2

)
D(x)x∗ −

(
n− 1

n− 3

)
D(x2)

−
(
n− 1

n− 2

)
xD(x)−

(
n− 1

n− 3

)
x2D(e)−

(
n− 1

n− 2

)
D(x)x∗

−
(
n− 1

n− 3

)
D(e)(x∗)2 −

(
n− 1

n− 3

)
D(x2)−

(
n− 1

n− 2

)
xD(x).

After few calculations and considering the relation D(e) = 0, we obtain

(n(n− 1)− (n− 1)(n− 2))D(x2) = 2(n− 1)
(
D(x)x∗ + xD(x)

)
.
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Since R is 2(n− 1)!-torsion free, it follows from the above relation that

D(x2) = D(x)x∗ + xD(x) for all x ∈ R.

Hence D is a Jordan ∗-derivation, which completes the proof. 2

3 Results on standard operator algebra A(H)
Let H be a real or complex Hilbert space, dim(H) > 1. By B(H) we mean the algebra of all

bounded linear operators on H. Denote by F(H) the subalgebra of bounded �nite rank operators.
It is to be noted that F(H) forms a ∗-closed ideal in B(H). An algebra A(H) ⊂ B(H) is said to be
standard operator algebra in case F(H) ⊂ A(H). Let us point out that any standard operator algebra
is prime, which is a consequence of Hahn-Banach theorem.

The main result of the paper is related to the result below �rst proved by �emrl [17](see also [8]).

Theorem 3.1 [17, Theorem] Let H be a real or complex Hilbert space, with dim(H) > 1, and let
A(H) be a standard operator algebra on H. Suppose that D : A(H) → B(H) is a linear Jordan
∗-derivation. Then there exists a unique linear operator B ∈ B(H) such that D(A) = AB − BA∗ for
all A ∈ A(H).

Theorem 3.2 Let H be a real or complex Hilbert space, with dim(H) > 1, and let A(H) be a standard
operator algebra on H. Suppose there exists a linear mapping D : A(H)→ B(H) such that either

D(A2n+1) = D(A2n)A∗ +A2nD(A) , for all A ∈ A(H),

or

D(A2n+1) = D(A)(A∗)2n +AD(A2n) , for all A ∈ A(H).

In this case D is of the form D(A) = AB − BA∗ for all A ∈ A(H) and some �xed B ∈ B(H), which
means that D is a Jordan ∗-derivation.

Proof. We have the relation

D(A2n+1) = D(A2n)A∗ +A2nD(A) (13)

for all A ∈ A(H). Let us �rst consider the restriction of D on F(H). Let A be from F(H) and let
P ∈ F(H) be an idempotent operator with AP = PA = A. Putting P for A in the relation (13), we
obtain

D(P ) = D(P )P ∗ + PD(P ) (14)

Putting A+ P for A in the relation (13), we obtain

2n+1∑
i=0

(
2n+ 1

i

)
D(A2n+1−iP i) =

( 2n∑
i=0

(
2n

i

)
D(A2n−iP i)

)
(A∗ + P ∗)

+

( 2n∑
i=0

(
2n

i

)
A2n−iP i

)
D(A+ P ).
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Rearranging the above relation in the sense of collecting together terms involving equal number of
factors of P , we obtain

∑2n
i=1 fi(A,P ) = 0, where

fi(A,P ) =

(
2n+ 1

i

)
D(A2n+1−iP i)

−
(
2n

i

)(
D(A2n−iP i)A∗ +A2n−iP iD(A)

)
−
(

2n

i− 1

)(
D(A2n+1−iP i−1)P ∗ + (A2n+1−iP i−1)D(P )

)
;

Replacing A by A+ 2P , A+ 3P ,..., A+ 2nP in the relation (13) and expressing the resulting system
of 2n homogeneous equations of variables fi(A,P ) for i = 1, 2, ...2n, we see that the coe�cient matrix
of the system of 2n homogenous equations is a Van-der Monde matrix

1 1 . . . 1
2 22 . . . 22n

...
...

. . .
...

2n (2n)2 . . . (2n)2n

 .

Since the determinant of this matrix is di�erent from zero, it follows immediately that the system has
only a trivial solution. In particular

f2n−1(A,P ) =

(
2n+ 1

2n− 1

)
D(A2)−

(
2n

2n− 1

)(
D(A)A∗ +AD(A)

)
+

(
2n

2n− 2

)(
D(A2)P ∗ +A2D(P )

)
= 0,

and

f2n(A,P ) =

(
2n+ 1

2n

)
D(A)−

(
2n

2n

)(
D(P )A∗ + PD(A)

)
+

(
2n

2n− 1

)(
D(A)P ∗ +AD(P )

)
= 0,

The above relations reduces to

n(2n+ 1)D(A2) = 2nD(A)A∗ + 2nAD(A) + n(2n− 1)D(A2)P ∗ (15)

+n(2n− 1)A2D(P ),

(2n+ 1)D(A) = D(P )A∗ + PD(A) + (2n)D(A)P ∗ + (2n)AD(P ). (16)

Multiplying (15) by P ∗ and using (14), we have

D(A2)P ∗ = D(A)A∗ +AD(A)P ∗ (17)
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Applying (17) in the relation (15), we obtain

n(2n+ 1)D(A2) = n(2n+ 1)D(A)A∗ + 2nAD(A) (18)

+n(2n− 1)

(
AD(A)P ∗ +A2D(P )

)
Left multiplication by A in (16) gives

AD(A) = AD(A)P ∗ +A2D(P ).

Applying the above relation in (18), we get

D(A2) = D(A)A∗ +AD(A). (19)

From the relation (16) one can conclude that D maps F(H) into itself. We have therefore a linear
mapping which maps F(H) into itself satisfying the relation (19) for all A ∈ F(H). Hence D is a
Jordan ∗-derivation on F(H). Applying Theorem 3.1 one can conclude that D is of the form

D(A) = AB −BA∗ (20)

for all A ∈ F(H) and some �xed B ∈ B(H). It remains to prove that the relation (20) holds for all
A ∈ A(H) as well. For this purpose we de�ne D0 : A(H)→ B(H) by D0(A) = AB−BA∗ and consider
D1 = D −D0. Indeed, the mapping D1 is linear, satis�es the relation (13) and it vanishes on F(H).
Now we will prove that D1 vanishes on A(H) also. Let A ∈ A(H) and P be an idempotent operator
of rank one. Let us introduce S ∈ A(H) by S = A+ PAP − (AP + PA). We have SP = PS = 0. It
is easy to prove that D1(S) = D1(A) and D1(S

2n) = D1(A
2n). The relation (13) leads us to

D1(S
2n)S∗ + S2nD1(S) = D1(S

2n+1) = D1(S
2n+1 + P ) = D1((S + P )2n+1)

= D1(S
2n)(S + P )∗ + (S + P )2nD1(S + P )

= D1(S
2n)S∗ +D1(S

2n)P ∗ + (S2n + P )D1(S)

= D1(S
2n)S∗ +D1(S

2n)P ∗ + S2nD1(S) + PD1(S).

Therefore,

D1(S
2n)P ∗ + PD1(S) = 0;

Since D1(S) = D1(A) and D1(S
2n) = D1(A

2n), above relation can be written as

D1(A
2n)P ∗ + PD1(A) = 0;

Replace A by −A in the above relation and compare the relation so obtained with the above relation,
we obtain

PD1(A) = 0

for all A ∈ A(H). Since P is an arbitrary idempotent operator of rank one, we have D1(A) = 0 for all
A ∈ A(H) , which completes the proof of our theorem. 2
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Theorem 3.3 Let H be a real or complex Hilbert space, with dim(H) > 1, and let A(H) be a standard
operator algebra on H. Suppose there exists a linear mapping D : A(H)→ B(H) such that either

D(A2n+1) = D(A2n)A∗ −A2nD(A) , for all A ∈ A(H),

or

D(A2n+1) = D(A)(A∗)2n −AD(A2n) , for all A ∈ A(H)

and some integer n ≥ 1. Then D(A) = 0 for all A ∈ A(H).

Proof. We have the relation

D(A2n+1) = D(A2n)A∗ −A2nD(A) (21)

for all A ∈ A(H). Let us �rst consider the restriction of D on F(H). Let A be from F(H) and let
P ∈ F(H) be an idempotent operator with AP = PA = A. Putting P for A in the relation (21), we
obtain

D(P ) = D(P )P ∗ − PD(P ) (22)

A right multiplication by P ∗ in the above relation gives

PD(P )P ∗ = 0

Left multiplication by P in (22) and combining with the above relation yields

PD(P ) = 0 (23)

Putting A+ P for A in the relation (21), we obtain

2n+1∑
i=0

(
2n+ 1

i

)
D(A2n+1−iP i) =

( 2n∑
i=0

(
2n

i

)
D(A2n−iP i)

)
(A∗ + P ∗)

−
( 2n∑

i=0

(
2n

i

)
A2n−iP i

)
D(A+ P ).

Rearranging the above relation in the sense of collecting together terms involving equal number of
factors of P , we obtain

∑2n
i=1 fi(A,P ) = 0, where

fi(A,P ) =

(
2n+ 1

i

)
D(A2n+1−iP i)

−
(
2n

i

)(
D(A2n−iP i)A∗ −A2n−iP iD(A)

)
−
(

2n

i− 1

)(
D(A2n+1−iP i−1)P ∗ − (A2n+1−iP i−1)D(P )

)
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Replace A by A+P , A+2P , A+3P ,..., A+2nP in the relation (21) and express the resulting system
of 2n homogeneous equations of variables fi(A,P ) for i = 1, 2, ...2n, we see that the coe�cient matrix
of the system of 2n homogenous equations is a Van-der Monde matrix

1 1 . . . 1
2 22 . . . 22n

...
...

. . .
...

2n (2n)2 . . . (2n)2n

 .

Since the determinant of this matrix is di�erent from zero, it follows immediately that the system has
only a trivial solution. In particular

f2n(A,P ) =

(
2n+ 1

2n

)
D(A)−

(
2n

2n

)(
D(P )A∗ − PD(A)

)
−
(

2n

2n− 1

)(
D(A)P ∗ −AD(P )

)
= 0,

The above relation reduces to

(2n+ 1)D(A) = D(P )A∗ − PD(A) + (2n)D(A)P ∗ − (2n)AD(P ).

Using (23) in the above relation, we get

(2n+ 1)D(A) = D(P )A∗ − PD(A) + (2n)D(A)P ∗. (24)

Left multiplication by P and right multiplication by P ∗ in the above relation leads to

PD(A)P ∗ = 0.

Left multiplication by P in the relation (24) and combining (23) together with the above relation, gives

PD(A) = 0 (25)

Left multiplication by A in the above relation yields

AD(A) = 0 (26)

Using (25) in (24), we get

(2n+ 1)D(A) = D(P )A∗ + (2n)D(A)P ∗. (27)

A right multiplication by P ∗ in the above relation yields D(A)P ∗ = D(P )A∗, and hence combining
the latter relation with (27), we obtain

D(A) = D(A)P ∗. (28)
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From the relation (28) one can conclude that D maps F(H) into itself. We have therefore a linear
mapping which maps F(H) into itself satisfying the relation (26) for all A ∈ F(H). Applying Lemma
2.1 one can conclude that D(A) = 0 for all A ∈ F(H).

It remains to prove that D(A) = 0 holds for all A ∈ A(H) as well. Indeed, the mapping D
on A(H) is linear and satis�es the relation (21). Our aim is to prove that D vanishes on A(H)
also. Let A ∈ A(H) and P be an idempotent operator of rank one. Let us introduce S ∈ A(H) by
S = A + PAP − (AP + PA). We have SP = PS = 0. It is easy to prove that D(S) = D(A) and
D(S2n) = D(A2n). The relation (21) leads us to

D(S2n)S∗ − S2nD(S) = D(S2n+1) = D(S2n+1 + P ) = D((S + P )2n+1)

= D(S2n)(S + P )∗ − (S + P )2nD(S + P )

= D(S2n)S∗ +D(S2n)P ∗ − (S2n + P )D(S)

= D(S2n)S∗ +D(S2n)P ∗ − S2nD(S)− PD(S).

Therefore,

D(S2n)P ∗ − PD(S) = 0;

Since D(S) = D(A) and D(S2n) = D(A2n), the above relation can be written as

D(A2n)P ∗ − PD(A) = 0;

Replace A by −A in the above relation and compare the relation so obtained with the above relation,
we obtain

PD(A) = 0

for all A ∈ A(H). Since P is an arbitrary idempotent operator of rank one, we have D(A) = 0 for all
A ∈ A(H) , which completes the proof of the theorem. 2

Theorem 3.4 Let H be a real or complex Hilbert space, with dim(H) > 1, and let A(H) be a standard
operator algebra on H. Suppose there exist a linear mappings D,G : A(H) → B(H) such that either
the relations

D(A2n+1) = D(A2n)A∗ +A2nG(A),

G(A2n+1) = G(A2n)A∗ +A2nD(A)

hold for all A ∈ A(H), or the relations

D(A2n+1) = D(A)(A∗)2n +AG(A2n),

G(A2n+1) = G(A)(A∗)2n +AD(A2n)

hold for all A ∈ A(H). In both the cases D(A) = G(A) = AB−BA∗ for all A ∈ A(H) and some �xed
B ∈ B(H), which means that D and G are Jordan ∗-derivations.
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Proof. We will restrict our attention on the �rst system of relations, the proof in case when A(H)
satis�es the second system of relations is similar and will therefore be omitted. We have

D(A2n+1) = D(A2n)A∗ +A2nG(A),

G(A2n+1) = G(A2n)A∗ +A2nD(A)

hold for all A ∈ A(H). Subtracting the above relations, we get

T (A2n+1) = T (A2n)A∗ −A2nT (A), (29)

where T = D − G. Using Theorem 3.3, we conclude that T (A) = 0 for all A ∈ A(H), which implies
D = G. This assertion enables us to combine the given two relations into only one relation

D(A2n+1) = D(A2n)A∗ +A2nD(A)

for all A ∈ A(H). From Theorem 3.2 it follows that D(A) = G(A) = AB − BA∗ for all A ∈ A(H),
and hence the proof is complete. 2

Our next result is in the spirit of the conjecture 2.5.

Theorem 3.5 Let H be a real or complex Hilbert space, with dim(H) > 1, and let A(H) be a standard
operator algebra on H. Suppose there exists a linear mapping D : A(H)→ B(H) such that

2D(An) = D(An−1)A∗ +An−1D(A) +D(A)(A∗)n−1 +AD(An−1) (30)

for all A ∈ A(H). In this case D is of the form D(A) = AB −BA∗ for all A ∈ A(H) and some �xed
B ∈ B(H), which means that D is a Jordan ∗-derivation.

Proof. Let us �rst consider the restriction of D on F(H). Let A be from F(H) and let P ∈ F(H) be
an idempotent operator with AP = PA = A. Putting P for A in the relation (30), we obtain

D(P ) = D(P )P ∗ + PD(P ) (31)

Putting A+ P for A in the relation (30), we obtain

2

n∑
i=0

(
n

i

)
D(An−iP i) =

( n−1∑
i=0

(
n− 1

i

)
D(An−1−iP i)

)
(A∗ + P ∗)

+

( n−1∑
i=0

(
n− 1

i

)
An−1−iP i

)
D(A+ P )

+D(A+ P )

( n−1∑
i=0

(
n− 1

i

)
(A∗)n−1−i(P ∗)i

)

+(A+ P )

( n−1∑
i=0

(
n− 1

i

)
D(An−1−iP i)

)
.
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Rearranging the above relation in the sense of collecting together terms involving equal number of
factors of P , we obtain

∑n−1
i=1 fi(A,P ) = 0, where

fi(A,P ) = 2

(
n

i

)
D(An−iP i)−

(
n− 1

i

)(
D(An−1−iP i)A∗ +An−1−iP iD(A)

)
−
(
n− 1

i− 1

)(
D(An−iP i−1)P ∗ + (An−iP i−1)D(P )

)
−
(
n− 1

i

)(
D(A)(A∗)n−1−i(P ∗)i +AD(An−1−iP i)

)
−
(
n− 1

i− 1

)(
D(P )(A∗)n−i(P ∗)i−1 + PD(An−iP i−1)

)
Replacing A by A+2P , A+3P ,..., A+(n−1)P in the relation (30) and expressing the resulting system
of n − 1 homogeneous equations of variables fi(A,P ) for i = 1, 2, ...n − 1, we see that the coe�cient
matrix of the system of n− 1 homogenous equations is a Van-der Monde matrix

1 1 . . . 1
2 22 . . . 2n−1

...
...

. . .
...

n− 1 (n− 1)2 . . . (n− 1)n−1

 .

Since the determinant of this matrix is di�erent from zero, it follows immediately that the system has
only a trivial solution. In particular

fn−1(A,P ) = 2

(
n

n− 1

)
D(A)−

(
n− 1

n− 1

)
D(P )A∗ −

(
n− 1

n− 2

)
D(A)P ∗

−
(
n− 1

n− 1

)
PD(A)−

(
n− 1

n− 2

)
AD(P )−

(
n− 1

n− 1

)
D(A)P ∗

−
(
n− 1

n− 2

)
D(P )A∗ −

(
n− 1

n− 1

)
AD(P )−

(
n− 1

n− 2

)
PD(A).

The above relation reduces to

2D(A) = D(A)P ∗ +AD(P ) +D(P )A∗ + PD(A) (32)

Replace A by A2 in the above relation, to obtain

2D(A2) = D(A2)P ∗ +A2D(P ) +D(P )(A∗)2 + PD(A2) (33)

As the previously mentioned system of n− 1 homogeneous equtions has only a trivial solution, we also
obtain

fn−2(A,P ) = 2

(
n

n− 2

)
D(A2)−

(
n− 1

n− 2

)
D(A)A∗ −

(
n− 1

n− 3

)
D(A2)P ∗

−
(
n− 1

n− 2

)
AD(A)−

(
n− 1

n− 3

)
A2D(P )−

(
n− 1

n− 2

)
D(A)A∗

−
(
n− 1

n− 3

)
D(P )(A∗)2

(
n− 1

n− 2

)
AD(A)−

(
n− 1

n− 3

)
PD(A2)

= 0.
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The above relation reduces to

n(n− 1)D(A2) = 2(n− 1)

(
D(A)A∗ +AD(A)

)
+

(
n− 1

n− 3

)(
D(A2)P ∗ +A2D(P ) +D(P )(A∗)2 + PD(A2)

)
.

Applying the relation (33) in the above relation, we obtain

n(n− 1)D(A2) = 2(n− 1)
(
D(A)A∗ +AD(A)

)
+ (n− 1)(n− 2)D(A2),

which reduces to

D(A2) = D(A)A∗ +AD(A) (34)

From the relation (32) one can conclude that D maps F(H) into itself. We therefore have a linear
mapping D which maps F(H) into itself satisfying the relation (34) for all A ∈ F(H). Hence D is a
Jordan ∗-derivation on F(H). Applying Theorem 3.1 one can conclude that D is of the form

D(A) = AB −BA∗ (35)

for all A ∈ F(H) and some �xed B ∈ B(H). It remains to prove that the relation (35) holds for all
A ∈ A(H) as well. For this purpose we de�ne D0 : A(H)→ B(H) by D0(A) = AB−BA∗ and consider
D1 = D −D0. Indeed, the mapping D1 is linear, satis�es the relation (30) and it vanishes on F(H).
Now we prove that D1 vanishes on A(H) also. Let A ∈ A(H) and P be an idempotent operator of
rank one. Let us introduce S ∈ A(H) by S = A+ PAP − (AP + PA). We have SP = PS = 0. It is
easy to prove that D1(S) = D1(A) and D1(S

n−1) = D1(A
n−1). By the relation (30) we now have

D1(S
n−1)S∗ + Sn−1D1(S) +D1(S)(S

∗)n−1 + SD1(S
n−1)

= 2D1(S
n) = 2D1(S

n + P ) = 2D1((S + P )n)
= D1((S + P )n−1)(S + P )∗ + (S + P )n−1D1(S + P )

+D1(S + P )((S + P )∗)n−1 + (S + P )D1((S + P )n−1)
= D1(S

n−1)S∗ +D1(S
n−1)P ∗ + Sn−1D1(S) + PD1(S)

+D1(S)(S
∗)n−1 +D1(S)P

∗ + SD1(S
n−1) + PD1(S

n−1).

From the above relation it follows that

D1(S
n−1)P ∗ + PD1(S) +D1(S)P

∗ + PD1(S
n−1) = 0.

Since D1(S) = D1(A), we can rewrite the above relation as

D1(A
n−1)P ∗ + PD1(A) +D1(A)P

∗ + PD1(A
n−1) = 0. (36)

Putting 2A for A in the above relation, we obtain

2n−1D1(A
n−1)P ∗ + 2PD1(A) + 2D1(A)P

∗ + 2n−1PD1(A
n−1) = 0. (37)

In case n = 2, the relation (36) implies that

PD1(A) +D1(A)P
∗ = 0. (38)
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In casen > 2, the relations (36) and (37) give the relation (38). Multiplying the above relation from
left side by P and right side by P ∗, we obtain

PD1(A)P
∗ = 0.

Left multiplication by P in the relation (38) and using using the above relation, we obtain

PD1(A) = 0.

for all A ∈ A(H). Since P is an arbitrary an idempotent operator of rank one, we have D1(A) = 0 for
all A ∈ A(H) , which completes the proof of the theorem. 2

We conclude the paper with the following purely algebraic conjecture.

Conjecture 3.6 Let R be a semiprime ∗-ring with a suitable torsion restriction and D,G : R → R
be additive mappings such that either the relations

D(x2n+1) = D(x2n)x∗ + x2nG(x),

G(x2n+1) = G(x2n)x∗ + x2nD(x)

hold for all x ∈ R, or the relations

D(x2n+1) = D(x)(x∗)2n + xG(x2n),

G(x2n+1) = G(x)(x∗)2n + xD(x2n)

hold for all x ∈ R and some �xed integer n ≥ 1. Then D and G are Jordan ∗-derivations and D = G.

Acknowledgement The authors are thankful to the referee for his/her valuable comments.

References

[1] S. Ali and A. Fo²ner, On Jordan (α, β)∗-derivation in semiprime ∗-rings, Int. J. Algebra,
4 (2010) 99�108.

[2] M. Ashraf, N. Rehman and Shakir Ali, On Lie ideals and Jordan generalized derivations
of prime rings, Indian J. Pure Appl. Math., 34 (2003) 291�294.

[3] M. Ashraf and N. Rehman, On Jordan ideals and Jordan derivations of prime rings,
Demonstratio Math., 37 (2004) 275�284.

[4] M. Bre²ar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988)
1003�1006.

[5] M. Bre²ar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989) 218�228.

[6] M. Bre²ar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc.,
37 (1988) 321�322.



JORDAN ∗-DERIVATIONS IN ∗-RINGS AND OPERATOR ALGEBRAS 17

[7] M. Bre²ar and J. Vukman, On some additive mappings in rings with involution, Aequa-
tiones Math., 38 (1989) 178�185.

[8] M. Bre²ar and B. Zalar, On the structure of Jordan ∗-derivation, Colloq. Math., 63
(1992) 163�171.

[9] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975) 321�324.

[10] M. Fo²ner and D. Ili²evi£, On Jordan triple derivations and related mappings, Mediterr.
J. Math., 5 (2008) 415�427.

[11] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957) 1104�
1119.

[12] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, London,
1969.

[13] I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London,
1979.

[14] K. H. Kim and Y. H. Lee, A note on ∗-derivations on ∗-prime rings, Int. Math. Forum, 12
(2017) 391�398.

[15] P. �emrl, On Jordan ∗-derivations and an application, Colloq. Math., 59 (1990) 241�251.

[16] P. �emrl, Quadratic functionals and Jordan ∗-derivations, Studia Math., 97 (1991) 157�165.

[17] P. �emrl, Jordan ∗-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120
(1994) 515�518.

[18] N. �irovnik, On certain functional equation in semiprime rings and standard operator algebras,
Cubo, 16 (2014) 73�80.

[19] N. �irovnik and J. Vukman, On certain functional equation in semiprime rings, Algebra
Colloq., 23 (2016) 65�70.

[20] N. �irovnik, On functional equations related to derivations in semiprime rings and standard
operator algebras, Glas. Mat. Ser. III, 47 (2012) 95�104.

[21] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras,
Glas. Mat. Ser. III, 46 (2011) 43�48.

[22] J. Vukman, Identities with derivations and automorphisms on semiprime rings, Int. J. Math.
Math. Sci., 7 (2005) 1031�1038.

[23] J. Vukman, Identities related to derivations and centralizers on standard operator algebras,
Taiwanese J. Math., 11 (2007) 255�265.

[24] J. Vukman, A note on Jordan ∗-derivations in semiprime rings with involution, Int. Math.
Forum, 13 (2006) 617�622.


	Introduction
	Results on semiprime -ring
	Results on standard operator algebra A(H)

