

On permutations avoiding 1243, 2134, and another 4-letter pattern

David Callan
Department of Statistics
University of Wisconsin
Madison, WI 53706, USA
email: callan@stat.wisc.edu

and
TOUFIK MANSOUR
Department of Mathematics
University of Haifa
3498838 Haifa, Israel
email: tmansour@univ.haifa.ac.il

(Received: September 14, 2016, and in revised form December 19, 2016.)

Abstract. We enumerate permutations avoiding 1243, 2134, and a third 4-letter pattern τ , a step toward the goal of enumerating avoiders for all triples of 4-letter patterns. The enumeration is already known for all but three patterns τ , which are treated in this paper.

Mathematics Subject Classification (2010). 05A15, 05A05.

Keywords: pattern avoidance.

1 Introduction

This paper is a companion to [2] which enumerates the permutations avoiding 1324, 2143, and a third 4-letter pattern τ , part of a project to enumerate avoiders for all triples of 4-letter patterns. As usual, S_n denotes the set of permutations of $[n] = \{1, 2, ..., n\}$, considered as lists (words) of distinct letters. For a permutation π to avoid a pattern $\tau \in S_k$ means that π contains no k-letter subsequence whose standardization (replace smallest letter by 1, second smallest by 2, and so on) is τ . For patterns τ_1, \ldots, τ_r , $S_n(\tau_1, \ldots, \tau_r)$ denotes the set of permutations of [n] that avoid each of τ_1, \ldots, τ_r . Here, we count the set $S_n(1243, 2134, \tau)$ for all 22 permutations $\tau \in S_4 \setminus \{1243, 2134\}$ (for counting the set $S_n(T)$ with $T \subseteq S_4$, see [1, 3, 4, 5, 6, 7, 8]). The three involutions reverse, complement, invert on permutations generate a dihedral group that divides pattern sets into so-called symmetry classes. All pattern sets in a symmetry class have the same counting sequence for their avoiders. The pattern sets with a given counting sequence form a Wilf class, by definition. We say a Wilf class is big if it contains more than one symmetry class. All 242 big Wilf classes of triples of 4-letter patterns are enumerated in [6]. Some small Wilf classes have been enumerated [2].

Table 1 below lists the generating function $F_{1243,2134,\tau}(x)$ to count $\{1243,2134,\tau\}$ -avoiders for each of the 22 permutations τ . The 22 triples $\{1243,2134,\tau\}$ lie in precisely 11 Wilf classes, of which 3 are

big, hence covered by [6], 5 are small but can be counted by the INSENC algorithm (INSENC refers to regular insertion encodings, see [9]), and 3 are small and not treatable by the INSENC algorithm. These 3 are the triples with $\tau = 3412$, $\tau = 2341$ and $\tau = 1423$, which are treated in turn in Section 2. Our method is to consider the left-right maxima of an avoider when $\tau = 3412$ and to focus on the initial letters in the other two cases. We use the usual left-right maxima decomposition of a nonempty permutation π : $\pi = i_1 \pi^{(1)} i_2 \pi^{(2)} \cdots i_m \pi^{(m)}$ where i_1, \ldots, i_m are letters, $\pi^{(1)}, \ldots, \pi^{(m)}$ are words, $i_1 < i_2 < \cdots < i_m$ and $i_j > \max(\pi^{(j)})$ for $1 \le j \le m$. Then i_1, i_2, \ldots, i_m are the left-right maxima of π .

Throughout, $C(x) = \frac{1-\sqrt{1-4x}}{2x}$ denotes the generating function for the Catalan numbers $C_n := \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n-1}$. The identity $xC(x)^2 = C(x) - 1$ is used to simplify results.

τ	$F_{1243,2134, au}(x)$	Reference	Wilf class
4321	$\frac{-9x^7 + 24x^6 + 23x^5 + 8x^4 + 2x^3 + 2x^2 - 2x + 1}{(1-x)^3}$	INSENC	7
3421, 4312	$\frac{-3x^7 - 5x^6 + 3x^5 + 10x^4 - 11x^3 + 11x^2 - 5x + 1}{(1-x)^6}$	INSENC	9
4231	$\frac{4x^9 - 11x^8 + 10x^7 + 2x^6 - 7x^5 + 21x^4 - 22x^3 + 16x^2 - 6x + 1}{(1 - x)^7}$	INSENC	14
3412	$\frac{1 - 8x + 28x^2 - 54x^3 + 65x^4 - 49x^5 + 18x^6 - 7x^7 + 2x^8}{(1 - x)^7 (1 - 2x)}$	Theorem 2.4	15
2431, 3241, 4132, 4213	$\frac{x^{10} - 4x^9 - 6x^8 + 68x^7 - 186x^6 + 291x^5 - 283x^4 + 170x^3 - 61x^2 + 12x - 1}{(2x - 1)^2(x^2 - 3x + 1)^2(x - 1)^3}$	INSENC	53
1432, 3214	$\frac{1 - 4x + 4x^2 - 3x^3 + x^4}{(1 - x + x^2)(1 - 4x + 2x^2)}$	[6]	112
2341, 4123	$\frac{(1-x)(1-2x+2x^2)(1-2x+x^3+x^5)C(x)-x(1-2x+x^3+x^4-2x^5+2x^6)}{(1-x)^3(1-2x)(1-x-x^2)}$	Theorem 2.11	134
2413, 3142	$\frac{(1-3x+x^2)(1-2x-x^2)}{(1-x)(1-5x+5x^2+2x^3-x^4)}$	INSENC	138
1342, 1423, 2314, 3124	$\frac{1 - x(1 - x)C(x)}{(1 - x)(2 - C(x)) + x^2}$	Theorem 2.15	207
2143	$\frac{1 - 4x + 2x^2}{(1 - x)(1 - 4x + x^2)}$	[6]	215
1234, 1324	$\frac{2(1-4x)}{2-9x+4x^2-x\sqrt{1-4x}}$	[6]	233

Table 1: Triples of 4-letter patterns containing 1243,2134, divided into Wilf classes.

2 Proofs

2.1 Case 15: $T = \{1243, 2134, 3412\}.$

We count T-avoiders by number of left-right maxima. Let $G_m(x)$ denote the generating function for T-avoiders with exactly m left-right maxima. Clearly, $G_0(x) = 1$ and $G_1(x) = xF_T(x)$.

LEMMA 2.1 For $m \ge 4$, $G_m(x) = \frac{x^m(1+x)}{(1-x)^3}$.

Proof. Suppose $\pi = i_1 \pi^{(1)} \cdots i_m \pi^{(m)} \in S_n(T)$ with $m \geq 4$ left-right maxima. Since π avoids T, we have that $\pi^{(s)} = \emptyset$ for all $s = 1, 2, \ldots, m-2$ and $\pi^{(m-1)}, \pi^{(m)} > i_2$. Moreover, $\pi^{(m-1)}\pi^{(m)}$ is decreasing. Thus, by considering whether $\pi^{(m)}$ has a letter between i_1 and i_2 or not, we obtain that $G_m(x) = \frac{x^m}{(1-x)^2} \left(1 + \frac{2x}{1-x}\right)$.

Lemma 2.2 We have $G_3(x) = \frac{x^3(1-x+x^2+x^3)}{(1-x)^5}$.

Proof. Suppose $\pi = i_1 \pi^{(1)} i_2 \pi^{(2)} i_3 \pi^{(3)} \in S_n(T)$ with exactly 3 left-right maxima. Since π avoids T, we have that $\pi^{(1)} = \emptyset$ and $\pi^{(2)} > i_2$. We consider four cases:

- $\pi^{(2)} = \emptyset$ and $\pi^{(3)}$ has no letter between i_1 and i_2 : Since π avoids 3412, we can express π as $\pi = i_1 i_2 \pi^{(2)} i_3 (i_1 1) \cdots 1$ where $\pi^{(2)}$ avoids {132, 213, 3412}. By a simple decomposition, we see that $K(x) = F_{\{132,213,3412\}}(x) = \frac{1}{1-x} + \frac{x^2}{(1-x)^3}$. Thus, we have a contribution of $\frac{x^3}{1-x} K(x)$.
- $\pi^{(2)} = \emptyset$ and $\pi^{(3)}$ has a letter between i_1 and i_2 : Again, in this subcase, π can be expressed as $\pi = i_1 i_2 \pi^{(2)} i_3 i' (i'-1) \cdots (i_1+1) (i_1-1) \cdots 21$ where $i_2 > \pi^{(2)} > i'$ and $\pi^{(2)}$ avoids $\{132, 213, 3412\}$. Thus, we have a contribution of $\frac{x^4}{(1-x)^2} K(x)$.
- $\pi^{(2)} \neq \emptyset$ and $\pi^{(3)}$ has no letter between i_1 and i_2 : Similarly, in this subcase, π can be written as $\pi = i_1 i_2 \pi^{(2)} (i_1 1) \cdots (i' + 1) i' i_3 (i' 1) \cdots 21$ where $\pi^{(2)}$ avoids $\{132, 213, 3412\}$. Thus, we have a contribution of $\frac{x^4}{(1-x)^2} K(x)$.
- $\pi^{(2)} \neq \emptyset$ and $\pi^{(3)}$ has a letter between i_1 and i_2 : Since π avoids 3412, we can write π as $i_1 i_2 (i_2 1) \cdots i'_2 (i_1 1) (i_1 2) \cdots i'_1 i_3 (i'_2 1) \cdots (i_1 + 1) (i'_1 1) \cdots 21$. Thus, we have a contribution of $\frac{x^5}{(1-x)^4}$.

Hence, $G_3(x) = \frac{x^3}{1-x}K(x) + \frac{2x^4}{(1-x)^2}K(x) + \frac{x^5}{(1-x)^4}$, which simplifies to the stated expression.

Lemma 2.3 We have

$$G_2(x) = \frac{x^2(1 - 5x + 13x^2 - 16x^3 + 8x^4 - 7x^5 + 2x^6)}{(1 - x)^6(1 - 2x)}.$$

Proof. Let us write $G_2(x) = H(x) + J(x) + P(x)$, where H(x) (respectively, J(x) and P(x)) is the generating function for the number of T-avoiders π with exactly 2 left-right maxima of form $\pi = (n-1)\pi'n\pi''$ (respectively, $\pi = in\pi'$ with $i \le n-2$, and $\pi = i\pi'n\pi''$ with $i \le n-2$ and π' is not empty).

First, we find H(x). Let $\pi = (n-1)\pi'n\pi'' \in S_n(T)$ with exactly 2 left-right maxima and suppose $\pi'n$ has exactly $d \geq 1$ left-right maxima. Clearly, for d = 1, we have a contribution of $\frac{x^2}{1-x}$. For d = 2, we see that π can be written as $\pi = (n-1)j_1\beta'n(n-2)(n-3)\cdots(j_1+1)\beta''$, where β' is decreasing. Thus, by considering the two cases either $j_1 = n-2$ or $j_1 < n-2$, we have a contribution

of $xH(x) + \frac{x^4}{(1-x)(1-2x)}$. For $d \geq 3$, by Lemma 2.1, we obtain a contribution of $xG_d(x) = \frac{x^{d+1}(1+x)}{(1-x)^3}$. Hence,

$$H(x) = xH(x) + \frac{x^2}{1-x} + \frac{x^4}{(1-x)(1-2x)} + \sum_{d\geq 3} \frac{x^{d+1}(1+x)}{(1-x)^3},$$

which implies

$$H(x) = \frac{x^2(1 - 6x + 16x^2 - 22x^3 + 16x^4 - 8x^5 + x^6)}{(1 - x)^6(1 - 2x)}.$$

For permutations in $S_n(T)$ with n in position 2, we see by considering left-right maxima that their generating function is given by H(x), while $|\{\pi \in S_n(T) : \pi_1 = n - 1, \pi_2 = n\}| = 1$ for $n \ge 2$. Thus, $J(x) = H(x) - \frac{x^2}{1-x}$.

Next, write $P(x) = \sum_{d\geq 1} P_d(x)$, where $P_d(x)$ is the generating function for the number of T-avoiders π with exactly 2 left-right maxima and first letter n-d-1. Then $\pi = (n-d-1)j_1j_2\cdots j_en\pi''$ with $j_1 > j_2 > \cdots j_e$ and $e \geq 1$ (decreasing because π avoids 1243 and $d \geq 1$). Write π'' as $\alpha^{(1)}(n-1)\cdots\alpha^{(d)}(n-d)\alpha^{(d+1)}$. Since π avoids 3412, we see that $\alpha^{(1)}\alpha^{(2)}\cdots\alpha^{(d)}$ is decreasing.

- Case $d \ge 2$. Since π avoids 2134, we see that $\alpha^{(1)} < j_e$. By considering whether $\alpha^{(1)}$ is empty or not, we have $P_d(x) = xP_{d-1}(x) + \frac{x^{d+4}}{(1-x)^{d+2}}$.
- Case d=1. First, suppose that $\alpha^{(1)}$ is empty. In this case $\alpha^{(2)}$ is decreasing, so from the structure of π we see that the contribution is given by $x^{e+3}/(1-x)^{e+1}$. Otherwise, $\alpha^{(1)}$ is not empty. So from the fact that $\alpha^{(1)}\alpha^{(2)}$ is decreasing we see that there two options: either $\alpha^{(1)}=\gamma\gamma'$ with $\gamma>j_e>\gamma'>\alpha^{(2)}$ and $\gamma\gamma'\alpha^{(2)}$ is decreasing, or $\alpha^{(2)}=\gamma\gamma'$ with $\alpha^{(1)}>\gamma>j_e>\gamma'$ and $\alpha^{(1)}\gamma\gamma'$ is decreasing. Each option gives a contribution of $x^{e+4}/(1-x)^3$. Thus,

$$P_1(x) = \frac{x^{e+3}}{(1-x)^{e+1}} + 2\frac{x^{e+4}}{(1-x)^3},$$

and, summing over $e \ge 1$, we find that $P_1(x) = \frac{x^4(1-x-x^2-x^3)}{(1-x)^4(1-2x)}$.

Therefore, $P(x) - P_1(x) = xP(x) + \frac{x^6}{(1-x)^3(1-2x)}$, which gives $P(x) = \frac{x^4(1-x-2x^3)}{(1-x)^5(1-2x)}$. Hence, by adding H(x), J(x) and P(x), we complete the proof.

Since $G_0(x) = 1$ and $G_1(x) = xF_T(x)$ and $F_T(x) = \sum_{d \geq 0} G_d(x)$, the preceding three lemmas imply

THEOREM 2.4 Let $T = \{1243, 2134, 3412\}$. Then

$$F_T(x) = \frac{1 - 8x + 28x^2 - 54x^3 + 65x^4 - 49x^5 + 18x^6 - 7x^7 + 2x^8}{(1 - x)^7 (1 - 2x)}.$$

2.2 Case 134: $T = \{3421, 3214, 4312\}.$

Here, T is in the symmetry class of $\{1243, 2134, 2341\}$. Let $a(n; i_1, i_2, \ldots, i_m)$ be the number of permutations in $\pi = i_1 i_2 \cdots i_m \pi' \in S_n(T)$ and $a_n = |S_n(T)|$. Thus $|S_n(T)| = \sum_{i=1}^n a(n; i)$.

Lemma 2.5 We have

$$L(x) := \sum_{n>3} a(n; n, 2)x^n = x \left(\frac{1 - 2x + 2x^3 + x^4}{(1 - 2x)(1 - x - x^2)} - 1 \right).$$

Proof. First we find the generating function $A(x) = F_{\{312,3214,3421\}}(x)$. By symmetry, $A(x) = F_{\{132,2341,2134\}}(x)$. For $\pi \in S_n(132,2341,2134)$, by considering the position of n, we obtain

$$A(x) = 1 + xF_{\{132,213,2341\}}(x) + \frac{x}{1-x}(A(x)-1)$$

and

$$F_{\{132,213,2341\}}(x) = 1 + \frac{x}{1-x} + (x+x^2)(F_{\{132,213,2341\}}(x) - 1).$$

Thus,

$$F_{\{312,3214,3421\}}(x) = \frac{1 - 2x + 2x^3 + x^4}{(1 - 2x)(1 - x - x^2)}, \quad F_{\{132,213,2341\}}(x) = \frac{1 - x + x^3}{(1 - x)(1 - x - x^2)}.$$

Note that $\pi = n2\pi' \in S_n$ avoids T if and only if π' avoids $\{312, 3214, 3421\}$. Thus, L(x) = x(A(x) - 1), which ends the proof.

Lemma 2.6 We have

$$B(x,v) := \sum_{n\geq 4} \sum_{i=3}^{n-1} a(n;i,n) v^i x^n = \frac{x^3 v^3}{1-xv} \left(\frac{1-2x+2x^3+x^4}{(1-2x)(1-x-x^2)} - 1 \right).$$

Proof. Let $\pi = in\pi' \in S_n(T)$. Since π avoids 3421, we see that π contains the subsequence $in12\cdots(i-1)$. Since π avoids 4312, there exists π'' such that $\pi = in12\cdots(i-2)\pi'' \in S_n(T)$. Thus,

$$a(n; i, n) = |S_{n-i}(312, 3421, 3214)| = |S_{n-i}(132, 2341, 2134)|,$$

which leads to $B(x,v) = \frac{x^3v^3}{1-xv} \sum_{n\geq 1} |S_n(132,2341,2134)| x^n$. Hence, by Lemma 2.5

$$B(x,v) = \frac{x^3v^3}{1-xv} \left(\frac{1-2x+2x^3+x^4}{(1-2x)(1-x-x^2)} - 1 \right),$$

as required.

Lemma 2.7 We have

$$\begin{split} K(x,v) := \sum_{n \geq 3} \sum_{i=3}^n a(n;i,2) v^i x^n &= \frac{x^2 v^3}{1-xv} L(x) + \frac{x^3 v^3}{1-xv} L(xv) \\ &+ \frac{x^3 v^3 (x^3 v^3 (1-x)(1-xv) + x^2 v^2 (1-3x) - xv(2-3x) + 1-x)}{(1-x)(1-xv)^2 (1-2xv)}, \end{split}$$

where L(x) is given in Lemma 2.5.

Proof. Let $K'(x,v) = \sum_{n\geq 5} \sum_{i=3}^n a(n;i,2) v^i x^n$. Let $\pi = i2\pi' \in S_n(T)$. Since π avoids 3214, we can write π as $\pi = i2\alpha 1\beta$ such that $2 < \beta < i$. So $a(n;3,2) = |S_{n-3}(4312,231,3214)| = |S_{n-3}(132,2134,2341)|$; for $4 \leq i \leq n-1$, we have that a(n;i,2) = a(n-1,i-1,2)+1, and a(n;n,2) is given by Lemma 2.5. So

$$\sum_{n>5} \sum_{i=4}^{n-1} a(n;i,2) v^i x^n = v \sum_{n>5} \sum_{i=4}^{n-1} a(n-1;i-1,2) v^{i-1} x^n + \sum_{n>5} \sum_{i=4}^{n-1} v^i x^n,$$

which implies

$$K'(x,v) - \sum_{n\geq 5} a(n;n,2)v^n x^n - v^3 \sum_{n\geq 5} a(n;3,2)x^n$$
$$= vx \sum_{n\geq 4} \sum_{i=3}^{n-1} a(n;i,2)v^i x^n + \frac{v^4 x^4}{(1-v)(1-x)} - \frac{v^4 x^4}{(1-v)(1-vx)}.$$

By Lemma 2.5, we have $\sum_{n\geq 5} a(n;3,2) v^3 x^n = x^2 v^3 (L(x)-x^2)$ and

$$\sum_{n>5} a(n; n; 2)v^n x^n = xv(L(xv) - x^2v^2 - 2x^3v^3),$$

SO

$$K'(x,v) = xv(L(xv) - x^2v^2 - 2x^3v^3) + x^2v^3(L(x) - x^2)$$

+ $vx(K'(x,v) + v^3x^4 - xv(L(xv) - x^2v^2 - 2x^3v^3) + \frac{v^4x^5}{(1-x)(1-xv)}.$

We have $K(x,v) = K'(x,v) + x^3v^3 + x^4(v^3 + 2v^4)$, and the result follows.

Lemma 2.8 We have $\sum_{n\geq 2} a(n;n)x^n = L(x)$, where L(x) is given in Lemma 2.5.

Proof. Since $n\pi' \in S_n$ avoids T if and only if π' avoids 312, 3421, 3214, the result follows from Lemma 2.5.

Lemma 2.9 Let $3 \le i \le n-1$. Then

$$a(n;i) = a(n;i,1) + a(n;i,2) + a(n;i,n) + \sum_{i=i+1}^{n} a(n;i,j).$$

Proof. Let $\pi = ij\pi' \in S_n(T)$ with $3 \leq j < i \leq n-1$. Since π avoids 4312, we see that π contains the subsequence ij21. Since π avoids 3214, we see that π contains the subsequence ijn21, and jn21 is order isomorphic to 3421. Thus a(n;i,j) = 0 for all j with $3 \leq j < i \leq n-1$, and the lemma follows.

Lemma 2.10 Let $3 \le i < j \le n-1$. Then

$$a(n; i, j) = a(n-1; i-1, j-1) + a(n-1; j-1) - a(n-1; j-1, 1) - a(n-1; j-1, 2)$$

Proof. Let $\pi = ij\pi' \in S_n(T)$ with $3 \le i < j \le n-1$. By considering the third letter in π , we see that $a(n; i, j) = a(n-1; i-1, j-1) + a(n-1; j-1, j) + a(n-1; j-1, j+1) + \cdots + a(n-1; j-1, n-1)$. Note that

$$a(n-1;j-1) = \sum_{\ell=1}^{n-1} a(n-1;j-1,\ell) = a(n-1;j-1,1) + a(n-1;j-1,2) + \sum_{\ell=j}^{n-1} a(n-1;j-1,\ell).$$

Therefore,

$$a(n;i,j) = a(n-1;i-1,j-1) + a(n-1;j-1) - a(n-1;j-1,1) - a(n-1;j-1,2),$$
 as claimed. $\hfill\Box$

THEOREM 2.11 Let $T = \{3421, 3214, 4312\}$. Then

$$F_T(x) = \frac{(1-x)(1-2x+2x^2)(1-2x+x^3+x^5)C(x) - x(1-2x+x^3+x^4-2x^5+2x^6)}{(1-x)^3(1-2x)(1-x-x^2)},$$

Proof. Note that a(n; k, 1) = a(n-1; k-1) for $2 \le k \le n$ (a permutation $k1\pi' \in S_n$ avoids T if and only if $k\pi'$ avoids T). This fact will be used repeatedly. Let $3 \le i \le n-1$. Then

$$a(n;i) - \left(a(n;i,1) + a(n;i,2) + a(n;i,n)\right) = \sum_{j=i+1}^{n-1} a(n;i,j)$$

$$= \sum_{j=i+1}^{n-1} \left(a(n-1;i-1,j-1) + a(n-1;j-1) - a(n-1;j-1,1) - a(n-1;j-1,2)\right)$$

$$= \sum_{j=i}^{n-2} a(n-1;i-1,j) + \sum_{j=i}^{n-2} a(n-1;j) - \sum_{j=i-1}^{n-3} a(n-2;j) - \sum_{j=i}^{n-2} a(n-1;j,2)$$

$$= a(n-1;i-1) - \left(a(n-1;i-1,1) + a(n-1;i-1,2) + a(n-1;i-1,n-1)\right)$$

$$+ \sum_{j=i}^{n-2} a(n-1;j) - \sum_{j=i-1}^{n-3} a(n-2;j) - \sum_{j=i}^{n-2} a(n-1;j,2),$$

the first equality by Lemma 2.9, the second equality by Lemma 2.10, the third equality by reindexing and the fact that a(n; k, 1) = a(n - 1; k - 1), and the last equality by Lemma 2.9 again.

By Lemma 2.6, we see that a(n; i, n) = a(n-1; i-1, n-1) for all $3 \le i \le n-1$. The preceding identities thus simplify to

$$a(n;i) = a(n-1;i-1) + \sum_{j=i-1}^{n-2} a(n-1;j) - \sum_{j=i-2}^{n-3} a(n-2;j) + a(n;i,2) - a(n-1;i-1,2) - \sum_{j=i}^{n-2} a(n-1;j,2).$$

Define $A_n(v) = \sum_{i=1}^n a(n;i)v^{i-1}$ Thus $A_n(1) = |S_n(T)|$. Define $B_n(v) = \sum_{i=3}^n a(n;i,2)v^i$ and $\ell_n = a(n;n)$. Note that a(n;1) = a(n;2) = a(n-1), where $a(n) = |S_n(T)|$.

Multiplying the recurrence for a(n;i) by v^{i-1} and summing over $i=3,4,\ldots,n-1$, we obtain

$$A_{n}(v) - (1+v)A_{n-1}(1) - v^{n-1}a(n;n) = v(A_{n-1}(v) - A_{n-2}(1) - a(n-1;n-1)v^{n-2})$$

$$+ \frac{1}{1-v}(v^{2}A_{n-1}(1) - v^{2}a(n-1;n-1) - v^{2}A_{n-1}(v) + a(n-1,n-1)v^{n})$$

$$- \frac{1}{1-v}(v^{2}A_{n-2}(1) - a(n-2;n-2)v^{2} - v^{3}A_{n-2}(v) + a(n-2;n-2)v^{n})$$

$$+ \frac{1}{v}(B_{n}(v) - vB_{n-1}(v) - a(n;n,2)v^{n} + a(n-1;n-1,2)v^{n})$$

$$- \frac{1}{1-v}(v^{2}B_{n-1}(1) - a(n-1;n-1)v^{2} - vB_{n-1}(v) + a(n-1;n-1)v^{n-1})$$

with $A_0(v) = A_1(v) = 1$, $A_2(v) = 1 + v$ and $A_3(v) = 2 + 2v + 2v^2$. Define $A(x, v) = \sum_{n \geq 0} A_n(v) x^n$ and $K(x, v) = \sum_{n \geq 3} B_n(v) x^n$. Thus $F_T(x) = A(x, 1)$. By Lemma 2.8, $\sum_{n \geq 2} a(n; n) x^n = L(x)$. By Lemma 2.5, $\sum_{n \geq 3} a(n; n, 2) x^n = x L(x)$. By Lemma 2.7, $\sum_{n \geq 3} B_n(v) x^n = K(x, v)$.

Multiplying the recurrence for $A_n(v)$ by x^n and summing over $n \geq 4$, we obtain

$$\begin{split} &A(x,v) - p(x,v) - (2 + 2v + 2v^2)x^3 \\ &= x(1+v)(A(x,1) - p(x,1)) + \frac{1}{v}(L(xv) - x^2v^2 - 2x^3v^3) \\ &+ xv(A(x,v) - p(x,v) - x(A(x,1) - 1 - x) - (L(xv) - x^2v^2)/v) \\ &+ \frac{v^2x}{1-v}(A(x,1) - p(x,1) - L(x) + x^2 - A(x,v) + p(x,v) + (L(xv) - x^2v^2)/v) \\ &- \frac{x^2v^2}{1-v}(A(x,1) - 1 - x - L(x) - v(A(x,v) - 1 - x) + L(xv)) + \frac{1-xv}{v}(K(x,v) - xvL(xv)) \\ &- \frac{x}{1-v}(v^2K(x,1) - K(x,v) - xv^2L(x) + xvL(xv)), \end{split}$$

where $p(x, v) = A_0(v) + A_1(v)x + A_2(v)x^2 = 1 + x + (1 + v)x^2$. Hence, A(x, v) satisfies

$$\frac{(1-xv)(1-v+xv^2)}{1-v}A(x,v)
= -\frac{v^2x(1-2x)}{1-v}L(x) + \frac{(1-2xv)(1-v+xv^2)}{v(1-v)}L(xv) + \frac{v^2x}{1-v}K(x,1) + \frac{1-v+v^2x}{v(1-v)}K(x,v)
+ \frac{x(1-xv)}{1-v}A(x,1) + (1-xv)(1-xv-vx^2).$$

This equation for A(x, v) can be solved by the kernel method, taking v = C(x) and using the expressions for L(x) and K(x, v) from Lemmas 2.5 and 2.7. After simplification A(x, 1), which coincides with $F_T(x)$, agrees with the stated expression.

2.3 Case 207: $T = \{1243, 2134, 1423\}.$

Let $a(n; i_1, i_2, \dots, i_m)$ be the number of permutations in $\pi = i_1 i_2 \cdots i_m \pi' \in S_n(T)$ and $a_n = |S_n(T)|$. Thus $|S_n(T)| = \sum_{i=1}^n a(n; i)$. Lemma 2.12 We have

$$a(n;i,j) = \begin{cases} a(n-1;i,j) + \sum_{k=1}^{j-1} a(n-1;j,k), & 1 \leq j < i \leq n-2, \\ a(n-1,i,j), & 1 \leq i < j \leq n-2, \\ \sum_{k=1}^{i} a(n-1;k,n-1), & 1 \leq i \leq j-2 = n-2, \\ a(n-1;i,n-2) + \sum_{k=1}^{i} a(n-1;k,n-1), & 1 \leq i \leq j-2 = n-3, \end{cases}$$

with $a(n;n) = a(n;n-1) = a_{n-1}$, a(n;i,1) = 1 for all i = 2,3,...,n-2, and $a(n;n-2,n-1) = a(n;n-2,n) = a_{n-2}$.

Proof. It is not hard to check the initial conditions. Let $1 \le j < i \le n-2$, then

$$a(n; i, j) = a(n; i, j, n) + \sum_{k=1}^{j-1} a(n; i, j, k)$$
$$= a(n-1; i, j) + \sum_{k=1}^{j-1} a(n-1; j, k)$$

with a(n; i, 1) = 1 (by definitions). For $1 \le i < j \le n - 2$, we have a(n; i, j) = a(n; i, j, j + 1) = a(n - 1, i, j).

For all $1 \le i \le j-2 = n-2$, we have

$$a(n; i, n) = a(n; i, n, 1) + \dots + a(n; i, n, i - 1) + a(n; i, n, n - 1)$$

= $a(n - 1; 1, n - 1) + \dots + a(n - 1; i - 1, n - 1) + a(n - 1; i, n - 1).$

Similarly, for all $1 \le i \le j - 2 = n - 3$,

$$a(n; i, n-1) = a(n-1; i, n-2) + a(n-1; i, n-1) + a(n-1; i-1, n-1) + \dots + a(n-1; 1, n-1),$$
 which completes the proof.

COROLLARY 2.13 Define b(n;i) = a(n;i,n) and c(n;i) = a(n;i,n-1). Then $b(n;i) = \sum_{j=1}^{i} b(n-1;j)$ and c(n;i) = c(n-1;i) + b(n;i) with b(n;n) = c(n;n-1) = 0, $b(n;n-1) = b(n;n-2) = a_{n-2}$ and $c(n;n) = c(n;n-2) = a_{n-2}$.

Define $B(n;v) = \sum_{i=1}^n a(n;i,n)v^{i-1}$ and $C(n;v) = \sum_{i=1}^n a(n;i,n-1)v^{i-1}$. By Corollary 2.13, we obtain

$$B(n;v) = a_{n-2}v^{n-2} + a_{n-2}v^{n-3} + \frac{1}{1-v}(B(n-1;v) - v^{n-3}B(n-1;1)),$$

$$C(n;v) = C(n-1;v) + a_{n-2}(v^{n-1} - v^{n-2}) - a_{n-3}v^{n-2} + B(n;v)$$

with B(1; v) = C(1; v) = 0, B(2; v) = 1 and C(2; v) = v.

Define $B(x,v) = \sum_{n\geq 1} B(n;v) x^n$ and $C(x,v) = \sum_{n\geq 1} C(n;v) x^n$. Note that $F_T(x) = \sum_{n\geq 0} a_n x^n$. So the above recurrences can be formulated as

$$\left(1 - \frac{x}{v(1-v)}\right)B(x/v,v) = \frac{x^2}{v^2}F_T(x) + \frac{x^2}{v^3}(F_T(x) - 1) - \frac{x}{v^3(1-v)}B(x;1),$$

$$C(x;v) = xC(x;v) + x^2(v-1)F_T(xv) - \frac{x^3}{v}F_T(xv) + B(x;v).$$

Using the kernel method with $v = \frac{1}{C(x)}$, we obtain

$$B(x;1) = x^2 F_T(x) + x^2 C(x) (F_T(x) - 1).$$
(1)

Then, by substituting v = 1 in the second equation, we obtain

$$C(x;1) = x^{2} F_{T}(x) + \frac{x^{2}}{1-x} C(x) (F_{T}(x) - 1).$$
(2)

Lemma 2.14 For all $1 \le j < i \le n-2$, a(n; i, j) = b(n; j).

Proof. Clearly, b(n;1) = b(n-1;1) for all $n \ge 3$. But b(2;1) = 1, so b(n;1) = 1 = a(n;i,1) for all $i = 2,3,\ldots,n-2$. Assume by induction that a(n-1;i,j) = b(n-1;j) for all $n-3 \ge i > j \ge 1$. Then by Lemma 2.12,

$$a(n; i, j) = a(n-1; i, j) + \sum_{k=1}^{j-1} a(n-1; j, k) = b(n-1; j) + \sum_{k=1}^{j-1} b(n-1; k) = b(n; j).$$

Now, we are ready to find an explicit formula for $F_T(x)$. By Lemmas 2.12 and 2.14, we have

$$a(n,i) = b(n;1) + \dots + b(n;i) + c(n;i) + a(n-1;i) - b(n-1;1) - \dots - b(n-1;i)$$

= $a(n-1;i) + c(n+1;i) - b(n,i)$

with $a(n; n-2) = b(n; 1) + \dots + b(n; n-2) + c(n; n-2) = c(n+1; n-2)$ and $a(n; n) = a(n; n-1) = a_{n-1}$. Summing over $i = 1, 2, \dots, n-3$, we get that

$$a_n = a_{n-1} + c_{n+1} - b_n$$

with $a_0 = a_1 = 1$. Hence,

$$F_T(x) = 1 - x + xF_T(x) + C(x; 1)/x - B(x; 1),$$

Solving for $F_T(x)$ and using (1) and (2), we obtain the following result. Recall that C(x) denotes the generating function for the Catalan numbers.

THEOREM 2.15 Let $T = \{1243, 1423, 2134\}$. Then

$$F_T(x) = \frac{1 - x(1 - x)C(x)}{(1 - x)(2 - C(x)) + x^2}.$$

References

- [1] D. CALLAN AND T. MANSOUR, Five subsets of permutations enumerated as weak sorting permutations, Southeast Asian Bull. Math., to appear.
- [2] D. CALLAN AND T. MANSOUR, On permutations avoiding 1324, 2143, and another 4-letter pattern, Pure Math. Appl. (PU.M.A.), this issue.

- [3] D. Callan and Mansour, A Wilf class composed of 7 symmetry classes of triples of 4-letter patterns, J. Analysis and Number Theory, 5 (2017) 19–26.
- [4] D. Callan, T. Mansour and M. Shattuck, Twelve subsets of permutations enumerated as maximally clustered permutations, Ann. Math. Inform., to appear.
- [5] D. CALLAN, T. MANSOUR AND M. SHATTUCK, Wilf classification of triples of 4-letter patterns II, Discrete Math. Theor. Comput. Sci., 19 (2017) #6, 44pp.
- [6] D. CALLAN, T. MANSOUR AND M. SHATTUCK, Wilf classification of triples of 4-letter patterns I, Discrete Math. Theor. Comput. Sci., 19 (2017) #5, 35pp.
- [7] T. Mansour and M. Schork, Wilf classification of subsets of four letter patterns, J. Combinatorics and Number Theory, 8 (2016) 1–129.
- [8] T. Mansour and M. Schork, Wilf classification of subsets of eight and nine four-letter patterns, J. Combinatorics and Number Theory, 8 (2016) 257–283.
- [9] V. Vatter, Finding regular insertion encodings for permutation classes, J. Symbolic Comput., 47 (2012) 259–265.