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Abstract. We enumerate permutations avoiding 1243, 2134, and a third 4-letter pattern τ , a step toward the goal of

enumerating avoiders for all triples of 4-letter patterns. The enumeration is already known for all but three patterns τ ,
which are treated in this paper.
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1 Introduction

This paper is a companion to [2] which enumerates the permutations avoiding 1324, 2143, and a
third 4-letter pattern τ , part of a project to enumerate avoiders for all triples of 4-letter patterns. As
usual, Sn denotes the set of permutations of [n] = {1, 2, . . . , n}, considered as lists (words) of distinct
letters. For a permutation π to avoid a pattern τ ∈ Sk means that π contains no k-letter subsequence
whose standardization (replace smallest letter by 1, second smallest by 2, and so on) is τ . For patterns
τ1, . . . , τr, Sn(τ1, . . . , τr) denotes the set of permutations of [n] that avoid each of τ1, . . . , τr. Here,
we count the set Sn(1243, 2134, τ) for all 22 permutations τ ∈ S4\{1243, 2134} (for counting the set
Sn(T ) with T ⊆ S4, see [1, 3, 4, 5, 6, 7, 8]). The three involutions reverse, complement, invert on
permutations generate a dihedral group that divides pattern sets into so-called symmetry classes. All
pattern sets in a symmetry class have the same counting sequence for their avoiders. The pattern sets
with a given counting sequence form a Wilf class, by de�nition. We say a Wilf class is big if it contains
more than one symmetry class. All 242 big Wilf classes of triples of 4-letter patterns are enumerated
in [6]. Some small Wilf classes have been enumerated [2].

Table 1 below lists the generating function F1243,2134,τ (x) to count {1243, 2134, τ}-avoiders for each
of the 22 permutations τ . The 22 triples {1243, 2134, τ} lie in precisely 11 Wilf classes, of which 3 are
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big, hence covered by [6], 5 are small but can be counted by the INSENC algorithm (INSENC refers
to regular insertion encodings, see [9]), and 3 are small and not treatable by the INSENC algorithm.
These 3 are the triples with τ = 3412, τ = 2341 and τ = 1423, which are treated in turn in Section
2. Our method is to consider the left-right maxima of an avoider when τ = 3412 and to focus on
the initial letters in the other two cases. We use the usual left-right maxima decomposition of a
nonempty permutation π: π = i1π

(1)i2π
(2) · · · imπ(m) where i1, . . . , im are letters, π(1), . . . , π(m) are

words, i1 < i2 < · · · < im and ij > max(π(j)) for 1 ≤ j ≤ m. Then i1, i2, . . . , im are the left-right
maxima of π.

Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function for the Catalan numbers Cn :=

1
n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n−1
)
. The identity xC(x)2 = C(x)− 1 is used to simplify results.

Wilf
τ F1243,2134,τ (x) Reference class

4321 −9x7+24x6+23x5+8x4+2x3+2x2−2x+1
(1−x)3 INSENC 7

3421, 4312 −3x7−5x6+3x5+10x4−11x3+11x2−5x+1
(1−x)6 INSENC 9

4231 4x9−11x8+10x7+2x6−7x5+21x4−22x3+16x2−6x+1
(1−x)7 INSENC 14

3412 1−8x+28x2−54x3+65x4−49x5+18x6−7x7+2x8

(1−x)7(1−2x) Theorem 2.4 15

2431, 3241, 4132, 4213 x10−4x9−6x8+68x7−186x6+291x5−283x4+170x3−61x2+12x−1
(2x−1)2(x2−3x+1)2(x−1)3 INSENC 53

1432, 3214 1−4x+4x2−3x3+x4

(1−x+x2)(1−4x+2x2) [6] 112

2341, 4123 (1−x)(1−2x+2x2)(1−2x+x3+x5)C(x)−x(1−2x+x3+x4−2x5+2x6)
(1−x)3(1−2x)(1−x−x2) Theorem 2.11 134

2413, 3142 (1−3x+x2)(1−2x−x2)
(1−x)(1−5x+5x2+2x3−x4) INSENC 138

1342, 1423, 2314, 3124 1−x(1−x)C(x)
(1−x)(2−C(x))+x2 Theorem 2.15 207

2143 1−4x+2x2

(1−x)(1−4x+x2) [6] 215

1234, 1324 2(1−4x)
2−9x+4x2−x

√
1−4x [6] 233

Table 1: Triples of 4-letter patterns containing 1243,2134, divided into Wilf classes.

2 Proofs

2.1 Case 15: T = {1243, 2134, 3412}.

We count T -avoiders by number of left-right maxima. Let Gm(x) denote the generating function
for T -avoiders with exactly m left-right maxima. Clearly, G0(x) = 1 and G1(x) = xFT (x).
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Lemma 2.1 For m ≥ 4, Gm(x) =
xm(1+x)
(1−x)3 .

Proof. Suppose π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 4 left-right maxima. Since π avoids T ,

we have that π(s) = ∅ for all s = 1, 2, . . . ,m − 2 and π(m−1), π(m) > i2. Moreover, π(m−1)π(m) is
decreasing. Thus, by considering whether π(m) has a letter between i1 and i2 or not, we obtain that

Gm(x) =
xm

(1−x)2

(
1 + 2x

1−x

)
. 2

Lemma 2.2 We have G3(x) =
x3(1−x+x2+x3)

(1−x)5 .

Proof. Suppose π = i1π
(1)i2π

(2)i3π
(3) ∈ Sn(T ) with exactly 3 left-right maxima. Since π avoids T , we

have that π(1) = ∅ and π(2) > i2. We consider four cases:

• π(2) = ∅ and π(3) has no letter between i1 and i2: Since π avoids 3412, we can express π as
π = i1i2π

(2)i3(i1− 1) · · · 1 where π(2) avoids {132, 213, 3412}. By a simple decomposition, we see

that K(x) = F{132,213,3412}(x) =
1

1−x + x2

(1−x)3 . Thus, we have a contribution of x3

1−xK(x).

• π(2) = ∅ and π(3) has a letter between i1 and i2: Again, in this subcase, π can be expressed as
π = i1i2π

(2)i3i
′(i′−1) · · · (i1+1)(i1−1) · · · 21 where i2 > π(2) > i′ and π(2) avoids {132, 213, 3412}.

Thus, we have a contribution of x4

(1−x)2K(x).

• π(2) 6= ∅ and π(3) has no letter between i1 and i2: Similarly, in this subcase, π can be written as
π = i1i2π

(2)(i1− 1) · · · (i′+1)i′i3(i
′− 1) · · · 21 where π(2) avoids {132, 213, 3412}. Thus, we have

a contribution of x4

(1−x)2K(x).

• π(2) 6= ∅ and π(3) has a letter between i1 and i2: Since π avoids 3412, we can write π as
i1i2(i2−1) · · · i′2(i1−1)(i1−2) · · · i′1i3(i′2−1) · · · (i1+1)(i′1−1) · · · 21. Thus, we have a contribution
of x5

(1−x)4 .

Hence, G3(x) =
x3

1−xK(x) + 2x4

(1−x)2K(x) + x5

(1−x)4 , which simpli�es to the stated expression. 2

Lemma 2.3 We have

G2(x) =
x2(1− 5x+ 13x2 − 16x3 + 8x4 − 7x5 + 2x6)

(1− x)6(1− 2x)
.

Proof. Let us write G2(x) = H(x) + J(x) + P (x), where H(x) (respectively, J(x) and P (x)) is
the generating function for the number of T -avoiders π with exactly 2 left-right maxima of form
π = (n− 1)π′nπ′′ (respectively, π = inπ′ with i ≤ n− 2, and π = iπ′nπ′′ with i ≤ n− 2 and π′ is not
empty).

First, we �nd H(x). Let π = (n− 1)π′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima and suppose

π′n has exactly d ≥ 1 left-right maxima. Clearly, for d = 1, we have a contribution of x2

1−x . For
d = 2, we see that π can be written as π = (n − 1)j1β

′n(n − 2)(n − 3) · · · (j1 + 1)β′′, where β′ is
decreasing. Thus, by considering the two cases either j1 = n− 2 or j1 < n− 2, we have a contribution
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of xH(x) + x4

(1−x)(1−2x) . For d ≥ 3, by Lemma 2.1, we obtain a contribution of xGd(x) = xd+1(1+x)
(1−x)3 .

Hence,

H(x) = xH(x) +
x2

1− x
+

x4

(1− x)(1− 2x)
+
∑
d≥3

xd+1(1 + x)

(1− x)3
,

which implies

H(x) =
x2(1− 6x+ 16x2 − 22x3 + 16x4 − 8x5 + x6)

(1− x)6(1− 2x)
.

For permutations in Sn(T ) with n in position 2, we see by considering left-right maxima that their
generating function is given by H(x), while |{π ∈ Sn(T ) : π1 = n− 1, π2 = n}| = 1 for n ≥ 2. Thus,

J(x) = H(x)− x2

1−x .

Next, write P (x) =
∑

d≥1 Pd(x), where Pd(x) is the generating function for the number of T -
avoiders π with exactly 2 left-right maxima and �rst letter n−d−1. Then π = (n−d−1)j1j2 · · · jenπ′′
with j1 > j2 > · · · je and e ≥ 1 (decreasing because π avoids 1243 and d ≥ 1). Write π′′ as α(1)(n −
1) · · ·α(d)(n− d)α(d+1). Since π avoids 3412, we see that α(1)α(2) · · ·α(d) is decreasing.

• Case d ≥ 2. Since π avoids 2134, we see that α(1) < je. By considering whether α(1) is empty or
not, we have Pd(x) = xPd−1(x) +

xd+4

(1−x)d+2 .

• Case d = 1. First, suppose that α(1) is empty. In this case α(2) is decreasing, so from the structure
of π we see that the contribution is given by xe+3/(1− x)e+1. Otherwise, α(1) is not empty. So
from the fact that α(1)α(2) is decreasing we see that there two options: either α(1) = γγ′ with
γ > je > γ′ > α(2) and γγ′α(2) is decreasing, or α(2) = γγ′ with α(1) > γ > je > γ′ and α(1)γγ′

is decreasing. Each option gives a contribution of xe+4/(1− x)3. Thus,

P1(x) =
xe+3

(1− x)e+1
+ 2

xe+4

(1− x)3
,

and, summing over e ≥ 1, we �nd that P1(x) =
x4(1−x−x2−x3)
(1−x)4(1−2x) .

Therefore, P (x) − P1(x) = xP (x) + x6

(1−x)3(1−2x) , which gives P (x) = x4(1−x−2x3)
(1−x)5(1−2x) . Hence, by adding

H(x), J(x) and P (x), we complete the proof. 2

Since G0(x) = 1 and G1(x) = xFT (x) and FT (x) =
∑

d≥0Gd(x), the preceding three lemmas imply

Theorem 2.4 Let T = {1243, 2134, 3412}. Then

FT (x) =
1− 8x+ 28x2 − 54x3 + 65x4 − 49x5 + 18x6 − 7x7 + 2x8

(1− x)7(1− 2x)
.

2.2 Case 134: T = {3421, 3214, 4312}.

Here, T is in the symmetry class of {1243, 2134, 2341}. Let a(n; i1, i2, . . . , im) be the number of
permutations in π = i1i2 · · · imπ′ ∈ Sn(T ) and an = |Sn(T )|. Thus |Sn(T )| =

∑n
i=1 a(n; i).
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Lemma 2.5 We have

L(x) :=
∑
n≥3

a(n;n, 2)xn = x

(
1− 2x+ 2x3 + x4

(1− 2x)(1− x− x2)
− 1

)
.

Proof. First we �nd the generating function A(x) = F{312,3214,3421}(x). By symmetry, A(x) =
F{132,2341,2134}(x). For π ∈ Sn(132, 2341, 2134), by considering the position of n, we obtain

A(x) = 1 + xF{132,213,2341}(x) +
x

1− x
(A(x)− 1)

and
F{132,213,2341}(x) = 1 +

x

1− x
+ (x+ x2)(F{132,213,2341}(x)− 1).

Thus,

F{312,3214,3421}(x) =
1− 2x+ 2x3 + x4

(1− 2x)(1− x− x2)
, F{132,213,2341}(x) =

1− x+ x3

(1− x)(1− x− x2)
.

Note that π = n2π′ ∈ Sn avoids T if and only if π′ avoids {312, 3214, 3421}. Thus, L(x) =
x(A(x)− 1), which ends the proof. 2

Lemma 2.6 We have

B(x, v) :=
∑
n≥4

n−1∑
i=3

a(n; i, n)vixn =
x3v3

1− xv

(
1− 2x+ 2x3 + x4

(1− 2x)(1− x− x2)
− 1

)
.

Proof. Let π = inπ′ ∈ Sn(T ). Since π avoids 3421, we see that π contains the subsequence in12 · · · (i−
1). Since π avoids 4312, there exists π′′ such that π = in12 · · · (i− 2)π′′ ∈ Sn(T ). Thus,

a(n; i, n) = |Sn−i(312, 3421, 3214)| = |Sn−i(132, 2341, 2134)|,

which leads to B(x, v) = x3v3

1−xv
∑

n≥1 |Sn(132, 2341, 2134)|xn. Hence, by Lemma 2.5

B(x, v) =
x3v3

1− xv

(
1− 2x+ 2x3 + x4

(1− 2x)(1− x− x2)
− 1

)
,

as required. 2

Lemma 2.7 We have

K(x, v) :=
∑
n≥3

n∑
i=3

a(n; i, 2)vixn =
x2v3

1− xv
L(x) +

x3v3

1− xv
L(xv)

+
x3v3(x3v3(1− x)(1− xv) + x2v2(1− 3x)− xv(2− 3x) + 1− x)

(1− x)(1− xv)2(1− 2xv)
,

where L(x) is given in Lemma 2.5.
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Proof. Let K ′(x, v) =
∑

n≥5
∑n

i=3 a(n; i, 2)v
ixn. Let π = i2π′ ∈ Sn(T ). Since π avoids 3214,

we can write π as π = i2α1β such that 2 < β < i. So a(n; 3, 2) = |Sn−3(4312, 231, 3214)| =
|Sn−3(132, 2134, 2341)|; for 4 ≤ i ≤ n− 1, we have that a(n; i, 2) = a(n− 1, i− 1, 2) + 1, and a(n;n, 2)
is given by Lemma 2.5. So

∑
n≥5

n−1∑
i=4

a(n; i, 2)vixn = v
∑
n≥5

n−1∑
i=4

a(n− 1; i− 1, 2)vi−1xn +
∑
n≥5

n−1∑
i=4

vixn,

which implies

K ′(x, v)−
∑
n≥5

a(n;n, 2)vnxn − v3
∑
n≥5

a(n; 3, 2)xn

= vx
∑
n≥4

n−1∑
i=3

a(n; i, 2)vixn +
v4x4

(1− v)(1− x)
− v4x4

(1− v)(1− vx)
.

By Lemma 2.5, we have
∑

n≥5 a(n; 3, 2)v
3xn = x2v3(L(x)− x2) and∑

n≥5
a(n;n; 2)vnxn = xv(L(xv)− x2v2 − 2x3v3),

so

K ′(x, v) = xv(L(xv)− x2v2 − 2x3v3) + x2v3(L(x)− x2)

+ vx(K ′(x, v) + v3x4 − xv(L(xv)− x2v2 − 2x3v3) +
v4x5

(1− x)(1− xv)
.

We have K(x, v) = K ′(x, v) + x3v3 + x4(v3 + 2v4), and the result follows. 2

Lemma 2.8 We have
∑

n≥2 a(n;n)x
n = L(x), where L(x) is given in Lemma 2.5.

Proof. Since nπ′ ∈ Sn avoids T if and only if π′ avoids 312, 3421, 3214, the result follows from Lemma
2.5. 2

Lemma 2.9 Let 3 ≤ i ≤ n− 1. Then

a(n; i) = a(n; i, 1) + a(n; i, 2) + a(n; i, n) +
n∑

j=i+1

a(n; i, j) .

Proof. Let π = ijπ′ ∈ Sn(T ) with 3 ≤ j < i ≤ n − 1. Since π avoids 4312, we see that π contains
the subsequence ij21. Since π avoids 3214, we see that π contains the subsequence ijn21, and jn21 is
order isomorphic to 3421. Thus a(n; i, j) = 0 for all j with 3 ≤ j < i ≤ n− 1, and the lemma follows.

2

Lemma 2.10 Let 3 ≤ i < j ≤ n− 1. Then

a(n; i, j) = a(n− 1; i− 1, j − 1) + a(n− 1; j − 1)− a(n− 1; j − 1, 1)− a(n− 1; j − 1, 2)
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Proof. Let π = ijπ′ ∈ Sn(T ) with 3 ≤ i < j ≤ n− 1. By considering the third letter in π, we see that

a(n; i, j) = a(n− 1; i− 1, j − 1) + a(n− 1; j − 1, j) + a(n− 1; j − 1, j +1)+ · · ·+ a(n− 1; j − 1, n− 1).

Note that

a(n− 1; j − 1) =

n−1∑
`=1

a(n− 1; j − 1, `) = a(n− 1; j − 1, 1) + a(n− 1; j − 1, 2) +

n−1∑
`=j

a(n− 1; j − 1, `).

Therefore,

a(n; i, j) = a(n− 1; i− 1, j − 1) + a(n− 1; j − 1)− a(n− 1; j − 1, 1)− a(n− 1; j − 1, 2),

as claimed. 2

Theorem 2.11 Let T = {3421, 3214, 4312}. Then

FT (x) =
(1− x)(1− 2x+ 2x2)(1− 2x+ x3 + x5)C(x)− x(1− 2x+ x3 + x4 − 2x5 + 2x6)

(1− x)3(1− 2x)(1− x− x2)
,

Proof. Note that a(n; k, 1) = a(n− 1; k − 1) for 2 ≤ k ≤ n (a permutation k1π′ ∈ Sn avoids T if and
only if kπ′ avoids T ). This fact will be used repeatedly. Let 3 ≤ i ≤ n− 1. Then

a(n; i)−
(
a(n; i, 1) + a(n; i, 2) + a(n; i, n)

)
=

n−1∑
j=i+1

a(n; i, j)

=

n−1∑
j=i+1

(
a(n− 1; i− 1, j − 1) + a(n− 1; j − 1)− a(n− 1; j − 1, 1)− a(n− 1; j − 1, 2)

)
=
n−2∑
j=i

a(n− 1; i− 1, j) +
n−2∑
j=i

a(n− 1; j)−
n−3∑
j=i−1

a(n− 2; j)−
n−2∑
j=i

a(n− 1; j, 2)

= a(n− 1; i− 1)−
(
a(n− 1; i− 1, 1) + a(n− 1; i− 1, 2) + a(n− 1; i− 1, n− 1)

)
+

n−2∑
j=i

a(n− 1; j)−
n−3∑
j=i−1

a(n− 2; j)−
n−2∑
j=i

a(n− 1; j, 2),

the �rst equality by Lemma 2.9, the second equality by Lemma 2.10, the third equality by reindexing
and the fact that a(n; k, 1) = a(n− 1; k − 1), and the last equality by Lemma 2.9 again.

By Lemma 2.6, we see that a(n; i, n) = a(n− 1; i− 1, n− 1) for all 3 ≤ i ≤ n− 1. The preceding
identities thus simplify to

a(n; i) = a(n− 1; i− 1) +
n−2∑
j=i−1

a(n− 1; j)−
n−3∑
j=i−2

a(n− 2; j)

+ a(n; i, 2)− a(n− 1; i− 1, 2)−
n−2∑
j=i

a(n− 1; j, 2).
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De�ne An(v) =
∑n

i=1 a(n; i)v
i−1 Thus An(1) = |Sn(T )|. De�ne Bn(v) =

∑n
i=3 a(n; i, 2)v

i and `n =
a(n;n). Note that a(n; 1) = a(n; 2) = a(n− 1), where a(n) = |Sn(T )|.

Multiplying the recurrence for a(n; i) by vi−1 and summing over i = 3, 4, . . . , n− 1, we obtain

An(v)− (1 + v)An−1(1)− vn−1a(n;n) = v(An−1(v)−An−2(1)− a(n− 1;n− 1)vn−2)

+
1

1− v
(v2An−1(1)− v2a(n− 1;n− 1)− v2An−1(v) + a(n− 1, n− 1)vn)

− 1

1− v
(v2An−2(1)− a(n− 2;n− 2)v2 − v3An−2(v) + a(n− 2;n− 2)vn)

+
1

v
(Bn(v)− vBn−1(v)− a(n;n, 2)vn + a(n− 1;n− 1, 2)vn)

− 1

1− v
(v2Bn−1(1)− a(n− 1;n− 1)v2 − vBn−1(v) + a(n− 1;n− 1)vn−1)

with A0(v) = A1(v) = 1, A2(v) = 1 + v and A3(v) = 2 + 2v + 2v2. De�ne A(x, v) =
∑

n≥0An(v)x
n

and K(x, v) =
∑

n≥3Bn(v)x
n. Thus FT (x) = A(x, 1). By Lemma 2.8,

∑
n≥2 a(n;n)x

n = L(x). By
Lemma 2.5,

∑
n≥3 a(n;n, 2)x

n = xL(x). By Lemma 2.7,
∑

n≥3Bn(v)x
n = K(x, v).

Multiplying the recurrence for An(v) by x
n and summing over n ≥ 4, we obtain

A(x, v)− p(x, v)− (2 + 2v + 2v2)x3

= x(1 + v)(A(x, 1)− p(x, 1)) + 1

v
(L(xv)− x2v2 − 2x3v3)

+ xv(A(x, v)− p(x, v)− x(A(x, 1)− 1− x)− (L(xv)− x2v2)/v)

+
v2x

1− v
(A(x, 1)− p(x, 1)− L(x) + x2 −A(x, v) + p(x, v) + (L(xv)− x2v2)/v)

− x2v2

1− v
(A(x, 1)− 1− x− L(x)− v(A(x, v)− 1− x) + L(xv)) +

1− xv
v

(K(x, v)− xvL(xv))

− x

1− v
(v2K(x, 1)−K(x, v)− xv2L(x) + xvL(xv)),

where p(x, v) = A0(v) +A1(v)x+A2(v)x
2 = 1 + x+ (1 + v)x2. Hence, A(x, v) satis�es

(1− xv)(1− v + xv2)

1− v
A(x, v)

= −v
2x(1− 2x)

1− v
L(x) +

(1− 2xv)(1− v + xv2)

v(1− v)
L(xv) +

v2x

1− v
K(x, 1) +

1− v + v2x

v(1− v)
K(x, v)

+
x(1− xv)
1− v

A(x, 1) + (1− xv)(1− xv − vx2).

This equation for A(x, v) can be solved by the kernel method, taking v = C(x) and using the expressions
for L(x) and K(x, v) from Lemmas 2.5 and 2.7. After simpli�cation A(x, 1), which coincides with
FT (x), agrees with the stated expression. 2

2.3 Case 207: T = {1243, 2134, 1423}.

Let a(n; i1, i2, . . . , im) be the number of permutations in π = i1i2 · · · imπ′ ∈ Sn(T ) and an = |Sn(T )|.
Thus |Sn(T )| =

∑n
i=1 a(n; i).
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Lemma 2.12 We have

a(n; i, j) =


a(n− 1; i, j) +

∑j−1
k=1 a(n− 1; j, k), 1 ≤ j < i ≤ n− 2,

a(n− 1, i, j), 1 ≤ i < j ≤ n− 2,∑i
k=1 a(n− 1; k, n− 1), 1 ≤ i ≤ j − 2 = n− 2,

a(n− 1; i, n− 2) +
∑i

k=1 a(n− 1; k, n− 1), 1 ≤ i ≤ j − 2 = n− 3,

with a(n;n) = a(n;n − 1) = an−1, a(n; i, 1) = 1 for all i = 2, 3, . . . , n − 2, and a(n;n − 2, n − 1) =
a(n;n− 2, n) = an−2.

Proof. It is not hard to check the initial conditions. Let 1 ≤ j < i ≤ n− 2, then

a(n; i, j) = a(n; i, j, n) +

j−1∑
k=1

a(n; i, j, k)

= a(n− 1; i, j) +

j−1∑
k=1

a(n− 1; j, k)

with a(n; i, 1) = 1 (by de�nitions). For 1 ≤ i < j ≤ n − 2, we have a(n; i, j) = a(n; i, j, j + 1) =
a(n− 1, i, j).

For all 1 ≤ i ≤ j − 2 = n− 2, we have

a(n; i, n) = a(n; i, n, 1) + · · ·+ a(n; i, n, i− 1) + a(n; i, n, n− 1)

= a(n− 1; 1, n− 1) + · · ·+ a(n− 1, i− 1, n− 1) + a(n− 1; i, n− 1).

Similarly, for all 1 ≤ i ≤ j − 2 = n− 3,

a(n; i, n− 1) = a(n− 1; i, n− 2) + a(n− 1; i, n− 1) + a(n− 1; i− 1, n− 1) + · · ·+ a(n− 1; 1, n− 1),

which completes the proof. 2

Corollary 2.13 De�ne b(n; i) = a(n; i, n) and c(n; i) = a(n; i, n−1). Then b(n; i) =
∑i

j=1 b(n−1; j)
and c(n; i) = c(n − 1; i) + b(n; i) with b(n;n) = c(n;n − 1) = 0, b(n;n − 1) = b(n;n − 2) = an−2 and

c(n;n) = c(n;n− 2) = an−2.

De�ne B(n; v) =
∑n

i=1 a(n; i, n)v
i−1 and C(n; v) =

∑n
i=1 a(n; i, n− 1)vi−1. By Corollary 2.13, we

obtain

B(n; v) = an−2v
n−2 + an−2v

n−3 +
1

1− v
(B(n− 1; v)− vn−3B(n− 1; 1)),

C(n; v) = C(n− 1; v) + an−2(v
n−1 − vn−2)− an−3vn−2 +B(n; v)

with B(1; v) = C(1; v) = 0, B(2; v) = 1 and C(2; v) = v.
De�ne B(x, v) =

∑
n≥1B(n; v)xn and C(x, v) =

∑
n≥1C(n; v)x

n. Note that FT (x) =
∑

n≥0 anx
n.

So the above recurrences can be formulated as(
1− x

v(1− v)

)
B(x/v, v) =

x2

v2
FT (x) +

x2

v3
(FT (x)− 1)− x

v3(1− v)
B(x; 1),

C(x; v) = xC(x; v) + x2(v − 1)FT (xv)−
x3

v
FT (xv) +B(x; v).
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Using the kernel method with v = 1
C(x) , we obtain

B(x; 1) = x2FT (x) + x2C(x)(FT (x)− 1). (1)

Then, by substituting v = 1 in the second equation, we obtain

C(x; 1) = x2FT (x) +
x2

1− x
C(x)(FT (x)− 1). (2)

Lemma 2.14 For all 1 ≤ j < i ≤ n− 2, a(n; i, j) = b(n; j).

Proof. Clearly, b(n; 1) = b(n − 1; 1) for all n ≥ 3. But b(2; 1) = 1, so b(n; 1) = 1 = a(n; i, 1) for all
i = 2, 3, . . . , n− 2. Assume by induction that a(n− 1; i, j) = b(n− 1; j) for all n− 3 ≥ i > j ≥ 1. Then
by Lemma 2.12,

a(n; i, j) = a(n− 1; i, j) +

j−1∑
k=1

a(n− 1; j, k) = b(n− 1; j) +

j−1∑
k−1

b(n− 1; k) = b(n; j) .

2

Now, we are ready to �nd an explicit formula for FT (x). By Lemmas 2.12 and 2.14, we have

a(n, i) = b(n; 1) + · · ·+ b(n; i) + c(n; i) + a(n− 1; i)− b(n− 1; 1)− · · · − b(n− 1; i)

= a(n− 1; i) + c(n+ 1; i)− b(n, i)

with a(n;n−2) = b(n; 1)+· · ·+b(n;n−2)+c(n;n−2) = c(n+1;n−2) and a(n;n) = a(n;n−1) = an−1.
Summing over i = 1, 2, . . . , n− 3, we get that

an = an−1 + cn+1 − bn

with a0 = a1 = 1. Hence,

FT (x) = 1− x+ xFT (x) + C(x; 1)/x−B(x; 1),

Solving for FT (x) and using (1) and (2), we obtain the following result. Recall that C(x) denotes the
generating function for the Catalan numbers.

Theorem 2.15 Let T = {1243, 1423, 2134}. Then

FT (x) =
1− x(1− x)C(x)

(1− x)
(
2− C(x)

)
+ x2

.
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