On permutations avoiding 1243, 2134, and another 4-letter pattern

David Callan
Department of Statistics
University of Wisconsin
Madison, WI 53706, USA
email: callan@stat.wisc.edu
and
Toufik Mansour
Department of Mathematics
University of Haifa
3498838 Haifa, Israel
email: tmansour@univ.haifa.ac.il

(Received: September 14, 2016, and in revised form December 19, 2016.)

Abstract

We enumerate permutations avoiding 1243, 2134, and a third 4-letter pattern τ, a step toward the goal of enumerating avoiders for all triples of 4-letter patterns. The enumeration is already known for all but three patterns τ, which are treated in this paper.

Mathematics Subject Classification(2010). 05A15, 05A05.
Keywords: pattern avoidance.

1 Introduction

This paper is a companion to [2] which enumerates the permutations avoiding 1324, 2143, and a third 4-letter pattern τ, part of a project to enumerate avoiders for all triples of 4-letter patterns. As usual, S_{n} denotes the set of permutations of $[n]=\{1,2, \ldots, n\}$, considered as lists (words) of distinct letters. For a permutation π to avoid a pattern $\tau \in S_{k}$ means that π contains no k-letter subsequence whose standardization (replace smallest letter by 1 , second smallest by 2 , and so on) is τ. For patterns $\tau_{1}, \ldots, \tau_{r}, S_{n}\left(\tau_{1}, \ldots, \tau_{r}\right)$ denotes the set of permutations of $[n]$ that avoid each of $\tau_{1}, \ldots, \tau_{r}$. Here, we count the set $S_{n}(1243,2134, \tau)$ for all 22 permutations $\tau \in S_{4} \backslash\{1243,2134\}$ (for counting the set $S_{n}(T)$ with $T \subseteq S_{4}$, see [1, 3, 4, 5, 6, 7, 8]). The three involutions reverse, complement, invert on permutations generate a dihedral group that divides pattern sets into so-called symmetry classes. All pattern sets in a symmetry class have the same counting sequence for their avoiders. The pattern sets with a given counting sequence form a Wilf class, by definition. We say a Wilf class is big if it contains more than one symmetry class. All 242 big Wilf classes of triples of 4-letter patterns are enumerated in [6]. Some small Wilf classes have been enumerated [2].

Table 1 below lists the generating function $F_{1243,2134, \tau}(x)$ to count $\{1243,2134, \tau\}$-avoiders for each of the 22 permutations τ. The 22 triples $\{1243,2134, \tau\}$ lie in precisely 11 Wilf classes, of which 3 are
big, hence covered by [6], 5 are small but can be counted by the INSENC algorithm (INSENC refers to regular insertion encodings, see [9]), and 3 are small and not treatable by the INSENC algorithm. These 3 are the triples with $\tau=3412, \tau=2341$ and $\tau=1423$, which are treated in turn in Section 2 Our method is to consider the left-right maxima of an avoider when $\tau=3412$ and to focus on the initial letters in the other two cases. We use the usual left-right maxima decomposition of a nonempty permutation π : $\pi=i_{1} \pi^{(1)} i_{2} \pi^{(2)} \cdots i_{m} \pi^{(m)}$ where i_{1}, \ldots, i_{m} are letters, $\pi^{(1)}, \ldots, \pi^{(m)}$ are words, $i_{1}<i_{2}<\cdots<i_{m}$ and $i_{j}>\max \left(\pi^{(j)}\right)$ for $1 \leq j \leq m$. Then $i_{1}, i_{2}, \ldots, i_{m}$ are the left-right maxima of π.

Throughout, $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ denotes the generating function for the Catalan numbers $C_{n}:=$ $\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$. The identity $x C(x)^{2}=C(x)-1$ is used to simplify results.

τ	$F_{1243,2134, \tau}(x)$	Reference	Wilf class
4321	$\frac{-9 x^{7}+24 x^{6}+23 x^{5}+8 x^{4}+2 x^{3}+2 x^{2}-2 x+1}{(1-x)^{3}}$	INSENC	7
3421, 4312	$\frac{-3 x^{7}-5 x^{6}+3 x^{5}+10 x^{4}-11 x^{3}+11 x^{2}-5 x+1}{(1-x)^{6}}$	INSENC	9
4231	$\frac{4 x^{9}-11 x^{8}+10 x^{7}+2 x^{6}-7 x^{5}+21 x^{4}-22 x^{3}+16 x^{2}-6 x+1}{(1-x)^{7}}$	INSENC	14
3412	$\frac{1-8 x+28 x^{2}-54 x^{3}+65 x^{4}-49 x^{5}+18 x^{6}-7 x^{7}+2 x^{8}}{(1-x)^{7}(1-2 x)}$	Theorem 2.4	15
2431, 3241, 4132, 4213	$\frac{x^{10}-4 x^{9}-6 x^{8}+68 x^{7}-186 x^{6}+291 x^{5}-283 x^{4}+170 x^{3}-61 x^{2}+12 x-1}{(2 x-1)^{2}\left(x^{2}-3 x+1\right)^{2}(x-1)^{3}}$	INSENC	53
1432, 3214	$\frac{1-4 x+4 x^{2}-3 x^{3}+x^{4}}{\left(1-x+x^{2}\right)\left(1-4 x+2 x^{2}\right)}$	[6]	112
2341, 4123	$\frac{(1-x)\left(1-2 x+2 x^{2}\right)\left(1-2 x+x^{3}+x^{5}\right) C(x)-x\left(1-2 x+x^{3}+x^{4}-2 x^{5}+2 x^{6}\right)}{(1-x)^{3}(1-2 x)\left(1-x-x^{2}\right)}$	Theorem 2.11	134
2413, 3142	$\frac{\left(1-3 x+x^{2}\right)\left(1-2 x-x^{2}\right)}{(1-x)\left(1-5 x+5 x^{2}+2 x^{3}-x^{4}\right)}$	INSENC	138
1342, 1423, 2314, 3124	$\frac{1-x(1-x) C(x)}{(1-x)(2-C(x))+x^{2}}$	Theorem 2.15	207
2143	$\frac{1-4 x+2 x^{2}}{(1-x)\left(1-4 x+x^{2}\right)}$	[6]	215
1234, 1324	$\frac{2(1-4 x)}{2-9 x+4 x^{2}-x \sqrt{1-4 x}}$	[6]	233

Table 1: Triples of 4-letter patterns containing 1243,2134, divided into Wilf classes.

2 Proofs

2.1 Case 15: $T=\{1243,2134,3412\}$.

We count T-avoiders by number of left-right maxima. Let $G_{m}(x)$ denote the generating function for T-avoiders with exactly m left-right maxima. Clearly, $G_{0}(x)=1$ and $G_{1}(x)=x F_{T}(x)$.

Lemma 2.1 For $m \geq 4, G_{m}(x)=\frac{x^{m}(1+x)}{(1-x)^{3}}$.
Proof. Suppose $\pi=i_{1} \pi^{(1)} \cdots i_{m} \pi^{(m)} \in S_{n}(T)$ with $m \geq 4$ left-right maxima. Since π avoids T, we have that $\pi^{(s)}=\emptyset$ for all $s=1,2, \ldots, m-2$ and $\pi^{(m-1)}, \pi^{(m)}>i_{2}$. Moreover, $\pi^{(m-1)} \pi^{(m)}$ is decreasing. Thus, by considering whether $\pi^{(m)}$ has a letter between i_{1} and i_{2} or not, we obtain that $G_{m}(x)=\frac{x^{m}}{(1-x)^{2}}\left(1+\frac{2 x}{1-x}\right)$.

Lemma 2.2 We have $G_{3}(x)=\frac{x^{3}\left(1-x+x^{2}+x^{3}\right)}{(1-x)^{5}}$.
Proof. Suppose $\pi=i_{1} \pi^{(1)} i_{2} \pi^{(2)} i_{3} \pi^{(3)} \in S_{n}(T)$ with exactly 3 left-right maxima. Since π avoids T, we have that $\pi^{(1)}=\emptyset$ and $\pi^{(2)}>i_{2}$. We consider four cases:

- $\pi^{(2)}=\emptyset$ and $\pi^{(3)}$ has no letter between i_{1} and i_{2} : Since π avoids 3412, we can express π as $\pi=i_{1} i_{2} \pi^{(2)} i_{3}\left(i_{1}-1\right) \cdots 1$ where $\pi^{(2)}$ avoids $\{132,213,3412\}$. By a simple decomposition, we see that $K(x)=F_{\{132,213,3412\}}(x)=\frac{1}{1-x}+\frac{x^{2}}{(1-x)^{3}}$. Thus, we have a contribution of $\frac{x^{3}}{1-x} K(x)$.
- $\pi^{(2)}=\emptyset$ and $\pi^{(3)}$ has a letter between i_{1} and i_{2} : Again, in this subcase, π can be expressed as $\pi=i_{1} i_{2} \pi^{(2)} i_{3} i^{\prime}\left(i^{\prime}-1\right) \cdots\left(i_{1}+1\right)\left(i_{1}-1\right) \cdots 21$ where $i_{2}>\pi^{(2)}>i^{\prime}$ and $\pi^{(2)}$ avoids $\{132,213,3412\}$. Thus, we have a contribution of $\frac{x^{4}}{(1-x)^{2}} K(x)$.
- $\pi^{(2)} \neq \emptyset$ and $\pi^{(3)}$ has no letter between i_{1} and i_{2} : Similarly, in this subcase, π can be written as $\pi=i_{1} i_{2} \pi^{(2)}\left(i_{1}-1\right) \cdots\left(i^{\prime}+1\right) i^{\prime} i_{3}\left(i^{\prime}-1\right) \cdots 21$ where $\pi^{(2)}$ avoids $\{132,213,3412\}$. Thus, we have a contribution of $\frac{x^{4}}{(1-x)^{2}} K(x)$.
- $\pi^{(2)} \neq \emptyset$ and $\pi^{(3)}$ has a letter between i_{1} and i_{2} : Since π avoids 3412 , we can write π as $i_{1} i_{2}\left(i_{2}-1\right) \cdots i_{2}^{\prime}\left(i_{1}-1\right)\left(i_{1}-2\right) \cdots i_{1}^{\prime} i_{3}\left(i_{2}^{\prime}-1\right) \cdots\left(i_{1}+1\right)\left(i_{1}^{\prime}-1\right) \cdots 21$. Thus, we have a contribution of $\frac{x^{5}}{(1-x)^{4}}$.

Hence, $G_{3}(x)=\frac{x^{3}}{1-x} K(x)+\frac{2 x^{4}}{(1-x)^{2}} K(x)+\frac{x^{5}}{(1-x)^{4}}$, which simplifies to the stated expression.

Lemma 2.3 We have

$$
G_{2}(x)=\frac{x^{2}\left(1-5 x+13 x^{2}-16 x^{3}+8 x^{4}-7 x^{5}+2 x^{6}\right)}{(1-x)^{6}(1-2 x)}
$$

Proof. Let us write $G_{2}(x)=H(x)+J(x)+P(x)$, where $H(x)$ (respectively, $J(x)$ and $P(x)$) is the generating function for the number of T-avoiders π with exactly 2 left-right maxima of form $\pi=(n-1) \pi^{\prime} n \pi^{\prime \prime}$ (respectively, $\pi=i n \pi^{\prime}$ with $i \leq n-2$, and $\pi=i \pi^{\prime} n \pi^{\prime \prime}$ with $i \leq n-2$ and π^{\prime} is not empty).

First, we find $H(x)$. Let $\pi=(n-1) \pi^{\prime} n \pi^{\prime \prime} \in S_{n}(T)$ with exactly 2 left-right maxima and suppose $\pi^{\prime} n$ has exactly $d \geq 1$ left-right maxima. Clearly, for $d=1$, we have a contribution of $\frac{x^{2}}{1-x}$. For $d=2$, we see that π can be written as $\pi=(n-1) j_{1} \beta^{\prime} n(n-2)(n-3) \cdots\left(j_{1}+1\right) \beta^{\prime \prime}$, where β^{\prime} is decreasing. Thus, by considering the two cases either $j_{1}=n-2$ or $j_{1}<n-2$, we have a contribution
of $x H(x)+\frac{x^{4}}{(1-x)(1-2 x)}$. For $d \geq 3$, by Lemma 2.1, we obtain a contribution of $x G_{d}(x)=\frac{x^{d+1}(1+x)}{(1-x)^{3}}$. Hence,

$$
H(x)=x H(x)+\frac{x^{2}}{1-x}+\frac{x^{4}}{(1-x)(1-2 x)}+\sum_{d \geq 3} \frac{x^{d+1}(1+x)}{(1-x)^{3}}
$$

which implies

$$
H(x)=\frac{x^{2}\left(1-6 x+16 x^{2}-22 x^{3}+16 x^{4}-8 x^{5}+x^{6}\right)}{(1-x)^{6}(1-2 x)}
$$

For permutations in $S_{n}(T)$ with n in position 2 , we see by considering left-right maxima that their generating function is given by $H(x)$, while $\left|\left\{\pi \in S_{n}(T): \pi_{1}=n-1, \pi_{2}=n\right\}\right|=1$ for $n \geq 2$. Thus, $J(x)=H(x)-\frac{x^{2}}{1-x}$.

Next, write $P(x)=\sum_{d \geq 1} P_{d}(x)$, where $P_{d}(x)$ is the generating function for the number of T avoiders π with exactly 2 left-right maxima and first letter $n-d-1$. Then $\pi=(n-d-1) j_{1} j_{2} \cdots j_{e} n \pi^{\prime \prime}$ with $j_{1}>j_{2}>\cdots j_{e}$ and $e \geq 1$ (decreasing because π avoids 1243 and $d \geq 1$). Write $\pi^{\prime \prime}$ as $\alpha^{(1)}(n-$ 1) $\cdots \alpha^{(d)}(n-d) \alpha^{(d+1)}$. Since π avoids 3412 , we see that $\alpha^{(1)} \alpha^{(2)} \cdots \alpha^{(d)}$ is decreasing.

- Case $d \geq 2$. Since π avoids 2134, we see that $\alpha^{(1)}<j_{e}$. By considering whether $\alpha^{(1)}$ is empty or not, we have $P_{d}(x)=x P_{d-1}(x)+\frac{x^{d+4}}{(1-x)^{d+2}}$.
- Case $d=1$. First, suppose that $\alpha^{(1)}$ is empty. In this case $\alpha^{(2)}$ is decreasing, so from the structure of π we see that the contribution is given by $x^{e+3} /(1-x)^{e+1}$. Otherwise, $\alpha^{(1)}$ is not empty. So from the fact that $\alpha^{(1)} \alpha^{(2)}$ is decreasing we see that there two options: either $\alpha^{(1)}=\gamma \gamma^{\prime}$ with $\gamma>j_{e}>\gamma^{\prime}>\alpha^{(2)}$ and $\gamma \gamma^{\prime} \alpha^{(2)}$ is decreasing, or $\alpha^{(2)}=\gamma \gamma^{\prime}$ with $\alpha^{(1)}>\gamma>j_{e}>\gamma^{\prime}$ and $\alpha^{(1)} \gamma \gamma^{\prime}$ is decreasing. Each option gives a contribution of $x^{e+4} /(1-x)^{3}$. Thus,

$$
P_{1}(x)=\frac{x^{e+3}}{(1-x)^{e+1}}+2 \frac{x^{e+4}}{(1-x)^{3}}
$$

and, summing over $e \geq 1$, we find that $P_{1}(x)=\frac{x^{4}\left(1-x-x^{2}-x^{3}\right)}{(1-x)^{4}(1-2 x)}$.
Therefore, $P(x)-P_{1}(x)=x P(x)+\frac{x^{6}}{(1-x)^{3}(1-2 x)}$, which gives $P(x)=\frac{x^{4}\left(1-x-2 x^{3}\right)}{(1-x)^{5}(1-2 x)}$. Hence, by adding $H(x), J(x)$ and $P(x)$, we complete the proof.

Since $G_{0}(x)=1$ and $G_{1}(x)=x F_{T}(x)$ and $F_{T}(x)=\sum_{d \geq 0} G_{d}(x)$, the preceding three lemmas imply
Theorem 2.4 Let $T=\{1243,2134,3412\}$. Then

$$
F_{T}(x)=\frac{1-8 x+28 x^{2}-54 x^{3}+65 x^{4}-49 x^{5}+18 x^{6}-7 x^{7}+2 x^{8}}{(1-x)^{7}(1-2 x)}
$$

2.2 Case 134: $T=\{3421,3214,4312\}$.

Here, T is in the symmetry class of $\{1243,2134,2341\}$. Let $a\left(n ; i_{1}, i_{2}, \ldots, i_{m}\right)$ be the number of permutations in $\pi=i_{1} i_{2} \cdots i_{m} \pi^{\prime} \in S_{n}(T)$ and $a_{n}=\left|S_{n}(T)\right|$. Thus $\left|S_{n}(T)\right|=\sum_{i=1}^{n} a(n ; i)$.

Lemma 2.5 We have

$$
L(x):=\sum_{n \geq 3} a(n ; n, 2) x^{n}=x\left(\frac{1-2 x+2 x^{3}+x^{4}}{(1-2 x)\left(1-x-x^{2}\right)}-1\right) .
$$

Proof. First we find the generating function $A(x)=F_{\{312,3214,3421\}}(x)$. By symmetry, $A(x)=$ $F_{\{132,2341,2134\}}(x)$. For $\pi \in S_{n}(132,2341,2134)$, by considering the position of n, we obtain

$$
A(x)=1+x F_{\{132,213,2341\}}(x)+\frac{x}{1-x}(A(x)-1)
$$

and

$$
F_{\{132,213,2341\}}(x)=1+\frac{x}{1-x}+\left(x+x^{2}\right)\left(F_{\{132,213,2341\}}(x)-1\right) .
$$

Thus,

$$
F_{\{312,3214,3421\}}(x)=\frac{1-2 x+2 x^{3}+x^{4}}{(1-2 x)\left(1-x-x^{2}\right)}, \quad F_{\{132,213,2341\}}(x)=\frac{1-x+x^{3}}{(1-x)\left(1-x-x^{2}\right)}
$$

Note that $\pi=n 2 \pi^{\prime} \in S_{n}$ avoids T if and only if π^{\prime} avoids $\{312,3214,3421\}$. Thus, $L(x)=$ $x(A(x)-1)$, which ends the proof.

Lemma 2.6 We have

$$
B(x, v):=\sum_{n \geq 4} \sum_{i=3}^{n-1} a(n ; i, n) v^{i} x^{n}=\frac{x^{3} v^{3}}{1-x v}\left(\frac{1-2 x+2 x^{3}+x^{4}}{(1-2 x)\left(1-x-x^{2}\right)}-1\right)
$$

Proof. Let $\pi=i n \pi^{\prime} \in S_{n}(T)$. Since π avoids 3421 , we see that π contains the subsequence $\operatorname{in} 12 \cdots(i-$ 1). Since π avoids 4312, there exists $\pi^{\prime \prime}$ such that $\pi=i n 12 \cdots(i-2) \pi^{\prime \prime} \in S_{n}(T)$. Thus,

$$
a(n ; i, n)=\left|S_{n-i}(312,3421,3214)\right|=\left|S_{n-i}(132,2341,2134)\right|,
$$

which leads to $B(x, v)=\frac{x^{3} v^{3}}{1-x v} \sum_{n \geq 1}\left|S_{n}(132,2341,2134)\right| x^{n}$. Hence, by Lemma 2.5

$$
B(x, v)=\frac{x^{3} v^{3}}{1-x v}\left(\frac{1-2 x+2 x^{3}+x^{4}}{(1-2 x)\left(1-x-x^{2}\right)}-1\right)
$$

as required.
Lemma 2.7 We have

$$
\begin{aligned}
K(x, v) & :=\sum_{n \geq 3} \sum_{i=3}^{n} a(n ; i, 2) v^{i} x^{n}=\frac{x^{2} v^{3}}{1-x v} L(x)+\frac{x^{3} v^{3}}{1-x v} L(x v) \\
& +\frac{x^{3} v^{3}\left(x^{3} v^{3}(1-x)(1-x v)+x^{2} v^{2}(1-3 x)-x v(2-3 x)+1-x\right)}{(1-x)(1-x v)^{2}(1-2 x v)}
\end{aligned}
$$

where $L(x)$ is given in Lemma 2.5.

Proof. Let $K^{\prime}(x, v)=\sum_{n \geq 5} \sum_{i=3}^{n} a(n ; i, 2) v^{i} x^{n}$. Let $\pi=i 2 \pi^{\prime} \in S_{n}(T)$. Since π avoids 3214, we can write π as $\pi=i 2 \alpha 1 \beta$ such that $2<\beta<i$. So $a(n ; 3,2)=\left|S_{n-3}(4312,231,3214)\right|=$ $\left|S_{n-3}(132,2134,2341)\right|$; for $4 \leq i \leq n-1$, we have that $a(n ; i, 2)=a(n-1, i-1,2)+1$, and $a(n ; n, 2)$ is given by Lemma 2.5. So

$$
\sum_{n \geq 5} \sum_{i=4}^{n-1} a(n ; i, 2) v^{i} x^{n}=v \sum_{n \geq 5} \sum_{i=4}^{n-1} a(n-1 ; i-1,2) v^{i-1} x^{n}+\sum_{n \geq 5} \sum_{i=4}^{n-1} v^{i} x^{n},
$$

which implies

$$
\begin{aligned}
K^{\prime}(x, v)- & \sum_{n \geq 5} a(n ; n, 2) v^{n} x^{n}-v^{3} \sum_{n \geq 5} a(n ; 3,2) x^{n} \\
& =v x \sum_{n \geq 4} \sum_{i=3}^{n-1} a(n ; i, 2) v^{i} x^{n}+\frac{v^{4} x^{4}}{(1-v)(1-x)}-\frac{v^{4} x^{4}}{(1-v)(1-v x)} .
\end{aligned}
$$

By Lemma 2.5, we have $\sum_{n \geq 5} a(n ; 3,2) v^{3} x^{n}=x^{2} v^{3}\left(L(x)-x^{2}\right)$ and

$$
\sum_{n \geq 5} a(n ; n ; 2) v^{n} x^{n}=x v\left(L(x v)-x^{2} v^{2}-2 x^{3} v^{3}\right),
$$

so

$$
\begin{aligned}
K^{\prime}(x, v) & =x v\left(L(x v)-x^{2} v^{2}-2 x^{3} v^{3}\right)+x^{2} v^{3}\left(L(x)-x^{2}\right) \\
& +v x\left(K^{\prime}(x, v)+v^{3} x^{4}-x v\left(L(x v)-x^{2} v^{2}-2 x^{3} v^{3}\right)+\frac{v^{4} x^{5}}{(1-x)(1-x v)}\right.
\end{aligned}
$$

We have $K(x, v)=K^{\prime}(x, v)+x^{3} v^{3}+x^{4}\left(v^{3}+2 v^{4}\right)$, and the result follows.
Lemma 2.8 We have $\sum_{n \geq 2} a(n ; n) x^{n}=L(x)$, where $L(x)$ is given in Lemma 2.5.
Proof. Since $n \pi^{\prime} \in S_{n}$ avoids T if and only if π^{\prime} avoids $312,3421,3214$, the result follows from Lemma 2.5

Lemma 2.9 Let $3 \leq i \leq n-1$. Then

$$
a(n ; i)=a(n ; i, 1)+a(n ; i, 2)+a(n ; i, n)+\sum_{j=i+1}^{n} a(n ; i, j) .
$$

Proof. Let $\pi=i j \pi^{\prime} \in S_{n}(T)$ with $3 \leq j<i \leq n-1$. Since π avoids 4312, we see that π contains the subsequence $i j 21$. Since π avoids 3214 , we see that π contains the subsequence $i j n 21$, and $j n 21$ is order isomorphic to 3421 . Thus $a(n ; i, j)=0$ for all j with $3 \leq j<i \leq n-1$, and the lemma follows.

Lemma 2.10 Let $3 \leq i<j \leq n-1$. Then

$$
a(n ; i, j)=a(n-1 ; i-1, j-1)+a(n-1 ; j-1)-a(n-1 ; j-1,1)-a(n-1 ; j-1,2)
$$

Proof. Let $\pi=i j \pi^{\prime} \in S_{n}(T)$ with $3 \leq i<j \leq n-1$. By considering the third letter in π, we see that $a(n ; i, j)=a(n-1 ; i-1, j-1)+a(n-1 ; j-1, j)+a(n-1 ; j-1, j+1)+\cdots+a(n-1 ; j-1, n-1)$.
Note that

$$
a(n-1 ; j-1)=\sum_{\ell=1}^{n-1} a(n-1 ; j-1, \ell)=a(n-1 ; j-1,1)+a(n-1 ; j-1,2)+\sum_{\ell=j}^{n-1} a(n-1 ; j-1, \ell) .
$$

Therefore,

$$
a(n ; i, j)=a(n-1 ; i-1, j-1)+a(n-1 ; j-1)-a(n-1 ; j-1,1)-a(n-1 ; j-1,2),
$$

as claimed.
Theorem 2.11 Let $T=\{3421,3214,4312\}$. Then

$$
F_{T}(x)=\frac{(1-x)\left(1-2 x+2 x^{2}\right)\left(1-2 x+x^{3}+x^{5}\right) C(x)-x\left(1-2 x+x^{3}+x^{4}-2 x^{5}+2 x^{6}\right)}{(1-x)^{3}(1-2 x)\left(1-x-x^{2}\right)},
$$

Proof. Note that $a(n ; k, 1)=a(n-1 ; k-1)$ for $2 \leq k \leq n$ (a permutation $k 1 \pi^{\prime} \in S_{n}$ avoids T if and only if $k \pi^{\prime}$ avoids T). This fact will be used repeatedly. Let $3 \leq i \leq n-1$. Then

$$
\begin{aligned}
& a(n ; i)-(a(n ; i, 1)+a(n ; i, 2)+a(n ; i, n))=\sum_{j=i+1}^{n-1} a(n ; i, j) \\
= & \sum_{j=i+1}^{n-1}(a(n-1 ; i-1, j-1)+a(n-1 ; j-1)-a(n-1 ; j-1,1)-a(n-1 ; j-1,2)) \\
= & \sum_{j=i}^{n-2} a(n-1 ; i-1, j)+\sum_{j=i}^{n-2} a(n-1 ; j)-\sum_{j=i-1}^{n-3} a(n-2 ; j)-\sum_{j=i}^{n-2} a(n-1 ; j, 2) \\
= & a(n-1 ; i-1)-(a(n-1 ; i-1,1)+a(n-1 ; i-1,2)+a(n-1 ; i-1, n-1)) \\
& +\sum_{j=i}^{n-2} a(n-1 ; j)-\sum_{j=i-1}^{n-3} a(n-2 ; j)-\sum_{j=i}^{n-2} a(n-1 ; j, 2),
\end{aligned}
$$

the first equality by Lemma 2.9 , the second equality by Lemma 2.10 , the third equality by reindexing and the fact that $a(n ; k, 1)=a(n-1 ; k-1)$, and the last equality by Lemma 2.9 again.

By Lemma 2.6, we see that $a(n ; i, n)=a(n-1 ; i-1, n-1)$ for all $3 \leq i \leq n-1$. The preceding identities thus simplify to

$$
\begin{aligned}
a(n ; i) & =a(n-1 ; i-1)+\sum_{j=i-1}^{n-2} a(n-1 ; j)-\sum_{j=i-2}^{n-3} a(n-2 ; j) \\
& +a(n ; i, 2)-a(n-1 ; i-1,2)-\sum_{j=i}^{n-2} a(n-1 ; j, 2)
\end{aligned}
$$

Define $A_{n}(v)=\sum_{i=1}^{n} a(n ; i) v^{i-1}$ Thus $A_{n}(1)=\left|S_{n}(T)\right|$. Define $B_{n}(v)=\sum_{i=3}^{n} a(n ; i, 2) v^{i}$ and $\ell_{n}=$ $a(n ; n)$. Note that $a(n ; 1)=a(n ; 2)=a(n-1)$, where $a(n)=\left|S_{n}(T)\right|$.

Multiplying the recurrence for $a(n ; i)$ by v^{i-1} and summing over $i=3,4, \ldots, n-1$, we obtain

$$
\begin{aligned}
A_{n}(v) & -(1+v) A_{n-1}(1)-v^{n-1} a(n ; n)=v\left(A_{n-1}(v)-A_{n-2}(1)-a(n-1 ; n-1) v^{n-2}\right) \\
& +\frac{1}{1-v}\left(v^{2} A_{n-1}(1)-v^{2} a(n-1 ; n-1)-v^{2} A_{n-1}(v)+a(n-1, n-1) v^{n}\right) \\
& -\frac{1}{1-v}\left(v^{2} A_{n-2}(1)-a(n-2 ; n-2) v^{2}-v^{3} A_{n-2}(v)+a(n-2 ; n-2) v^{n}\right) \\
& +\frac{1}{v}\left(B_{n}(v)-v B_{n-1}(v)-a(n ; n, 2) v^{n}+a(n-1 ; n-1,2) v^{n}\right) \\
& -\frac{1}{1-v}\left(v^{2} B_{n-1}(1)-a(n-1 ; n-1) v^{2}-v B_{n-1}(v)+a(n-1 ; n-1) v^{n-1}\right)
\end{aligned}
$$

with $A_{0}(v)=A_{1}(v)=1, A_{2}(v)=1+v$ and $A_{3}(v)=2+2 v+2 v^{2}$. Define $A(x, v)=\sum_{n \geq 0} A_{n}(v) x^{n}$ and $K(x, v)=\sum_{n \geq 3} B_{n}(v) x^{n}$. Thus $F_{T}(x)=A(x, 1)$. By Lemma 2.8, $\sum_{n \geq 2} a(n ; n) x^{n}=L(x)$. By Lemma 2.5, $\sum_{n \geq 3} a(n ; n, 2) x^{n}=x L(x)$. By Lemma 2.7, $\sum_{n \geq 3} B_{n}(v) x^{n}=K(x, v)$.

Multiplying the recurrence for $A_{n}(v)$ by x^{n} and summing over $n \geq 4$, we obtain

$$
\begin{aligned}
& A(x, v)-p(x, v)-\left(2+2 v+2 v^{2}\right) x^{3} \\
& \quad=x(1+v)(A(x, 1)-p(x, 1))+\frac{1}{v}\left(L(x v)-x^{2} v^{2}-2 x^{3} v^{3}\right) \\
& \quad+x v\left(A(x, v)-p(x, v)-x(A(x, 1)-1-x)-\left(L(x v)-x^{2} v^{2}\right) / v\right) \\
& \quad+\frac{v^{2} x}{1-v}\left(A(x, 1)-p(x, 1)-L(x)+x^{2}-A(x, v)+p(x, v)+\left(L(x v)-x^{2} v^{2}\right) / v\right) \\
& \quad-\frac{x^{2} v^{2}}{1-v}(A(x, 1)-1-x-L(x)-v(A(x, v)-1-x)+L(x v))+\frac{1-x v}{v}(K(x, v)-x v L(x v)) \\
& \quad-\frac{x}{1-v}\left(v^{2} K(x, 1)-K(x, v)-x v^{2} L(x)+x v L(x v)\right)
\end{aligned}
$$

where $p(x, v)=A_{0}(v)+A_{1}(v) x+A_{2}(v) x^{2}=1+x+(1+v) x^{2}$. Hence, $A(x, v)$ satisfies

$$
\begin{aligned}
& \frac{(1-x v)\left(1-v+x v^{2}\right)}{1-v} A(x, v) \\
& =-\frac{v^{2} x(1-2 x)}{1-v} L(x)+\frac{(1-2 x v)\left(1-v+x v^{2}\right)}{v(1-v)} L(x v)+\frac{v^{2} x}{1-v} K(x, 1)+\frac{1-v+v^{2} x}{v(1-v)} K(x, v) \\
& +\frac{x(1-x v)}{1-v} A(x, 1)+(1-x v)\left(1-x v-v x^{2}\right) .
\end{aligned}
$$

This equation for $A(x, v)$ can be solved by the kernel method, taking $v=C(x)$ and using the expressions for $L(x)$ and $K(x, v)$ from Lemmas 2.5 and 2.7. After simplification $A(x, 1)$, which coincides with $F_{T}(x)$, agrees with the stated expression.

2.3 Case 207: $T=\{1243,2134,1423\}$.

Let $a\left(n ; i_{1}, i_{2}, \ldots, i_{m}\right)$ be the number of permutations in $\pi=i_{1} i_{2} \cdots i_{m} \pi^{\prime} \in S_{n}(T)$ and $a_{n}=\left|S_{n}(T)\right|$. Thus $\left|S_{n}(T)\right|=\sum_{i=1}^{n} a(n ; i)$.

Lemma 2.12 We have

$$
a(n ; i, j)= \begin{cases}a(n-1 ; i, j)+\sum_{k=1}^{j-1} a(n-1 ; j, k), & 1 \leq j<i \leq n-2, \\ a(n-1, i, j), & 1 \leq i<j \leq n-2, \\ \sum_{k=1}^{i} a(n-1 ; k, n-1), & 1 \leq i \leq j-2=n-2, \\ a(n-1 ; i, n-2)+\sum_{k=1}^{i} a(n-1 ; k, n-1), & 1 \leq i \leq j-2=n-3,\end{cases}
$$

with $a(n ; n)=a(n ; n-1)=a_{n-1}, a(n ; i, 1)=1$ for all $i=2,3, \ldots, n-2$, and $a(n ; n-2, n-1)=$ $a(n ; n-2, n)=a_{n-2}$.

Proof. It is not hard to check the initial conditions. Let $1 \leq j<i \leq n-2$, then

$$
\begin{aligned}
a(n ; i, j) & =a(n ; i, j, n)+\sum_{k=1}^{j-1} a(n ; i, j, k) \\
& =a(n-1 ; i, j)+\sum_{k=1}^{j-1} a(n-1 ; j, k)
\end{aligned}
$$

with $a(n ; i, 1)=1$ (by definitions). For $1 \leq i<j \leq n-2$, we have $a(n ; i, j)=a(n ; i, j, j+1)=$ $a(n-1, i, j)$.

For all $1 \leq i \leq j-2=n-2$, we have

$$
\begin{aligned}
a(n ; i, n) & =a(n ; i, n, 1)+\cdots+a(n ; i, n, i-1)+a(n ; i, n, n-1) \\
& =a(n-1 ; 1, n-1)+\cdots+a(n-1, i-1, n-1)+a(n-1 ; i, n-1) .
\end{aligned}
$$

Similarly, for all $1 \leq i \leq j-2=n-3$,

$$
a(n ; i, n-1)=a(n-1 ; i, n-2)+a(n-1 ; i, n-1)+a(n-1 ; i-1, n-1)+\cdots+a(n-1 ; 1, n-1),
$$

which completes the proof.
Corollary 2.13 Define $b(n ; i)=a(n ; i, n)$ and $c(n ; i)=a(n ; i, n-1)$. Then $b(n ; i)=\sum_{j=1}^{i} b(n-1 ; j)$ and $c(n ; i)=c(n-1 ; i)+b(n ; i)$ with $b(n ; n)=c(n ; n-1)=0, b(n ; n-1)=b(n ; n-2)=a_{n-2}$ and $c(n ; n)=c(n ; n-2)=a_{n-2}$.

Define $B(n ; v)=\sum_{i=1}^{n} a(n ; i, n) v^{i-1}$ and $C(n ; v)=\sum_{i=1}^{n} a(n ; i, n-1) v^{i-1}$. By Corollary 2.13, we obtain

$$
\begin{aligned}
& B(n ; v)=a_{n-2} v^{n-2}+a_{n-2} v^{n-3}+\frac{1}{1-v}\left(B(n-1 ; v)-v^{n-3} B(n-1 ; 1)\right), \\
& C(n ; v)=C(n-1 ; v)+a_{n-2}\left(v^{n-1}-v^{n-2}\right)-a_{n-3} v^{n-2}+B(n ; v)
\end{aligned}
$$

with $B(1 ; v)=C(1 ; v)=0, B(2 ; v)=1$ and $C(2 ; v)=v$.
Define $B(x, v)=\sum_{n \geq 1} B(n ; v) x^{n}$ and $C(x, v)=\sum_{n \geq 1} C(n ; v) x^{n}$. Note that $F_{T}(x)=\sum_{n \geq 0} a_{n} x^{n}$. So the above recurrences can be formulated as

$$
\begin{aligned}
\left(1-\frac{x}{v(1-v)}\right) B(x / v, v) & =\frac{x^{2}}{v^{2}} F_{T}(x)+\frac{x^{2}}{v^{3}}\left(F_{T}(x)-1\right)-\frac{x}{v^{3}(1-v)} B(x ; 1) \\
C(x ; v) & =x C(x ; v)+x^{2}(v-1) F_{T}(x v)-\frac{x^{3}}{v} F_{T}(x v)+B(x ; v) .
\end{aligned}
$$

Using the kernel method with $v=\frac{1}{C(x)}$, we obtain

$$
\begin{equation*}
B(x ; 1)=x^{2} F_{T}(x)+x^{2} C(x)\left(F_{T}(x)-1\right) \tag{1}
\end{equation*}
$$

Then, by substituting $v=1$ in the second equation, we obtain

$$
\begin{equation*}
C(x ; 1)=x^{2} F_{T}(x)+\frac{x^{2}}{1-x} C(x)\left(F_{T}(x)-1\right) \tag{2}
\end{equation*}
$$

Lemma 2.14 For all $1 \leq j<i \leq n-2, a(n ; i, j)=b(n ; j)$.
Proof. Clearly, $b(n ; 1)=b(n-1 ; 1)$ for all $n \geq 3$. But $b(2 ; 1)=1$, so $b(n ; 1)=1=a(n ; i, 1)$ for all $i=2,3, \ldots, n-2$. Assume by induction that $a(n-1 ; i, j)=b(n-1 ; j)$ for all $n-3 \geq i>j \geq 1$. Then by Lemma 2.12 ,

$$
a(n ; i, j)=a(n-1 ; i, j)+\sum_{k=1}^{j-1} a(n-1 ; j, k)=b(n-1 ; j)+\sum_{k-1}^{j-1} b(n-1 ; k)=b(n ; j)
$$

Now, we are ready to find an explicit formula for $F_{T}(x)$. By Lemmas 2.12 and 2.14 , we have

$$
\begin{aligned}
a(n, i) & =b(n ; 1)+\cdots+b(n ; i)+c(n ; i)+a(n-1 ; i)-b(n-1 ; 1)-\cdots-b(n-1 ; i) \\
& =a(n-1 ; i)+c(n+1 ; i)-b(n, i)
\end{aligned}
$$

with $a(n ; n-2)=b(n ; 1)+\cdots+b(n ; n-2)+c(n ; n-2)=c(n+1 ; n-2)$ and $a(n ; n)=a(n ; n-1)=a_{n-1}$. Summing over $i=1,2, \ldots, n-3$, we get that

$$
a_{n}=a_{n-1}+c_{n+1}-b_{n}
$$

with $a_{0}=a_{1}=1$. Hence,

$$
F_{T}(x)=1-x+x F_{T}(x)+C(x ; 1) / x-B(x ; 1)
$$

Solving for $F_{T}(x)$ and using (1) and (2), we obtain the following result. Recall that $C(x)$ denotes the generating function for the Catalan numbers.

Theorem 2.15 Let $T=\{1243,1423,2134\}$. Then

$$
F_{T}(x)=\frac{1-x(1-x) C(x)}{(1-x)(2-C(x))+x^{2}}
$$

References

[1] D. Callan and T. Mansour, Five subsets of permutations enumerated as weak sorting permutations, Southeast Asian Bull. Math., to appear.
[2] D. Callan and T. Mansour, On permutations avoiding 1324, 2143, and another 4-letter pattern, Pure Math. Appl. (PU.M.A.), this issue.
[3] D. Callan and Mansour, A Wilf class composed of 7 symmetry classes of triples of 4-letter patterns, J. Analysis and Number Theory, 5 (2017) 19-26.
[4] D. Callan, T. Mansour and M. Shattuck, Twelve subsets of permutations enumerated as maximally clustered permutations, Ann. Math. Inform., to appear.
[5] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns II, Discrete Math. Theor. Comput. Sci., 19 (2017) \#6, 44pp.
[6] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns I, Discrete Math. Theor. Comput. Sci., 19 (2017) \#5, 35pp.
[7] T. Mansour and M. Schork, Wilf classification of subsets of four letter patterns, J. Combinatorics and Number Theory, 8 (2016) 1-129.
[8] T. Mansour and M. Schork, Wilf classification of subsets of eight and nine four-letter patterns, J. Combinatorics and Number Theory, 8 (2016) 257-283.
[9] V. Vatter, Finding regular insertion encodings for permutation classes, J. Symbolic Comput., 47 (2012) 259-265.

