
PU. M. A. Vol. 26 (2016), No.1, pp. 1 � 10

On permutations avoiding 1324, 2143, and another 4-letter pattern

David Callan

Department of Statistics

University of Wisconsin

Madison, WI 53706, USA

email: callan@stat.wisc.edu

and

Toufik Mansour

Department of Mathematics

University of Haifa

3498838 Haifa, Israel

email: tmansour@univ.haifa.ac.il

(Received: June 7, 2016, and in revised form September 12, 2016.)
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1 Introduction

Here, we are concerned with counting permutations that avoid three 4-letter patterns in the classical
sense. There are a total of

(
24
3

)
= 2024 triples of 4-letter patterns, which are partitioned into 317

symmetry classes under the usual operations of reversing, complementing and inverting permutations,
and all triples in a symmetry class trivially have the same counting sequence for their avoiders. The
symmetry classes with a given counting sequence form a so-called Wilf class. As shown in [3, 4], the
317 symmetry classes split into 242 Wilf classes, hence 242 counting sequences, and [3, 4] establishes
the counting sequence for all the big Wilf classes (those containing more than one symmetry class)
but, while it determines the small Wilf classes, it leaves open their enumeration.

The aim of this paper is to count the set Sn(1324, 2143, τ) of permutations of [n] = {1, 2, . . . , n}
avoiding 1324, 2143 and τ for each of the 22 patterns τ ∈ S4\{1324, 2143}. As tabulated in Table 1
below, the 22 triples {1324, 2143, τ} lie in precisely 10 Wilf classes, of which 3 are big (see [3, 4]) and
2 are covered by INSENC algorithm (see [7]). (The case numbers in Table 1 are taken from Table
2 in the Appendix to [3], and INSENC refers to regular insertion encodings�the INSENC algorithm
[7]). Thus it remains to treat a convenient triple in each of the other �ve (small) Wilf classes, and
in each case we use the �rst listed τ in Table 1 (by the symmetry). These �ve cases are treated, by
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similar methods, in Section 3. We note in passing that Case 30 is the only one of them for which the
representative triple in Table 2 in [3], namely {1324, 3412, 4231}, does not include both 1324 and 2143;
however, its reversal does.

τ Fτ (x) Reference Case

4321 2x6−6x5+21x4−22x3+16x2−6x+1
(1−x)7 INSENC 24

3421, 4312 1−8x+27x2−48x3+50x4−30x5+6x6

(1−x)5(1−2x)2 Theorem 3.3 29

4231 1−6x+14x2−14x3+8x4−2x6
(1−x)3(1−2x)2 Theorem 3.6 30

3412 1−9x+33x2−62x3+64x4−38x5+10x6

(1−3x+x2)(1−2x)2(1−x)3 Theorem 3.9 35

2341, 4123 1−6x+12x2−8x3+3x4−x5
(1−x)(1−3x+x2)2 [3] 55

2431, 3241, 4132, 4213 (2−10x+16x2−8x3+x4)C(x)−1+4x−5x2+x3
(1−x)2(1−3x+x2) Theorem 3.12 172

1234 1−3x−2x3
x4−2x3+2x2−4x+1

INSENC 181

1342, 1423, 2314, 3124
1 + 1−2x

2(1−x)

(
1√

1−4x − 1
)

[1] 221

2413, 3142

1432, 3214 1−6x+12x2−12x3+6x4−x5−x2(1−x+x2)2C(x)
1−7x+16x2−19x3+11x4−2x5−x6 Theorem 3.15 227

1243, 2134 2(1−4x)
2−9x+4x2−x

√
1−4x [2] 233

Table 1: Triples of 4 letter patterns containing 1324 and 2143, divided into symmetry classes, and the
generating function for their avoiders.

2 Preliminaries

Every nonempty permutation π can be expressed uniquely as π = i1π
(1)i2π

(2) · · · imπ(m) (m ≥ 1)
where i1, i2, . . . , im are the left-right maxima, that is, i1 < i2 < · · · < im and ij > max(π(j)) for
1 ≤ j ≤ m. In each case below, Pm(x) (depending on T ) denotes the generating function for the
number of permutations in Sn(T ) for which π

(1) = π(2) = · · · = π(m−1) = ∅ and im−1 ≤ n− 2, in other
words, for T -avoiders in which the �rst m letters increase up to n and n− 1 occurs after n. Similarly,
Qm(x) denotes the generating function for permutations in Sn(T ) with ij = n+ j −m, 1 ≤ j ≤ m, in
other words, for T -avoiders in which the m largest letters are the left-right maxima.

Given nonempty sets of numbers S and T , we will write S < T to mean max(S) < min(T ) (with
the inequality holding vacuously if S or T is empty). In this context, we will often denote singleton

sets simply by the element in question. Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function

for the Catalan numbers Cn := 1
n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n−1
)
; C(x) is well known to count permutations

avoiding τ , where τ is any one of the six 3-letter patterns. The identity xC(x)2 = C(x)− 1 is used to
simplify results.
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3 Proofs

3.1 Case 29: T = {1324, 2143, 3421}.

The �rst two lemmas �nd Pm and Qm.

Lemma 3.1 For m ≥ 2,

Pm(x) = xm−2P2(x) +
(m− 2)xm+2

(1− x)2(1− 2x)
.

Proof. To treat the case m = 2, we re�ne P2(x) to P2,i(x), which counts permutations inπ′ ∈ Sn(T )
with i 6= n − 1. Clearly, P2,1(x) = x2(F213,3421(x) − 1) = x3(1−3x+3x2)

(1−x)(1−2x)2 [6, Seq. A001519]. For i = 2,

π has the form 2nβ1j1j2 · · · jd with 2 < j1 < j2 < · · · < jd (to avoid 2143) giving contributions of
x3(1− x)/(1− 2x) and x3+d(1− x)2/(1− 2x)2 according as d = 0 (no j's) or not. Hence,

P2,2(x) = x3
1− x
1− 2x

+
∑
d≥1

x3+d
(1− x)2

(1− 2x)2
=
x3(1− x)2

(1− 2x)2
.

For i ≥ 3, similarly to the case m ≥ 3 below, we �nd that

P2,i(x) = xi−2P2,2(x) +
(i− 2)xi+2

(1− x)(1− 2x)
.

Summing contributions, we get

P2(x) = P2,1(x)−
x2

1− x
+

1

1− x
P2,2(x) +

∑
i≥2

(i− 2)xi+2

(1− x)(1− 2x)
,

where the term x2

1−x is subtracted to omit (n− 1)nπ′ ∈ Sn(T ). Substituting the expressions for P2,1(x)
and P2,2(x) completes the proof.

Now suppose m ≥ 3. If i1i2 · · · im−1 form a block of consecutive integers, the contribution is
xm−2P2(x). Otherwise, there is only one gap in the block (to avoid 1324), say ij > ij−1 + 1 with
j ∈ {2, 3, . . . ,m − 1}. So the contribution is (m − 2)xm−3Q(x), where Q(x) counts permutations
π = i1i2nπ

(3) ∈ Sn(T ) with i2 > i1 + 1. A technique similar to �nding the formula for P2(x) leads to

Q(x) = x5

(1−x)2(1−2x) . Hence,

Pm(x) = xm−2P2(x) +
(m− 2)xm+2

(1− x)2(1− 2x)
,

and the result follows. 2

By similar methods, one can �nd Qm.

Lemma 3.2 For m ≥ 2,

Qm(x) = xm−2Q2(x) +
(m− 2)xm+1

(1− x)(1− 2x)
,

where Q2(x) = P2(x) +
x2

1−x .
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Theorem 3.3 Let T = {1324, 2143, 3421}. Then

FT (x) =
1− 8x+ 27x2 − 48x3 + 50x4 − 30x5 + 6x6

(1− x)5(1− 2x)2
.

Proof. Let Gm(x) be the generating function for T -avoiders withm left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose m ≥ 2 and let π = i1π

(1) · · · imπ(m) ∈ Sn(T ) with exactly m
left-right maxima. Since π avoids 1324, we have π(s) > i1 for all s = 2, 3, . . . ,m − 1. If π(m) < i1,
then we have a contribution of Qm(x) by Lemma 3.2. If im−1 ≤ n − 2, then we have π(s) = ∅ (π
avoids 2143) for all s = 1, 2, . . . ,m− 1, so we have a contribution of Pm(x) by Lemma 3.1. Thus, we
can assume that there exists j such that π(m) contains ij + 1. Since π avoids T , we see that π(s) = ∅
for all s = 1, 2, . . . ,m − 1, and π(m) = α12 · · · (i1 − 1)(ij + 1)(ij + 2) · · · (ij+1 − 1). Thus, we have a

contribution of xm+1

(1−x)2 . Hence,

Gm(x) = Pm(x) +Qm(x) +
(m− 2)xm+1

(1− x)2
.

By summing over all m ≥ 2, we obtain

FT (x)− 1− xFT (x) =
∑
m≥2

Pm(x) +
∑
m≥2

Qm(x) +
∑
m≥2

(m− 2)xm+1

(1− x)2
.

From Lemmas 3.1 and 3.2, we have∑
m≥2

Pm(x) =
x3(1− 3x+ 5x2 − 5x3)

(1− x)4(1− 2x)2
,

∑
m≥2

Qm(x) =
x2(1− 5x+ 11x2 − 11x3 + 3x4)

(1− x)4(1− 2x)2
.

Thus, FT (x) satis�es

(1− x)FT (x) = 1 +
x2(1− 4x+ 9x2 − 10x3 + 2x4)

(1− x)4(1− 2x)2
,

and the result follows. 2

3.2 Case 30: T = {1324, 2143, 4231}.

Recall that, for Pm, the �rst m letters increase up to n and n− 1 occurs after n, and for Qm, the
m largest letters are the left-right maxima.

Lemma 3.4 Qm(x) = xQm−1(x) + Pm(x) and Pm(x) =
x

1−xPm−1(x), for all m ≥ 2.

Proof. By symmetric operations we see that Pm(x) = Q′m(x), where Q
′
m(x) counts permutations

π = (n+ 1−m)π(1)(n+ 2−m)π(2) · · ·nπ(m) ∈ Sn(T ) with exactly m left-right maxima and π(1) 6= ∅.
Also, Q′m(x) = Qm(x)− xQm−1(x). Hence, Qm(x) = xQm−1(x) + Pm(x).

An avoider counted by Pm(x) has the form i1i2 · · · im12 · · · (i1 − 1)π′′ with i1 < i2 < · · · < im−1 ≤
n− 2 and im = n. Hence, Pm(x) =

x
1−xPm−1(x). 2
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Lemma 3.5 The generating function for the number of permutations inπ′ ∈ Sn(T ) with i ≤ n − 2 is

given by P2(x) =
x3(1−x+2x2−x3)
(1−2x)(1−x)3 . The generating function for the number of permutations nπ′ ∈ Sn(T )

is given by Q1(x) =
x(1−3x+3x2)
(1−x)2(1−2x) .

Proof. We have Q1(x) = xF{231,1324,2143}(x) = x(1−3x+3x2)
(1−x)2(1−2x) (we omit the proof). To �nd P2(x), we

consider the decomposition inα(n− 1)β where α < β. By considering whether β is empty or not, we
obtain the desired result (again we omit the proof). 2

Theorem 3.6 Let T = {1324, 2143, 4231}. Then

FT (x) =
1− 6x+ 14x2 − 14x3 + 8x4 − 2x6

(1− x)3(1− 2x)2
.

Proof. Let Gm(x) be the generating function for T -avoiders withm left-right maxima. Clearly, G0(x) =
1 and G1(x) = Q1(x) (see Lemma 3.5). So suppose m ≥ 2 and let π = i1π

(1) · · · imπ(m) ∈ Sn(T ) with
exactly m left-right maxima. Since π avoids 1324, we have that π(s) > i1 for all s = 2, 3, . . . ,m − 1.
If π(m) < i1, then we have an avoider of the precise type counted by Qm(x). Otherwise, there exists
j maximal in [1,m − 1] such that π(m) < ij+1 and so π(m) has a letter between ij and ij+1, giving a
contribution of xm−1−jPj+1(x). Hence, Gm(x) = Qm(x) + Pm(x) + xPm−1(x) + · · ·+ xm−2P2(x). By
Lemma 3.4, we have

Gm(x) = xm−1Q1(x) + 2(Pm(x) + xPm−1(x) + · · ·+ xm−2P2(x))

= xm−1Q1(x) + 2xm−2P2(x)

m−2∑
s=0

1

(1− x)s
.

Therefore, by summing over m ≥ 1 and using Lemma 3.5, we obtain

FT (x)− 1 =
x(1− 5x+ 11x2 − 8x3 + 4x4 − 2x5)

(1− x)3(1− 2x)2
,

which completes the proof. 2

3.3 Case 35: T = {1324, 2143, 3412}.

We begin with an expression for Pm(x).

Lemma 3.7 Let m ≥ 2. Then

Pm(x) = xm−2P2(x) +
xm(K(x)− 1)

1− x

(
1

(1− x)m−2
− 1

)
,

where K(x) = 1−2x
1−3x+x2 and P2(x) =

x2(K(x)−1)
1−x + x4

(1−2x)2(1−x) .

Proof. An avoider counted by Pm(x) has the form i1i2 · · · imπ′ with i1 < i2 < · · · < im−1 ≤ n − 2
and im = n. If each letter of π′ is either smaller than i1 or greater than im−1 then we have a
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contribution of xm−2P2(x). Otherwise, since π avoids 1324 and 3412, we have that π′ = αβ such that
α avoids 132 and 3412 (see [6, Sequence A001519]), β < im−1 and β is decreasing. Thus, we have

a contribution of xm(K(x)−1)
1−x

(
1

(1−x)m−2 − 1
)
, where K(x) = 1−2x

1−3x+x2 the generating function for the

number of permutations in Sn(132, 3412). Hence,

Pm(x) = xm−2P2(x) +
xm(K(x)− 1)

1− x

(
1

(1− x)m−2
− 1

)
,

Thus, it remains to �nd a formula for P2(x). Let π = inπ′ ∈ Sn(T ) (with exactly 2 left-right
maxima) such that i ≤ n−2. Since π avoids 3412 then π′ contains the subsequence (i−1)(i−2) · · · 1. If
π′ = α(i−1)(i−2) · · · 1 then α avoids 132 and 3412 and we have a contribution of x

2(K(x)−1)
1−x . Otherwise,

i > 1 and there exists a letter in π′ greater than i and on the right-side of i− 1. The contribution for

such case is x4

(1−2x)2(1−x) (we leave the proof to the reader). Hence, P2(x) =
x2(K(x)−1)

1−x + x4

(1−2x)2(1−x) ,

as required. 2

By Lemma 3.7 and symmetric operations (complement and reversal), we can state the following.

Lemma 3.8 Let T = {1324, 2143, 2431} and let m ≥ 2. The generating function for the number of

permutations π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with exactly m left-right maxima such that ij =
n+ j −m for all j = 1, 2, . . . ,m and π(1) 6= ∅ is given by Pm(x).

Theorem 3.9 Let T = {1324, 2143, 3412}. Then

FT (x) =
1− 9x+ 33x2 − 62x3 + 64x4 − 38x5 + 10x6

(1− 3x+ x2)(1− 2x)2(1− x)3
.

Proof. Let Gm(x) be the generating function for T -avoiders withm left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose m ≥ 2 and let π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with exactly

m left-right maxima. Since π avoids 1324, we see that π(j) < i1 for all j = 2, 3, . . . ,m − 1. If
π(1) 6= ∅ then π(m) < i1 (π avoids 2143), and by Lemma 3.7, we have a contribution of Pm(x).
Otherwise, since π avoids 2143, we see that im−1 ≤ n − 2 and π(j) = ∅ for all j = 1, 2, . . . ,m − 1,
and by Lemma 3.7, we have a contribution of Pm(x). If π(1) = ∅ and π(m) < im−1, then since π
avoids 3412 we see that π(2) · · ·π(m−1) is decreasing and π(m) is decreasing. Since π avoids 2143,
we see that if π(2) · · ·π(m−1) 6= ∅ then π(m) < i1. Thus, by considering the minimal s such that
π(2) = · · · = π(s−1) = ∅ and π(s) 6= ∅, we get a contribution of

m−1∑
j=2

xm+1

(1− x)j
+

xm

(1− x)m−1
.

Hence,

Gm(x) =
m−1∑
j=2

xm+1

(1− x)j
+

xm

(1− x)m−1
+ 2Pm(x).

By summing over m ≥ 2 and using Lemmas 3.7 and 3.8, we obtain

FT (x)− 1− xFT (x) =
x2(6x4 − 14x3 + 11x2 − 5x+ 1)

(1− 2x)2(1− x)2(1− 3x+ x2)
.

Solving for FT (x) completes the proof. 2
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3.4 Case 172: T = {1324, 2143, 2431}.

Again, we begin with expressions for Pm and Qm.

Lemma 3.10 For m ≥ 2,

Pm(x) =
xm+1

1− x
C(x) + xm

(
1− 2x

1− 3x+ x2
− 1

1− x

)
.

Proof. Let us write an equation for Pm(x) for m ≥ 2. Let π = i1i2 · · · imπ′ ∈ Sn(T ) with exactly
m left-right maxima (i1 < i2 < · · · < im) such that im−1 ≤ n − 2. If π′ contains the subsequence
(im−1 + 1)(im−2 + 1) · · · (n− 1), then π can be written as

π = i1i2 · · · imα(im−1 + 1)(im−2 + 1) · · · (im − 1)

such that α avoids 132, which gives a contribution xm+1

1−x C(x). Otherwise, π′ has a descent ba such
that im > b > a > im−1, then π can be written as π = i1i2 · · · imβ such that β is not increasing and
avoids 132 and 4213 (see [6, Sequence A001519]) and im > β > im−1. Thus, we have a contribution of

xm
(

1−2x
1−3x+x2 −

1
1−x

)
. Hence,

Pm(x) =
xm+1

1− x
C(x) + xm

(
1− 2x

1− 3x+ x2
− 1

1− x

)
,

as required. 2

Lemma 3.11 For m ≥ 2,

Qm(x) = xm−1C(x)m−2(FT (x)− 1) +
xm−1(C(x)m−2 − 1)

C(x)− 1

(
FT (x)− 1− xC(x)FT (x)

)
.

Proof. First, let m ≥ 3 and suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with exactly m left-right
maxima such that ij = n+ j−m for all j = 1, 2, . . . ,m. Since π avoids 1324 we see that π(1) > π(j) for
all j = 2, 3, . . . ,m−1. The contribution of the case π(1) > π(m) is given by xC(x)Qm−1(x), where C(x)
counts the permutations π(1) that avoid 132. So we can assume that π(m) has a letter greater than the
smallest letter of π(1). Since π avoids 2143, we see that π(j) = ∅ for all j = 2, 3, . . . ,m− 1, which gives
a contribution of xm−2L(x), where L(x) is the generating function for the number of permutations
(n− 1)π′nπ′′ ∈ Sn(T ) such that π′′ has a letter greater than the smallest letter in π′. Hence,

Qm(x) = xC(x)Qm−1(x) + xm−2L(x).

Note that the generating function for the number of permutations (n − 1)π′nπ′′ ∈ Sn(T ) is given by
x(FT (x)− 1) and the generating function for the number of permutations (n− 1)π′nπ′′ ∈ Sn(T ) with
π′ > π′′ is given by x2C(x)FT (x). Thus, L(x) = x

(
FT (X)− 1− xC(x)FT (x)

)
. Hence,

Qm(x) = xC(x)Qm−1(x) + xm−1
(
FT (X)− 1− xC(x)FT (x)

)
with Q2(x) = x(FT (x)− 1) (easy to see). By induction on m, we complete the proof. 2
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Theorem 3.12 Let T = {1324, 2143, 2431}. Then

FT (x) =
(2− 10x+ 16x2 − 8x3 + x4)C(x)− 1 + 4x− 5x2 + x3

(1− x)2(1− 3x+ x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders withm left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x).

Let us write a formula for G2(x). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima. If
π′′ < i then we have a contribution of x(FT (x)−1). Otherwise, since π avoids 2143, we have π = inπ′′.
Since π avoids 2431, π = inαβ with α < i < β. If β is increasing then α avoids 132, which gives a
contribution of x3

1−xC(x). Otherwise, β avoids 213, 2431 (see [6, Sequence A001519]) and has a descent,

so α = ∅ (see Lemma 3.10), which gives a contribution x2
(
(1− 2x)/(1− 3x+ x2)− 1

)
. Hence,

G2(x) = x(FT (x)− 1) +
x3

1− x
C(x) + x2

(
1− 2x

1− 3x+ x2
− 1

)
.

Now, let us write an equation for Gm(x) for m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with
exactly m left-right maxima. Since π avoids 1324, we see that π(j) < i1 for all j = 2, 3, . . . ,m− 1. If
π(1) = ∅ and π(m) < im−1, then we have a contribution of xGm−1(x). If π(1) 6= ∅ then π(m) < i1 (π
avoids 2143), and by Lemma 3.11, we have a contribution of Qm(x)− xQm−1(x). Otherwise, since π
avoids 2143, we see that im−1 ≤ n− 2 and π(j) = ∅ for all j = 1, 2, . . . ,m− 1, from which, by Lemma
3.10, we have a contribution of Pm(x). Hence,

Gm(x) = xGm−1(x) +Qm(x)− xQm−1(x) + Pm(x),

for all m ≥ 3.

By summing over m ≥ 3 and using the expressions for G0(x), G1(x), G2(x), we obtain

FT (x)− 1− xFT (x) = G2(x) + x(FT (x)− 1− xFT (x)) +
∑
m≥3

(Qm(x)− xQm−1(x) + Pm(x)).

Thus, using Lemmas 3.10 and 3.11, we have

FT (x)− 1− xFT (x) =
x3

1− x
(C(x)− 1) + x(FT (x)− 1) + x2

(
1− 2x

1− 3x+ x2
− 1

)
+ x(FT (x)− 1− xFT (x)) + x2C(x)2(FT (x)− 1− xFT (x))

+
x4(C(x)− 3xC(x) + x2C(x) + x)

(1− x)2(1− 3x+ x2)
.

Solving for FT (x) and using C(x) = 1 + xC(x)2 completes the proof. 2

3.5 Case 227: T = {1324, 1432, 2143}.

First, we �nd Qm.
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Lemma 3.13 For all m ≥ 1,

Qm(x) = −
1− (1− x)FT (x)

C(x)− 1

(
xC(x)

)m−1
+

1−
(
1 + xC(x)

)
FT (x)

C(x)− 1
xm−1.

Proof. Clearly, Q1(x) = xFT (x) and Q2(x) = x(FT (x)−1). Now let m ≥ 2 and suppose π has the form
(n+1−m)π(1)(n+2−m)π(2) · · ·nπ(m) ∈ Sn(T ). If π(2) = ∅ then we have a contribution of xQm−1(x).
Otherwise, we can assume that π(2) is not empty. Since π avoids 1324 we see that π(1) > π(s) for
all s = 2, 3, . . . ,m − 1. Note that π(1) avoids 132 and π(1) > π(m), so we have a contribution of
xC(x)

(
Qm−1(x)− xQm−2(x)

)
, where C(x) is the generating function for 132-avoiders. Hence,

Qm(x) = xQm−1(x) + xC(x)
(
Qm−1(x)− xQm−2(x)

)
.

Solving this recurrence completes the proof. 2

Lemma 3.14 For all m ≥ 2,

Pm(x) =
xm−2

(
x2(FT (x)− 1)− x4C(x)FT (x)

)
C(x)

1− x
.

Proof. Suppose π = i1i2 · · · imπ′ ∈ Sn(T ) is counted by Pm(x). Recall this means that i1, i2, . . . , im
are the left-right maxima of π and π′ contains n − 1. Since π avoids 1324 and 1432, we see that π′

does not contain any letter between i1 and im−1. Thus, Pm(x) = xm−2P2(x).

To �nd a formula for P2(x), let us re�ne it by de�ning P2(x; d) to be the generating function for
the number of permutations (n− 1− d)nπ′ ∈ Sn(T ). Since π avoids 1324, we see that π′ contains the
subsequence (n−d)(n−d+1) · · · (n−1), so π′ can be written as α(1)(n−d)α(2)(n−d+1) · · ·α(d)(n−
1)α(d+1). By using the same techniques as in the proof of Lemma 3.13 (either α(2) is empty or not),
we obtain the recurrence

P2(x; d) = xP2(x; d− 1) + xC(x)(P2(x; d− 1)− xP2(x; d− 2))

with initial condition P2(x; 0) = xFT (x) and P2(x; 1) = x(FT (x) − 1), where C(x) is the generating
function for 132-avoiders. Solving this recurrence completes the proof. 2

Theorem 3.15 Let T = {1324, 1432, 2143}. Then

FT (x) =
1− 6x+ 12x2 − 12x3 + 6x4 − x5 − x2(1− x+ x2)2C(x)

1− 7x+ 16x2 − 19x3 + 11x4 − 2x5 − x6
.

Proof. Let Gm(x) be the generating function for T -avoiders withm left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x).

Now let m ≥ 2 and suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) has m left-right maxima,
i1, i2, . . . , im. Since π avoids 1324, we see that π(s) < i1 for all s = 1, 2, . . . ,m − 1. By the de�-
nitions, we see that

Gm(x) = Qm(x) + Pm(x) + xPm−1(x) + · · ·+ xm−2P2(x).
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By Lemmas 3.13 and 3.14, we obtain

Gm(x) = −
(xFT (x)− FT (x) + 1) (xC(x))m−1

C(x)− 1

(1− FT (x) + xC(x)FT (x))x
m−1

C(x)− 1

+
(m− 1)xm

(
FT (x)− 1− x2C(x)FT (x)

)
C(x)

1− x
.

Summing over m ≥ 2 and using the expressions for G0(x) and G1(x), we obtain

FT (x)− 1− xFT (x) = −
x(1− FT (x) + xFT (x))C(x)

(1− xC(x))(C(x)− 1)
+
x(1− FT (x) + xC(x)FT (x))

(C(x)− 1)(1− x)

− x2C(x)(1− FT (x) + x2C(x)FT (x))

(1− x)3
.

Solving for FT (x) and using C(x) = 1 + xC(x)2 completes the proof. 2
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