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Combinatorial proofs of some Stirling number formulas
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Abstract. In this note, we provide bijective proofs of some recent identities involving Stirling numbers of the second

kind, as previously requested. Our arguments also yield generalizations in terms of a well known q-Stirling number.
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1 Introduction

By a partition of a set, we will mean a collection of pairwise disjoint subsets, called blocks, whose union
is the set. For n > 1 and 1 6 k 6 n, let Pn,k denote the set of all partitions of [n] = {1, 2, . . . , n}
into k blocks and Pn = ∪kPn,k. A member of Pn,k is called a k-partition and is said to be in standard

form if its blocks B1/B2/ · · · /Bk are arranged so that min(B1) < · · · < min(Bk). Recall that the
cardinalities of Pn,k and Pn are given, respectively, by the Stirling number of the second kind S(n, k)
and Bell number B(n) (see sequences A008277 and A000110, respectively, in [10] and the recent book
[5]). In what follows, if m and n are positive integers, then let [m,n] = {m,m + 1, . . . , n} if m 6 n,
with [m,n] = ∅ if m > n. Throughout, the binomial coe�cient is given by

(
n
k

)
= n!

k!(n−k)! if 0 6 k 6 n,

with
(
n
k

)
taken to be zero otherwise.

In [6], several identities involving Stirling and Bell numbers were found by various algebraic methods
such as generating functions and use of recurrences. The question of �nding combinatorial proofs of
the following identities was raised:
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+
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S(n− 1− j − i, k − 1), 1 6 k 6 n, (1)
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S(j, k), 2 6 k 6 n. (4)

We now recall some terminology from [6]. An ordered pair of elements (a, b) within a subset of
[n] that satisfy b − a ≡ 1 (mod n) is called a (circular) succession. That is, a succession is a pair of
consecutive integers or an occurrence of the pair (n, 1). A partition of [n] is said to contain a succession

if any of its blocks do. For example, the partition π = 15689/23/47 ∈ P9,3 contains four successions,
namely, (5, 6), (8, 9), (9, 1) and (2, 3). If a circular succession does not occur as part of a string of
consecutive elements of length greater than two (where n and 1 are considered consecutive), then it
is said to be detached. In the prior example, only the successions (5, 6) and (2, 3) of π are detached.
The question of counting partitions containing a certain number of successions has been considered in
various forms; see [7], where linear successions (i.e., those excluding (n, 1)) were studied, as well as the
related papers [3, 8].

Let cr(n, k) denote the cardinality of the subset of Pn,k whose members contain r circular succes-
sions. Let dr(n, k) denote the cardinality of the subset of partitions enumerated by cr(n, k) in whose
members all of the successions are detached. In [6], it was shown that(

n− r
r

)
cr(n, k) =

(
n− 1

r

)
dr(n, k). (5)

It is the purpose of the current note to provide the requested bijective proofs of (1)�(5). Comparable
formulas may be given for ordered partitions (that is, those where order matters concerning the blocks
themselves) and also in terms of a polynomial generalization of the Stirling numbers, which we consider
in the �nal section.

In the arguments that follow, it will sometimes be more convenient to think of certain sets geomet-
rically. By a linear or circular n-tiling, we mean a covering of the numbers 1, 2, . . . , n, written either in
a line or clockwise around a circle, respectively, by indistinguishable squares (pieces covering a single
number) and dominos (pieces capable of covering two adjacent numbers). If 0 6 k 6 bn2 c, then let
Rn,k and Cn,k denote the sets of linear and circular n-tilings containing k dominos. It is well known

(see, e.g., [9]) that |Rn,k| =
(
n−k
k

)
and |Cn,k| = n

n−k
(
n−k
k

)
.

2 Bijective proofs of identities

We �rst provide a combinatorial proof of identity (1).

Proof of (1).

Let us assume k > 2, since the result is clear if k = 1. Suppose π = B1/B2/ · · · /Bk ∈ Pn,k is
expressed in standard form. De�ne, inductively, the sequence a1 < a2 < · · · in [2, n] as follows. Let a1
be the smallest member of [2, n] occurring in block B1 of π, assuming that there is at least one such
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element (if not, then the sequence is empty). For ` > 1, we de�ne a` to be the smallest member of
[a`−1 + 2, n] occurring in B1. Let us refer to any element of [2, n] equal to a` or a` + 1 for some ` as
covered. Note that by de�nition members of the a` sequence must belong to the block B1, whereas a
covered element of the form a` + 1 may belong to any block.

We now show that
(
n−1−j

j

)(
j
i

)
S(n− 1− j − i, k− 1) counts the members of Pn,k having exactly 2j

covered elements in [2, n], j + i of which belong to the �rst block. To do so, �rst note that there are(
n−1−j

j

)
choices for the subset comprising the elements a`, 1 6 ` 6 j, since such subsets are in one-

to-one correspondence with members of Rn−1,j , where the numbers a`− 1 correspond to the positions
covered by the left halves of dominos within a linear (n− 1)-tiling. Once the a` have been chosen, we
select i members from the set {a1 + 1, a2 + 1, . . . , aj + 1} to go into a block together with all of the a`
and the element 1. Finally, we partition the remaining n− 1− j− i elements of [2, n] into k− 1 blocks,
which can be done in S(n− 1− j − i, k − 1) ways. Putting together all of the blocks gives a member
of Pn,k of the desired form, and the process of generating such partitions is seen to be reversible.

For example, let n = 12, k = 4, j = 3 and i = 2, with a1 = 3, a2 = 6 and a3 = 10, and
suppose that 4 and 7 are selected from {4, 7, 11} to go into the �rst block. If the remaining six
elements of [12] are partitioned into three blocks as {2, 9}, {5, 11, 12}, {8}, then one obtains the partition
{1, 3, 4, 6, 7, 10}, {2, 9}, {5, 11, 12}, {8} ∈ P12,4 in which there are six covered elements in [12], �ve of
which belong to the �rst block.

Summing over all possible j and i, where 0 6 i 6 j 6 bn−12 c, implies that the number of members
of Pn,k containing an even number of covered elements is given by the second sum on the right-hand
side of (1). So it remains to count the members of Pn,k containing an odd number of covered elements.
Note that if a partition has an odd number of covered elements, then it must be the case that n is
covered and belongs to the �rst block. Thus counting the remaining partitions is equivalent to counting
the number of members of Pn−1,k containing an even number of covered elements, upon adding n to
the �rst block of such partitions. But this is the prior problem with n replaced by n−1 and thus gives
the �rst sum on the right-hand side of (1). This completes the enumeration of the members of Pn,k
and yields identity (1). 2

Remark: Summing (1) over 1 6 k 6 n gives the apparently new Bell number recurrence
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B(n− 1− j − i), n > 1. (6)

Formula (6) also follows from allowing any number of blocks in the preceding proof. See [4, 11] for
other Bell number recurrences.

Proofs of (2) and (3).

We prove (2). Allowing the number of blocks to vary within a partition in the argument that follows
will give (3). Let us assume k > 2 in (2), since the result is clear if k = 1. Let An,k = ∪nj=0Pn−j,k
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and π ∈ Pn−j,k have sign (−1)j . Then the right-hand side of (2) gives the sum of the signs of all the
members of An,k.

We de�ne a sign-reversing involution on An,k as follows. Consider whether the element m within
π ∈ Pm,k, where k 6 m 6 n, belongs to a block of π as part of a string of consecutive elements of even
or odd length, that is, the parity of t such that m,m− 1, . . . ,m− t+ 1 belong to the same block but
m − t does not. If t is even, then we delete the element m from π and if t is odd, then we add the
element m + 1 to π. For example, if n = 9, k = 3 and m = 7, then π = {1, 3}, {2, 5, 6, 7}, {4} ∈ P7,3
would map to π′ = {1, 3}, {2, 5, 6, 7, 8}, {4} ∈ P8,3.

This operation is seen to be a sign-reversing involution of An,k that is not de�ned for π ∈ Pn,k
such that n belongs to a block as part of a string of consecutive elements of odd length. Note that all
members of this subset of An,k have positive sign, which we'll denote by A∗n,k. To complete the proof
of (2), we need to show that the left-hand side gives the cardinality of A∗n,k.

By the proof of (1) above, the left-hand side of (2) counts all members of Pn+1,k containing an odd
number of covered elements, of which n+ 1 must be the largest and hence belongs to the same block
as 1. In addition, there would also be a possibly empty string of the form n, n − 1, . . . , n − (2t − 1)
comprising part of this block. Hence, deleting 1 from all such partitions and subtracting one from each
element of [2, n+ 1] results in the members of A∗n,k and completes the proof of (2).

Proof of (4).

Suppose n and k are given and that k 6 j 6 n. Consider the set of ordered pairs (S, ρ), where S is
a subset of [n] of size n− j and ρ is a partition of the set [n]− S having k blocks. Let Bn,j denote the
set of all such ordered pairs (S, ρ) and Bn = ∪nj=kBn,j . Let members of Bn,j have sign (−1)n−j . Then
the right-hand side of (4) gives the sum of the signs of all members of Bn.

We de�ne a sign-reversing involution on Bn as follows. Given (S, ρ) ∈ Bn, let m be the smallest
element of [n] − S and let s be the smallest element in [m + 1, n] satisfying either (a) s ∈ S or (b)
s ∈ [n] − S, with s belonging to the same block of ρ as m does. Assuming s exists, we de�ne an
involution on Bn by moving s from S to the block containing m in ρ if (a) occurs or by moving
s from ρ to the set S if (b) occurs. Note that this operation de�nes an involution which changes
the sign but preserves both m and s. For example, if n = 10, k = 3, j = 7, S = {1, 4, 8} and
ρ = {2, 5, 10}, {3, 9}, {6, 7}, then m = 2 and s = 4 and (S, ρ) would be paired with (S′, ρ′), where
S′ = {1, 8} and ρ′ = {2, 4, 5, 10}, {3, 9}, {6, 7}.

This operation is not de�ned for (S, ρ) ∈ Bn in which S is of the form [`] for some 0 6 ` 6 n− k,
with the smallest element of [n] − S in a block by itself in ρ. Upon deleting the element m (and
the block containing it), we see that the set of survivors of the involution is equivalent to the set
An−1,k−1 = ∪n−1j=k−1Pj,k−1 from the preceding proof of (2), where the sign of λ ∈ Pj,k−1 is now given

by (−1)n−1−j . Applying now the involution used in the proof of (2) to this set of survivors implies
that the signed sum of all members of Bn equals the cardinality of the set A∗n−1,k−1 from that proof.
Note that |A∗n−1,k−1| is given by the left-hand side of (2), with n replaced by n − 1 and k by k − 1,
which completes the proof of (4). 2

Proof of (5).
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We prove (5) in the slightly rewritten form

n

n− r

(
n− r
r

)
cr(n, k) =

(
n

r

)
dr(n, k). (7)

Consider the set U of ordered pairs (α, π), where α ∈ Cn,r and π is a member of Pn,k having r circular
successions. Let V denote the set of ordered pairs (β, π′), where β is a subset of [n] of size r and π′ is
a member of Pn,k having r circular successions all of which are detached.

We'll de�ne a bijection f between U and V, which will imply (7). Let (α, π) ∈ U . We �rst consider
i ∈ [n] such that within π the letter i−1 occurs in the same block as i if i > 1, along with 1 if n occurs
in the same block as 1. We take these elements and form a set which we will call β. We then take the
remaining n − r elements of π within their respective blocks and reduce them to letters in [n − r] to
obtain a member π̂ of Pn−r,k containing no circular successions.

First suppose that it is not the case that there is a domino covering the numbers n and 1 in α. Let
i1 < i2 < · · · < ir denote the members of [n] that are covered by the right halves of dominos in α when
traversing the circle clockwise. We �rst add the element i1 to the block of π̂ which contains i1 − 1,
increasing all members of [i1, n− r] in π̂ by one. To the resulting partition of [n− r + 1], we add the
element i2 to the block containing i2 − 1 and increase all members of [i2, n − r + 1] by one. Repeat
for each subsequent element until all of the ij have been added. Note that in the �nal partition, the
elements n and 1 do not occur together in the same block since n− r and 1 did not occur in the same
block of π̂.

If there is a domino covering n and 1 in α, then we repeat the above procedure, this time letting
i1 < i2 < · · · < ir−1 denote the members of [2, n− 1] that are covered by the right halves of dominos.
To the resulting member of Pn−1,k, we add n to the block containing 1.

In either case, let π′ denote the member of Pn,k obtained from π̂. Note that π′ contains no strings
of consecutive letters of length greater than two since π̂ contains no circular successions and since
ij+1 − ij > 1 for all j. This implies π′ contains r circular successions, all of which are detached. Let
f(α, π) = (β, π′). The above procedure for generating (β, π′) from (α, π) is seen to be reversible, upon
considering cases whether or not 1 and n belong to the same block of π′. Note that the larger numbers
in the detached successions of π′ correspond to the elements of the ij sequence, which determines α
and can in turn be used to recreate π̂ and π given β. Thus f yields the desired bijection between U
and V.

To illustrate the bijection f , suppose n = 9, k = 4 and r = 3. Let (α, π) ∈ U be given by
α = dsds2d ∈ C9,3 (where this sequence represents the order of the pieces encountered as one tra-
verses the circle clockwise, starting with 1, where 1 and 2 are covered by the same domino) and
π = 1389/24/56/7 ∈ P9,4. Then β = {1, 6, 9} and π̂ = 13/26/4/5 ∈ P6,4, with i1 = 2, i2 = 5 and
i3 = 9. Inserting the ij sequentially into π̂ as described above gives

π̂ = 13/26/4/5→ 124/37/5/6→ 1245/38/6/7→ π′ = 1245/389/6/7 ∈ P9,4.

Note that π′ contains three (detached) circular successions, which implies (β, π′) ∈ V. 2

3 Generalizations

Let σ(n, k) denote the number of partitions of [n] into k blocks where the order of the blocks matters.
Equivalently, the number σ(n, k) counts the set of surjective functions from [n] to [k]. Note that
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σ(n, k) = k!S(n, k); see sequence A019538 in OEIS [10] for further information on these numbers.
Upon multiplying both sides by k!, the identities (1), (2) and (4) above are seen to give comparable
formulas for σ(n, k) since the second argument of any Stirling numbers appearing in the sums is �xed.
For example, from (4), we get

k(k − 1)

bn−2
2
c∑

j=0

j∑
i=0

(
n− 2− j

j

)(
j

i

)
σ(n− 2− j − i, k − 2) =

n∑
j=k

(−1)n−j
(
n

j

)
σ(j, k). (8)

It is also possible to generalize the previous identities in terms of a well known q-generalization of
the Stirling numbers. Let nq = 1 + q + · · · + qn−1 if n > 1, with 0q = 0. Carlitz [1] considered the
q-Stirling numbers Sq(n, k) de�ned by the recurrence

Sq(n, k) = Sq(n− 1, k − 1) + kqSq(n− 1, k), n, k > 1,

with Sq(0, k) = δk,0 for k > 0, and showed that they are given explicitly by

Sq(n, k) =
1

q(
k
2)kq!

k∑
j=0

(−1)jq(
j
2)
(
k

j

)
q

[(k − j)q]n,

where kq! =
∏k
i=1 iq and

(
k
j

)
q
=

kq !
jq !(k−j)q ! . Later, Carlitz [2] de�ned a statistic on Pn,k for which Sq(n, k)

is its distribution polynomial. We'll denote it here by w̃ as in [12]. If π = B1/B2/ · · · /Bk ∈ Pn,k is in

standard form, then let w̃(π) =
∑k

i=1(i − 1)(|Bi| − 1). It is well known and can be shown using the
recurrence that

Sq(n, k) =
∑

π∈Pn,k

qw̃(π).

Using this interpretation for Sq(n, k), one may generalize identities (1) and (2) as follows for
1 6 k 6 n:
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+
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qn−k−j−iSq(n− 1− j − i, k − 1) (9)

and
bn−1

2
c∑

j=0

j∑
i=0

(
n− 1− j

j

)(
j

i

)
qn−k−j−iSq(n− 1− j − i, k − 1) =

n∑
j=0

(−1)jSq(n− j, k). (10)

Weighted versions of the preceding combinatorial arguments apply to these formulas. Note that
the qn−1−k−j−i factor in the �rst sum on the right-hand side of (9) accounts for the fact that within
the enumerated class of partitions the n− 2− j − i elements occurring in blocks beyond B1, excluding
the smallest elements within each of these blocks, contribute one more towards the w̃ value than they
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ordinarily would if they comprised a partition by themselves. The qn−k−j−i factor in the second sum
may be accounted for similarly.

To explain (10), it is more convenient to replace each i ∈ [n] with n + 1 − i and assume that the
blocks are arranged in decreasing order of largest elements when applying the w̃ statistic. Note that
the involution used in the proof of (2) above reverses the sign, but does not change the weight, since
the element that is either added or taken away belongs to the �rst block and hence does not a�ect the
w̃ value. The weight factor of qn−k−j−i appearing in the sum on the left-hand side of (10) arises for
much the same reason as before since j + i other elements belong to the same block as n within the
enumerated class of partitions.
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