Recursions for the flag-excedance number in colored permutations groups

ELI BAGNO The Jerusalem College of Technology 93721 Jerusalem, Israel email: bagnoe@jct.ac.il

and

DAVID GARBER Department of Applied Mathematics Holon Institute of Technology 58102 Holon, Israel email: garber@hit.ac.il

and

TOUFIK MANSOUR Department of Mathematics University of Haifa 31905 Haifa, Israel email: toufik@math.haifa.ac.il

and

ROBERT SHWARTZ Department of Computer Sciences and Mathematics Ariel University 40700 Ariel, Israel email: robertsh@ariel.ac.il

(Received: November 15, 2014, and in revised form May 27, 2015)

Abstract. The excedance number for S_n is known to have an Eulerian distribution. Nevertheless, the classical proof uses descents rather than excedances. We present a direct proof based on a recursion which uses only excedances and extend it to the flag-excedance parameter defined on the group of colored permutations $G_{r,n} = \mathbb{Z}_r \wr S_n$. We have also computed the distribution of a variant of the flag-excedance number, and show that its enumeration uses the Stirling number of the second kind. Moreover, we show that the generating function of the flag-excedance number defined on $\mathbb{Z}_r \wr S_n$ is symmetric, and its variant is log-concave on $\mathbb{Z}_r \wr S_n$.

Mathematics Subject Classification (2010). 05A19, 20B30, 05E15.

Keywords: colored permutation group, flag-excedance number, Stirling number of second kind, permutation statistics, recursion.

DOI: 10.1515/puma-2015-0005

1 Introduction

Let S_n be the symmetric group on n letters. The parameter *excedance*, which is defined on a permutation $\pi \in S_n$ by:

$$\exp(\pi) = |\{i \in \{1, 2, \dots, n\} \mid \pi(i) > i\}|,\$$

is well-known (see [16, Vol. I, pp. 135, 186; Vol. II, p. viii], [17]). Another classical parameter defined on permutations of S_n is the *descent number*, defined by:

$$des(\pi) = |\{i \in \{1, 2, \dots, n-1\} \mid \pi(i) > \pi(i+1)\}|.$$

Both parameters have the same distribution, which can be read from the following recursion:

$$a(n,k) = (k+1)a(n-1,k) + (n-k)a(n-1,k-1),$$
(1)

with the following initial conditions:

$$a(n,0) = 1, \ a(0,k) = 0 \ \forall k \forall n,$$

where a(n,k) is the number of permutations in S_n with k excedances or k descents. The generating function $\sum_{\alpha} q^{\text{exc}(\pi)+1}$ is called the Eulerian polynomial.

There is a well-known proof for this recursion by enumerating the descents [14], and there is a bijection from S_n onto itself, taking the descents into the excedances [19]. Later, a different proof of this recursion, which uses only excedances, was given independently by Jansonn [15] and by the authors (in this paper).

There are several different definitions of the excedance number for generalizations of the symmetric group. Brenti [8] defined a version for the hyperoctahedral group $B_n = \mathbb{Z}_2 \wr S_n$. Chen, Tang and Zhao [9] used this definition to construct a type-B analogue of the derangement polynomials, having properties such as the Sturm sequence property and their coefficients having the spiral property.

A different generalization of the excedance number for the colored permutation groups $G_{r,n} = \mathbb{Z}_r \wr S_n$ was introduced by Steingrimsson [20]. This version of the excedance number equidistributes with his version of the descent number for the colored permutation groups. He supplies some Eulerian-type recursions for these parameters and presents some geometric applications.

In [5], the first two authors defined a different version of the excedance number for the colored permutation groups, called the *flag-excedance number*. This definition was motivated by the view of $\mathbb{Z}_r \wr S_n$ as a subgroup of $\operatorname{Sym}(\Sigma_n)$, where $\Sigma_n = \{i^{[c]} \mid 1 \leq i \leq n, 0 \leq c < r\}$ is the set of *n* digits colored by *r* colors:

$$\operatorname{fexc}(\pi) = |\{i \in \Sigma_n \mid \pi(i) > i\}|.$$

One can compute the flag-excedance number in a different way (all the notations will be defined later):

$$\operatorname{fexc}(\pi) = r \cdot \operatorname{exc}_A(\pi) + \operatorname{csum}(\pi).$$

A similar approach was used in the definition of the flag major index in the colored permutation groups, see [1, 3, 11].

An interesting application of the parameter $\text{fexc}(\pi)$ was introduced by Athanasiadis: Consider an (n-1)-dimensional simplicial complex Δ and let $f_i(\Delta)$ be the number of *i*-dimensional faces of Δ . The *h*-polynomial of Δ is defined as:

$$h(\delta, x) = \sum_{i=0}^{n} f_{i-1}(\Delta) x^{i} (1-x)^{n-i}.$$

Now, let V be an n-element set and let Γ be a finite geometric subdivision of the abstract simplicial complex 2^{V} . The local h-polynomial $\ell_{V}(\Gamma, x)$ is:

$$\ell_V(\Gamma, x) = \sum_{F \subset 2^V} (-1)^{n-|F|} h(\Gamma_F, x),$$

where Γ_F is the restriction of Γ to the face $F \in 2^V$ and $h(\Delta, x)$ is the *h*-polynomial of the simplicial complex Δ . The *r*-th edgewise subdivision of a simplicial complex is a standard way to subdivide the complex Δ in such a way that each face $F \in \Delta$ is subdivided into $r^{\dim(F)}$ faces of the same dimension.

Denote by $\operatorname{sd}(\Delta)^r$ the r-th barycentric subdivision of Δ . A permutation $\pi \in \mathbb{Z}_r \wr S_n$ is called **balanced** if the parameter $\operatorname{csum}(\pi)$ (which is defined to be the sum of the colors of the digits of π) is a multiple of r. The subset of $\mathbb{Z}_r \wr S_n$, consisting of all the permutations without absolute fixed points, is defined as:

$$D_n^r = \{ \pi \in \mathbb{Z}_r \wr S_n \mid \forall i \in \{1, 2, \dots, n\}, \pi(i) \neq i \}.$$

Let $(D_n^r)^b$ denote the set of all balanced permutations in D_n^r . Then, Athansiadis [2] shows the following result:

THEOREM 1.1 (Athanasiadis) Let V be an n-element set. Then

$$\ell_V(\mathrm{sd}(2^V)^r, q) = \sum_{\pi \in (D_n^r)^b} q^{\frac{\mathrm{fexc}(\pi)}{r}}.$$

We survey here some other results dealing with the flag-excedance parameter defined on $G_{r,n}$.

In [5], the multi-distributions of the excedance number with some natural parameters were computed. In [4], these definitions and results were generalized to the so-called *multi-colored permutation* group $(\mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_k}) \wr S_n$. In [6], the multi-distribution of the excedance number with the number of fixed points on the set of involutions in $G_{r,n}$ was computed. In [18], Mansour and Sun consider similar problems in more general cases.

Recently, Foata and Han [12, 13] have found that this version of the excedance number is equidistributed with some version of the descent number for generalized permutation groups. Moreover, Clark and Ehrenborg [10] mentioned this version of the excedance number as a possible candidate for a generalization for an excedance statistic for all finite Coxeter groups.

We start this paper by presenting a classical way to obtain recursion (1) using only counting of excedances. This argument appears also in [15].

By our definition of excedance, we generalize this recursion for the cases of the hyperoctahedral group $B_n = G_{2,n}$ and the colored permutation groups $G_{r,n}$ (all the notations will be defined in the sequel):

PROPOSITION 1.2 Define:

$$f_i^A(r, n, k) = |\{\pi \in G_{r,n} \mid \exp_A(\pi) = k, \operatorname{csum}(\pi) = i\}|.$$

Then:

$$\begin{aligned} f_i^A(r,n,k) &= (n-k)f_i^A(r,n-1,k-1) + (k+1)f_i^A(r,n-1,k) + \\ &+ \sum_{j=1}^{r-1} \left[(n-k)f_{i-j}^A(r,n-1,k) + (k+1)f_{i-j}^A(r,n-1,k+1) \right], \end{aligned}$$

with the following initial conditions:

$$f_i^A(r, n, 0) = \sum_{\substack{(t_1, \dots, t_j), \ j \le i \\ 1 \le t_1 < t_2 < \dots < t_j \le n}} j! \binom{i-1}{i-j} (j+1)^{n-t_j} \prod_{u=1}^j u^{t_u - t_{u-1} - 1}$$

where $t_0 = 0$, and

$$f_i^A(r,0,k) = 0; \ f_0^A(r,1,0) = 1; \ f_{-1}^A(r,n,k) = 0 \ \forall n \forall k.$$

We have also computed the distribution of a variant of the flag-excedance number, denoted by exc_A . The interesting point is that its enumeration uses the Stirling number of the second kind:

PROPOSITION 1.3 The number of permutations π in $G_{r,n}$ which satisfy $exc_A(\pi) = k$ is given by:

$$r\sum_{j=1}^{n}\sum_{i=0}^{j-1}(-1)^{k+j-1-i}r^{i}j!S_{n,j}\binom{j-1}{i}\binom{n-1-i}{k},$$

where $S_{n,j}$ is the (n, j)-Stirling number of the second kind.

It is well-known that the generating function $\sum_{\pi \in S_n} q^{\operatorname{exc}(\pi)} = \sum_{i=0}^d a_i q^i$ has some symmetry properties. It is symmetric in the sense that $a_i = a_{d-i}$ for $i \in \{1, \ldots, \lfloor \frac{d}{2} \rfloor\}$. We prove here the corresponding symmetry property for $G_{r,n}$. We also prove that its variant exc_A is log-concave in $G_{r,n}$.

The paper is organized as follows. In Section 2, we introduce the colored permutation group $G_{r,n} = \mathbb{Z}_r \wr S_n$ and we define some of its parameters and statistics. Section 3 deals with the proof of the recursion for S_n . In Sections 4 and 5, we give the corresponding recursions for B_n and $G_{r,n}$, respectively. Section 6 deals with the distribution of the parameter \exp_A , which involves the Stirling number of the second kind. In Section 7, we present the symmetry of the generating function of the excedance number, and in Section 8 we prove the log-concavity property of the parameter \exp_A .

Acknowledgements: We would like to thank an anonymous referee for his advices.

2 The group of colored permutations and its statistics

DEFINITION 2.1 Let r and n be positive integers. The group of colored permutations of n digits with r colors is the wreath product

$$G_{r,n} = \mathbb{Z}_r \wr S_n = \mathbb{Z}_r^n \rtimes S_n,$$

consisting of all pairs (\vec{z}, τ) , where \vec{z} is an *n*-tuple of integers between 0 and r-1 and $\tau \in S_n$. The multiplication is defined by the following rule: for $\vec{z} = (z_1, \ldots, z_n)$ and $\vec{z'} = (z'_1, \ldots, z'_n)$,

$$(\vec{z},\tau) \cdot (\vec{z'},\tau') = ((z_1 + z'_{\tau^{-1}(1)}, \dots, z_n + z'_{\tau^{-1}(n)}), \tau \circ \tau')$$
(2)

(the operation + is taken modulo r).

Here is an example for the multiplication in $G_{5,3}$:

$$\left((2,1,0), \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}\right) \cdot \left((2,2,0), \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}\right) = \left((4,3,0), \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}\right)$$

Another way to present $G_{r,n}$ is as follows: Consider the alphabet

$$\Sigma = \{1, \dots, n, \bar{1}, \dots, \bar{n}, \dots, 1^{[r-1]}, \dots, n^{[r-1]}\}$$

as the set $\{1, \ldots, n\}$ colored by the colors $0, \ldots, r-1$. Then, an element of $G_{r,n}$ is a colored permutation, i.e., a bijection $\pi : \Sigma \to \Sigma$ satisfying the following condition: if $\pi(i^{[\alpha]}) = j^{[\beta]}$, then $\pi(i^{[\alpha+1]}) = j^{[\beta+1]}$ (the addition in the exponents is taken modulo r). Using this approach, the element $\pi = ((z_1, \ldots, z_n), \tau) \in G_{r,n}$ is the permutation of Σ , satisfying $\pi(i) = \pi(i^{[0]}) = \tau(i)^{[z_{\tau(i)}]}$ for each $1 \le i \le n$. For example, the element $\pi = \left((2, 1, 0, 3, 0, 0), \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 6 & 5 \end{pmatrix}\right) \in G_{6,6}$ satisfies:

$$\pi(1) = 2^{[1]}, \pi(2) = 1^{[2]}, \pi(3) = 4^{[3]}, \pi(4) = 3^{[0]}, \pi(5) = 6^{[0]}, \pi(6) = 5^{[0]}.$$

For an element $\pi = (\vec{z}, \tau) \in G_{r,n}$ with $\vec{z} = (z_1, \dots, z_n)$, we write $z_i(\pi) = z_i$, and denote $|\pi| = (\vec{0}, \tau)$. We define also $c_i(\pi) = r - z_i(\pi^{-1})$ and $\vec{c}(\pi) = \vec{c} = (c_1, \dots, c_n)$. Using this notation, the element $\pi = (\vec{z}, \tau) = \left((2, 1, 0, 3, 0, 0), \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 6 & 5 \end{pmatrix} \right)$ satisfies $\vec{c} = (1, 2, 3, 0, 0, 0)$.

We usually write π in its window notation (or one line notation): $\pi = \left(a_1^{[c_1]} \cdots a_n^{[c_n]}\right)$, where $a_i = \tau(i)$, so in the above example, we have: $\pi = (2^{[1]}1^{[2]}4^{[3]}3^{[0]}6^{[0]}5^{[0]})$ or just $\left(\bar{2}\bar{1}\bar{4}\bar{3}65\right)$.

Note that z_i is the color of the digit i (i is taken from the window notation), while c_j is the color of the digit $\tau(j)$. Here, j stands for the place, whence i stands for the value.

In particular, $G_{1,n} = \mathbb{Z}_1 \wr S_n$ is the classical symmetric group S_n , while $G_{2,n} = \mathbb{Z}_2 \wr S_n$ is the group of signed permutations B_n , also known as the hyperoctahedral group, or the classical Coxeter group of type B.

Given any ordered alphabet Σ' , we recall the definition of the *excedance set* of a permutation π on Σ' (see [5]):

$$\operatorname{Exc}(\pi) = \{i \in \Sigma' \mid \pi(i) > i\}$$

and the *flag-excedance number* is defined to be $fexc(\pi) = |Exc(\pi)|$.

DEFINITION 2.2 The *color order* on Σ is defined to be:

$$1^{[r-1]} < \dots < n^{[r-1]} < 1^{[r-2]} < 2^{[r-2]} < \dots < n^{[r-2]} < \dots < 1 < \dots < n^{[r-2]}$$

EXAMPLE 2.3 Given the color order:

$$\bar{\bar{1}} < \bar{\bar{2}} < \bar{\bar{3}} < \bar{1} < \bar{2} < \bar{3} < 1 < 2 < 3$$

we write $\sigma = (3\overline{1}\overline{2}) \in G_{3,3}$ in an extended form:

$$\left(\begin{array}{ccc|c} \bar{\bar{1}} & \bar{\bar{2}} & \bar{\bar{3}} & | \ \bar{1} & \bar{2} & \bar{3} & | \ 1 & 2 & 3 \\ \bar{\bar{3}} & 1 & \bar{2} & | \ \bar{3} & \bar{\bar{1}} & 2 & | \ 3 & \bar{1} & \bar{\bar{2}} \end{array}\right),$$

and compute: $\operatorname{Exc}(\sigma) = \{\overline{\overline{1}}, \overline{\overline{2}}, \overline{\overline{3}}, \overline{1}, \overline{3}, 1\}$ and $\operatorname{fexc}(\sigma) = 6$.

We present now an alternative way to compute the flag-excedance number. Let $\sigma \in G_{r,n}$. We define:

$$\operatorname{csum}(\sigma) = \sum_{i=1}^{n} c_i(\sigma).$$

Note that in the case r = 2 (i.e. the group B_n), the alphabet Σ can be seen as containing the digits $\{\pm 1, \ldots, \pm n\}$ and the parameter $\operatorname{csum}(\pi)$ counts the number of digits $i \in [n]$ such that $\pi(i) < 0$, so it is also called $\operatorname{neg}(\pi)$.

Define now:

 $\operatorname{Exc}_{A}(\sigma) = \{i \in \{1, 2, \dots, n-1\} \mid \sigma(i) > i\},\$

where the comparison is with respect to the color order, and denote:

$$\operatorname{exc}_A(\sigma) = |\operatorname{Exc}_A(\sigma)|.$$

EXAMPLE 2.4 Given $\sigma = (\overline{1}\overline{3}4\overline{2}) \in G_{3,4}$, we have $\operatorname{csum}(\sigma) = 4$, $\operatorname{Exc}_A(\sigma) = \{3\}$ and hence $\operatorname{exc}_A(\sigma) = 1$.

We have now (see [5]):

Lemma 2.5

$$\operatorname{fexc}(\sigma) = r \cdot \operatorname{exc}_A(\sigma) + \operatorname{csum}(\sigma).$$

A similar result for the flag major index statistic was achieved by Adin and Roichman [1].

3 The recursion for S_n

We supply a classical proof for the recursion for the Eulerian polynomial using its interpretation as a generating function for the excedance number for S_n (this proof appears independently in [15]). Denote by a(n,k) the number of permutations in S_n with exactly k excedances. Then we have the following recursion:

PROPOSITION 3.1

$$a(n,k) = (k+1)a(n-1,k) + (n-k)a(n-1,k-1),$$

with the following initial conditions:

$$a(n,0) = 1, a(0,k) = 0, \forall n \forall k.$$

Proof. For any n and $0 \le k \le n-1$, denote by S(n,k) the set of permutations in S_n with exactly k excedances. Denote also:

$$R = \{ \pi \in S(n,k) \mid \pi^{-1}(n) < \pi(n) \}$$

and

$$T = \{ \pi \in S(n,k) \mid \pi^{-1}(n) \ge \pi(n) \}.$$

Define $\Phi : S(n,k) \to S(n-1,k) \cup S(n-1,k-1)$ as follows: Let $\pi \in S(n,k)$. Then $\Phi(\pi)$ is the permutation in S_{n-1} obtained from $(n,\pi(n))\pi$ by ignoring the last digit.

Let $\pi \in S(n,k) = R \cup T$. If $\pi \in R$, then $\Phi(\pi) \in S(n-1,k)$. Note that $|\Phi^{-1}(\Phi(\pi))| = k+1$. On the other hand, if $\pi \in T$, then $\Phi(\pi) \in S(n-1,k-1)$ and $|\Phi^{-1}(\Phi(\pi))| = n-1-(k-1) = n-k$. \Box

We give the following example for illustrating the proof.

EXAMPLE 3.2 Consider S(5,2), i.e. the set of permutations in S_5 having exactly 2 excedances. Let

$$R \ni \pi = \begin{pmatrix} (1) & (2) & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix} \mapsto \begin{pmatrix} (1) & (2) & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix} \mapsto \begin{pmatrix} (1) & (2) & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = \Phi(\pi),$$

so:

$$\Phi^{-1}(\Phi(\pi)) = \left\{ \begin{pmatrix} (\mathbb{I}) & (\mathbb{Z}) & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} (\mathbb{I}) & (\mathbb{Z}) & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} (\mathbb{I}) & (\mathbb{Z}) & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix} \right\}$$

Let

$$T \ni \pi = \begin{pmatrix} (1) & 2 & (3) & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & (3) & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & (3) & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = \Phi(\pi).$$

Then:

$$\Phi^{-1}(\Phi(\pi)) = \left\{ \begin{pmatrix} (1) & 2 & (3) & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & (2) & (3) & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & (3) & (4) & 5 \\ 1 & 2 & 4 & 5 & 3 \end{pmatrix} \right\}.$$

4 The recursion for B_n

In this section, we generalize the above recursion to $B_n = \mathbb{Z}_2 \wr S_n$. We start with some notation.

$$F_i^A(n,k) = \{ \pi \in B_n \mid \exp_A(\pi) = k, \operatorname{neg}(\pi) = i \}$$
$$f_i^A(n,k) = \left| F_i^A(n,k) \right|,$$
$$F_i(n,k) = \{ \pi \in B_n \mid \operatorname{fexc}(\pi) = k, \operatorname{neg}(\pi) = i \}$$

$$f_i(n,k) = |F_i(n,k)|,$$

$$F(n,k) = \bigcup_{i=0}^n F_i(n,k)$$

$$f(n,k) = \sum_{i=0}^n f_i(n,k).$$

In B_n , we have $\operatorname{fexc}(\pi) = 2 \cdot \operatorname{exc}_A(\pi) + \operatorname{neg}(\pi)$, hence:

$$f_i(n,k) = f_i^A\left(n, \frac{k-i}{2}\right).$$

In the following proposition, we give a recursion for $f_i^A(n,k)$: PROPOSITION 4.1

$$\begin{aligned} f_i^A(n,k) &= (n-k)f_i^A(n-1,k-1) + (k+1)f_i^A(n-1,k) + \\ &+ (n-k)f_{i-1}^A(n-1,k) + (k+1)f_{i-1}^A(n-1,k+1), \end{aligned}$$

with the following initial conditions:

$$f_i^A(n,0) = \sum_{\substack{(t_1,\ldots,t_i)\\1 \le t_1 < t_2 < \cdots < t_i \le n}} i!(i+1)^{n-t_i} \prod_{u=1}^i u^{t_u-t_{u-1}-1},$$

where $0 \leq i \leq n$ and $t_0 = 0$, and

$$f_i^A(0,k) = 0; \ f_0^A(1,0) = 1; \ f_{-1}^A(n,k) = 0 \ \forall n \forall k.$$

Proof. We start with the proof of the recursion. Define:

$$\begin{aligned} F_{i,0}^A(n,k) &= \{ \pi \in B_n \mid \exp_A(\pi) = k, \ \operatorname{neg}(\pi) = i, \ \pi^{-1}(n) > 0 \} \\ f_{i,0}^A(n,k) &= \left| F_{i,0}^A(n,k) \right|, \\ F_{i,1}^A(n,k) &= \{ \pi \in B_n \mid \exp_A(\pi) = k, \ \operatorname{neg}(\pi) = i, \ \pi^{-1}(n) < 0 \} \\ f_{i,1}^A(n,k) &= \left| F_{i,1}^A(n,k) \right|. \end{aligned}$$

Obviously, $F_i^A(n,k) = F_{i,0}^A(n,k) \cup F_{i,1}^A(n,k)$, and hence:

$$f_i^A(n,k) = f_{i,0}^A(n,k) + f_{i,1}^A(n,k).$$

Define $\Phi_0: F_{i,0}^A(n,k) \to F_i^A(n-1,k) \cup F_i^A(n-1,k-1)$ as follows: Let $\pi \in F_{i,0}^A(n,k)$. Then $\Phi_0(\pi)$ is the permutation of B_{n-1} obtained from $(n,\pi(n))\pi$ by ignoring the last digit.

Now, define:

$$R_0 = \{ \pi \in F_{i,0}^A(n,k) \mid \pi^{-1}(n) < \pi(n) \}$$

and

$$T_0 = \{ \pi \in F_{i,0}^A(n,k) \mid \pi^{-1}(n) \ge \pi(n) \}$$

Let $\pi \in F_{i,0}^A(n,k) = R_0 \cup T_0$. If $\pi \in R_0$, then $\Phi_0(\pi) \in F_i^A(n-1,k)$. Note that $|\Phi_0^{-1}(\Phi_0(\pi))| = k+1$. On the other hand, if $\pi \in T_0$, then $\Phi_0(\pi) \in F_i^A(n-1,k-1)$ and $|\Phi_0^{-1}(\Phi_0(\pi))| = n-1-(k-1) = n-k$.

Define $\Phi_1 : F_{i,1}^A(n,k) \to F_{i-1}^A(n-1,k) \cup F_{i-1}^A(n-1,k+1)$ similarly. Now, define:

$$R_1 = \{ \pi \in F_{i,1}^A(n,k) \mid |\pi^{-1}(n)| < \pi(n) \}$$

 and

$$T_1 = \{ \pi \in F_{i,1}^A(n,k) \mid |\pi^{-1}(n)| \ge \pi(n) \}$$

Let $\pi \in F_{i,1}^A(n,k) = R_1 \cup T_1$. If $\pi \in R_1$, then $\Phi_1(\pi) \in F_{i-1}^A(n-1,k+1)$. Note that $|\Phi_1^{-1}(\Phi_1(\pi))| = k+1$. On the other hand, if $\pi \in T_1$, then $\Phi_1(\pi) \in F_{i-1}^A(n-1,k)$ and $|\Phi_1^{-1}(\Phi_1(\pi))| = n-1-(k-1) = n-k$.

Combining together all the parts, we get the desired recursion for $f_i^A(n,k)$.

Now we prove the initial condition:

$$f_i^A(n,0) = \sum_{\substack{(t_1,\ldots,t_i)\\1 \le t_1 < t_2 < \cdots < t_i \le n}} i!(i+1)^{n-t_i} \prod_{u=1}^i u^{t_u-t_{u-1}-1}$$

where $t_0 = 0$.

Let $\pi \in B_n$ and let $1 \leq t_1 < \cdots < t_i \leq n$ be such that $\pi(t_i) < 0$ for all $1 \leq j \leq i$.

In order to insure that $\exp_A(\pi) = 0$, we have to require that for each $\ell \notin \{t_1, \ldots, t_i\}, \pi(\ell) \leq \ell$. For each $1 \leq \ell < t_1$ (if there are any), we have only one possibility: $\pi(\ell) = \ell$. For $t_1 < \ell < t_2$ (if there are any), we have exactly two possibilities, and so on: for $t_m < \ell < t_{m+1}, 1 \leq m \leq i-1$ (if there are any), we have exactly m + 1 possibilities. Finally, for $t_i < \ell \leq n$, we have exactly i + 1 possibilities.

After fixing $\pi(\ell)$ for each $\ell \notin \{t_1, \ldots, t_i\}$, we have exactly *i*! possibilities for locating $\pi(t_j)$, for $1 \leq j \leq i$. This gives us the desired initial condition.

The following example should clarify the proof for the initial condition. Let $\pi \in B_9$ and assume that $t_1 = 3, t_2 = 6, t_3 = 8$. Then in order to get $\exp(\pi) = 0$, we must have $\pi(1) = 1, \pi(2) = 2$. $\pi(4)$ can be 3 or 4. $\pi(5) \in \{3, 4, 5\}$ but once $\pi(4)$ has been chosen we have only 2 possibilities for it. $\pi(7) \in \{3, 4, 5, 6, 7\}$ which yields 3 possibilities and for $\pi(9)$ we have 4 possibilities. The values corresponding to $\{\pi(3), \pi(6), \pi(8)\}$ are already fixed, so we just have to order them.

5 The corresponding recursion for $G_{r,n}$

The recursion for B_n can be generalized to $G_{r,n} = \mathbb{Z}_r \wr S_n$ very easily. We continue with similar notations.

$$F_i^A(r,n,k) = \{ \pi \in G_{r,n} \mid \text{exc}_A(\pi) = k, \text{csum}(\pi) = i \}$$

$$f_i^A(r, n, k) = |F_i^A(r, n, k)|,$$

$$F_i(r, n, k) = \{\pi \in G_{r,n} \mid \text{fexc}(\pi) = k, \text{csum}(\pi) = i\}$$

$$f_i(r, n, k) = |F_i(r, n, k)|,$$

$$F(r, n, k) = \bigcup_{i=0}^{(r-1)n} F_i(r, n, k)$$

$$f(r, n, k) = \sum_{i=0}^{(r-1)n} f_i(r, n, k).$$

In $G_{r,n}$, we have $\text{fexc}(\pi) = r \cdot \text{exc}_A(\pi) + \text{csum}(\pi)$, hence:

$$f_i(r,n,k) = f_i^A\left(r,n,\frac{k-i}{r}\right).$$

In the following proposition, we give a recurrence for $f_i^A(r,n,k)$: PROPOSITION 5.1

$$\begin{split} f_i^A(r,n,k) &= (n-k)f_i^A(r,n-1,k-1) + (k+1)f_i^A(r,n-1,k) + \\ &+ \sum_{j=1}^{r-1} \left[(n-k)f_{i-j}^A(r,n-1,k) + (k+1)f_{i-j}^A(r,n-1,k+1) \right], \end{split}$$

with the following initial conditions:

$$f_i^A(r,n,0) = \sum_{\substack{(t_1,\ldots,t_j), \ j \le i \\ 1 \le t_1 < t_2 < \cdots < t_j \le n}} j! \binom{i-1}{i-j} (j+1)^{n-t_j} \prod_{u=1}^j u^{t_u-t_{u-1}-1},$$

where $0 \leq i \leq n$ and $t_0 = 0$, and

$$f_i^A(r,0,k) = 0; \ f_0^A(r,1,0) = 1; \ f_{-1}^A(r,n,k) = 0 \ \forall n \forall k.$$

For completeness, we present here the proof for the general case. Proof. We start with the proof of the recursion. Define for all j such that $0 \le j \le r - 1$:

$$F_{i,j}^{A}(r,n,k) = \{ \pi \in G_{r,n} \mid \exp_{A}(\pi) = k, \operatorname{csum}(\pi) = i, c_{n}(\pi) = j \},\$$
$$f_{i,j}^{A}(r,n,k) = \left| F_{i,j}^{A}(r,n,k) \right|.$$

Obviously, $F_i^A(r,n,k) = \bigcup_{j=0}^{r-1} F_{i,j}^A(r,n,k)$, and hence:

$$f_i^A(r, n, k) = \sum_{j=0}^{r-1} f_{i,j}^A(r, n, k).$$

Define $\Phi_0: F_{i,0}^A(r,n,k) \to F_i^A(r,n-1,k) \cup F_i^A(r,n-1,k-1)$ as follows: Let $\pi \in F_{i,0}^A(r,n,k)$. Then $\Phi_0(\pi)$ is the permutation of $G_{r,n-1}$ obtained from $(n,\pi(n))\pi$ by ignoring the last digit.

Now, define:

$$R_0 = \{ \pi \in F_{i,0}^A(r, n, k) \mid \pi^{-1}(n) < \pi(n) \}$$

and

$$T_0 = \{ \pi \in F_{i,0}^A(r, n, k) \mid \pi^{-1}(n) \ge \pi(n) \}.$$

Let $\pi \in F_{i,0}^A(r,n,k) = R_0 \cup T_0$. If $\pi \in R_0$, then $\Phi_0(\pi) \in F_i^A(r,n-1,k)$. Note that $|\Phi_0^{-1}(\Phi_0(\pi))| = k+1$. On the other hand, if $\pi \in T_0$, then $\Phi_0(\pi) \in F_i^A(r,n-1,k-1)$ and $|\Phi_0^{-1}(\Phi_0(\pi))| = n-1-(k-1) = n-k$.

For all j such that $1 \leq j \leq r - 1$, define:

$$\Phi_j: F^A_{i,j}(r,n,k) \to F^A_{i-j}(r,n-1,k) \cup F^A_{i-j}(r,n-1,k+1)$$

similarly.

Now, define:

$$R_{j} = \{ \pi \in F_{i,j}^{A}(r,n,k) \mid |\pi^{-1}(n)| < \pi(n) \}$$

and

$$T_j = \{ \pi \in F_{i,j}^A(r, n, k) \mid |\pi^{-1}(n)| \ge \pi(n) \}$$

Let $\pi \in F_{i,j}^A(r,n,k) = R_j \cup T_j$. If $\pi \in R_j$, then $\Phi_j(\pi) \in F_{i-j}^A(r,n-1,k+1)$. Note that $|\Phi_j^{-1}(\Phi_j(\pi))| = k+1$. On the other hand, if $\pi \in T_j$, then $\Phi_j(\pi) \in F_{i-j}^A(r,n-1,k)$ and $|\Phi_j^{-1}(\Phi_j(\pi))| = n-1-(k-1) = n-k$.

Combining together all the parts, we get the desired recursion for $f_i^A(r, n, k)$.

Now we prove the initial condition:

$$f_i^A(r,n,0) = \sum_{\substack{(t_1,\ldots,t_j), \ j \le i \\ 1 \le t_1 < t_2 < \cdots < t_j \le n}} j! \binom{i-1}{i-j} (j+1)^{n-t_j} \prod_{u=1}^j u^{t_u-t_{u-1}-1}$$

where $t_0 = 0$.

Let $\pi \in G_{r,n}$. Let $j \leq i$ and let (t_1, \dots, t_j) be such that $1 \leq t_1 < \dots < t_j \leq n$ and $c_{t_k}(\pi) > 0$ (for $1 \leq k \leq j$).

In order to insure that $\exp_A(\pi) = 0$, we require that for each $\ell \notin \{t_1, \ldots, t_j\}, \pi(\ell) \leq \ell$. For each $1 \leq \ell < t_1$ (if there are any), we have only one possibility: $\pi(\ell) = \ell$. For $t_1 < \ell < t_2$ (if there are any), we have exactly two possibilities, and so on: for $t_m < \ell < t_{m+1}, 1 \leq m \leq j-1$ (if there are any), we have exactly m+1 possibilities. Finally, for $t_j < \ell \leq n$, we have exactly j+1 possibilities.

After fixing $\pi(\ell)$ for each $\ell \notin \{t_1, \ldots, t_j\}$, we have exactly $j! \binom{i-1}{i-j}$ possibilities to locate $\pi(t_k)$, $1 \leq k \leq j$, and to color them in such a way that $\operatorname{csum}(\pi) = i$. This gives us the desired initial condition for $G_{r,n}$.

6 The distribution of the parameter exc_A

Recall that:

$$f_i^A(r, n, k) = |\{\pi \in G_{r,n} \mid \exp_A(\pi) = k, \operatorname{csum}(\pi) = i\}|.$$

Let $d(r,n,k) = \sum_{i=0}^{(r-1)n} f_i^A(r,n,k)$ be the number of permutations $\pi \in G_{r,n}$ having $\exp(\pi) = k$. Proposition 5.1 gives that:

$$\begin{aligned} d(r,n,k) &= (n-k)d(r,n-1,k-1) + (k+1)d(r,n-1,k) \\ &+ (n-k)(r-1)d(r,n-1,k) + (k+1)(r-1)d(r,n-1,k+1), \end{aligned}$$

which is equivalent to:

$$d(r,n,k) = (n-k)d(r,n-1,k-1)$$

$$+[(k+1) + (r-1)(n-k)]d(r,n-1,k)$$

$$+(k+1)(r-1)d(r,n-1,k+1).$$
(3)

In order to solve this recurrence, we define the following generating polynomial:

$$D_{r,n}(t) = \sum_{k=0}^{n} d(r,n,k)t^k.$$

Rewriting Equation (3) in terms of the polynomial $D_{r,n}(t)$ yields:

$$D_{r,n}(t) = ntD_{r,n-1}(t) - t\frac{\partial}{\partial t}(tD_{r,n-1}(t)) + (1 + (r-1)n)D_{r,n-1}(t) - (r-2)t\frac{\partial}{\partial t}D_{r,n-1}(t) + (r-1)\frac{\partial}{\partial t}D_{r,n-1}(t),$$

which implies that:

$$D_{r,n}(t) = [rn + (n-1)(t-1)]D_{r,n-1}(t) - (t-1)(t+r-1)\frac{\partial}{\partial t}D_{r,n-1}(t).$$
(4)

Now, in order to simplify this recurrence, assume that $D_{r,n}(t)$ can be written as $D_{r,n}(t) = P_{r,n}(t)E_{r,n}(t)$. We will give later the condition which $P_{r,n}(t)$ has to satisfy. Therefore, Equation (4) can be written in terms of $P_{r,n}(t)$ and $E_{r,n}(t)$ as

$$E_{r,n}(t) = \frac{[rn + (n-1)(t-1)]P_{r,n-1}(t) - (t-1)(t+r-1)\frac{\partial}{\partial t}P_{r,n-1}(t)}{P_{r,n}(t)}E_{r,n-1}(t) - \frac{(t-1)(t+r-1)P_{r,n-1}(t)}{P_{r,n}(t)}\frac{\partial}{\partial t}E_{r,n-1}(t).$$

Let us assume that

$$[rn + (n-1)(t-1)]P_{r,n-1}(t) = (t-1)(t+r-1)\frac{\partial}{\partial t}P_{r,n-1}(t).$$

One solution of the above differential equation is:

$$P_{r,n}(t) = \frac{(t-1)^{n+1}}{t+r-1}.$$

Note that $\frac{P_{r,n-1}(t)}{P_{r,n}(t)} = \frac{1}{t-1}$. Therefore, for all $n \ge 1$,

$$E_{r,n}(t) = -(t+r-1)\frac{\partial}{\partial t}E_{r,n-1}(t).$$
(5)

Checking the recurrence for n = 1, we have by a direct computation that:

$$E_{r,1}(t) = \frac{D_{r,1}(t)}{P_{r,1}(t)} = \frac{r}{\left(\frac{(t-1)^2}{t+r-1}\right)} = -(t+r-1)\frac{\partial}{\partial t}E_{r,0}(t),$$

which gives that:

$$\frac{\partial}{\partial t}E_{r,0}(t) = -\frac{r}{(t-1)^2}.$$

Hence, we define $E_{r,0}(t) = \frac{r}{t-1}$. PROPOSITION 6.1 For all $n \ge 1$,

$$E_{r,n}(t) = (-1)^{n-1} r \sum_{j=1}^{n} j! S_{n,j} \frac{(t+r-1)^j}{(1-t)^{j+1}},$$

where $S_{n,j}$ is the (n, j)-Stirling number of the second kind. Proof. By induction on n, the recurrence relation (5) gives that:

$$E_{r,n}(t) = (-1)^n \sum_{j=1}^n S_{n,j}(t+r-1)^j \frac{\partial^j}{\partial t^j} E_{r,0}(t).$$

Using the initial condition of this recurrence, namely $E_{r,0}(t) = \frac{r}{t-1}$, we obtain that:

$$E_{r,n}(t) = (-1)^n \sum_{j=1}^n S_{n,j}(t+r-1)^j \frac{(-1)^j j! r}{(t-1)^{j+1}}$$

This is equivalent to:

$$E_{r,n}(t) = (-1)^{n-1} r \sum_{j=1}^{n} j! S_{n,j} \frac{(t+r-1)^j}{(1-t)^{j+1}},$$

which completes the proof.

Now we are ready to give an explicit formula for the polynomial $D_{r,n}(t)$.

Corollary 6.2 For all $n \geq 1$,

$$D_{r,n}(t) = r \sum_{j=1}^{n} j! S_{n,j}(t+r-1)^{j-1} (1-t)^{n-j}.$$

Proof. From the definitions, we have that:

$$D_{r,n}(t) = P_{r,n}(t)E_{r,n}(t) = \frac{(t-1)^{n+1}}{t+r-1}E_{r,n}(t)$$

Hence, by Proposition 6.1, we get the desired result.

Finding the coefficient of t^k in the polynomial $D_{r,n}(t)$, we obtain an explicit formula for d(r, n, k), as follows:

THEOREM 6.3 The number of permutations $\pi \in G_{r,n}$ which satisfy $exc_A(\pi) = k$ is given by:

$$d(r,n,k) = r \sum_{j=1}^{n} \sum_{i=0}^{j-1} (-1)^{k+j-1-i} r^{i} j! S_{n,j} {j-1 \choose i} {n-1-i \choose k},$$

where $S_{n,j}$ is the (n, j)-Stirling number of the second kind.

7 Symmetry of the flag-excedance number

In this section, we present the symmetry property of the flag-excedance number:

THEOREM 7.1 The generating polynomial

$$\sum_{\pi \in G_{r,n}} q^{\text{fexc}(\pi)} = \sum_{i=0}^{rn-1} a_i q^i$$

satisfies: $a_i = a_{rn-1-i}$ for $i \in \{1, \ldots, \lfloor \frac{rn-1}{2} \rfloor\}$.

Define a bijection of $G_{r,n}$: $\pi \mapsto \pi'$ in the following way: For $1 \leq i \leq n-1$, if $\pi(i) = j^{[\beta]}$, then $\pi'(n-i) = (n+1-j)^{[r-\beta]}$ and if $\pi(n) = j^{[\beta]}$, then $\pi'(n) = (n+1-j)^{[r-1-\beta]}$.

Instead of burdening the reader with the subtle though standard proof, we choose to give an example of the bijection:

$$\pi = \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & \bar{4} \\ 2 & \bar{1} & 4 & \bar{3} \\ 2 & \bar{1} & 4 & \bar{3} \\ \end{bmatrix} \begin{vmatrix} \bar{1} & \bar{2} & \bar{3} & \bar{4} \\ \bar{2} & 1 & \bar{4} & \bar{3} \\ \end{vmatrix} \begin{vmatrix} 1 & 2 & 3 & 4 \\ \bar{2} & \bar{1} & \bar{4} & 3 \\ \end{vmatrix}$$
$$\pi' = \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & \bar{4} \\ \bar{1} & 4 & \bar{3} & 2 \\ 1 & \bar{4} & \bar{3} & 2 \\ \end{vmatrix} \begin{vmatrix} \bar{1} & \bar{2} & \bar{3} & \bar{4} \\ \bar{1} & \bar{4} & \bar{3} & \bar{2} \\ \end{vmatrix} \begin{vmatrix} 1 & 2 & 3 & 4 \\ \bar{1} & \bar{4} & \bar{3} & \bar{2} \\ \end{vmatrix}$$

8 Log-concavity of the parameter exc_A

In this section, we show that some variant of the excedance parameter is log-concave. We start by proving that exc_A on B_n is log-concave. The corresponding proof for $G_{r,n}$ is similar.

THEOREM 8.1 The parameter exc_A on B_n is log-concave.

Proof. Recall from Section 4 the following definitions:

$$F_i^A(n,k) = \{ \pi \in B_n \mid \exp_A(\pi) = k, \operatorname{neg}(\pi) = i \},\$$
$$f_i^A(n,k) = |F_i^A(n,k)|.$$

Define:

$$X_{n,k} = \sum_{i=0}^{n} f_i^A(n,k).$$

Note that $X_{n,k}$ is the number of permutations $\pi \in B_n$ having $exc_A(\pi) = k$.

By the recursion given in Proposition 4.1:

$$\begin{aligned} f_i^A(n,k) &= (n-k)f_i^A(n-1,k-1) + (k+1)f_i^A(n-1,k) + \\ &+ (n-k)f_{i-1}^A(n-1,k) + (k+1)f_{i-1}^A(n-1,k+1), \end{aligned}$$

we have:

$$X_{n,k} = (n-k)X_{n-1,k-1} + (k+1)X_{n-1,k} + (n-k)X_{n-1,k} + (k+1)X_{n-1,k+1} = (n-k)X_{n-1,k-1} + (n+1)X_{n-1,k} + (k+1)X_{n-1,k+1}.$$

We prove the log-concavity by induction. For n = 3, the claim can be easily verified. Now we assume it for n - 1, and we have to show that:

$$X_{n,k}^2 \ge X_{n,k-1} X_{n,k+1}$$

Along the following computation, we abbreviate $X_{n-1,j}$ to X_j . We compute:

$$\begin{split} X_{n,k}^{2} - X_{n,k-1}X_{n,k+1} &= \left[(n-k)X_{k-1} + (n+1)X_{k} + (k+1)X_{k+1} \right]^{2} - \\ &- \left[(n-k+1)X_{k-2} + (n+1)X_{k-1} + kX_{k} \right] \cdot \\ &\cdot \left[(n-k-1)X_{k} + (n+1)X_{k+1} + (k+2)X_{k+2} \right] = \\ &= \left[(n-k)^{2}X_{k-1}^{2} + (n+1)^{2}X_{k}^{2} + (k+1)^{2}X_{k+1}^{2} + \\ &+ 2(n-k)(n+1)X_{k-1}X_{k} + 2(n-k)(k+1)X_{k-1}X_{k+1} + \\ &+ 2(n+1)(k+1)X_{k}X_{k+1} \right] - \\ &- \left[(n-k+1)(n-k-1)X_{k-2}X_{k} + (n-k+1)(n+1)X_{k-2}X_{k+1} + \\ &+ (n-k+1)(k+2)X_{k-2}X_{k+2} + (n+1)(n-k-1)X_{k-1}X_{k+1} + \\ &+ (n+1)^{2}X_{k-1}X_{k+1} + (n+1)(k+2)X_{k-1}X_{k+2} + \\ &+ k(n-k-1)X_{k}^{2} + k(n+1)X_{k}X_{k+1} + k(k+2)X_{k}X_{k+2} \right] = \end{split}$$

$$= [(n-k)^{2}X_{k-1}^{2} - (n-k+1)(n-k-1)X_{k-2}X_{k}] + + [(k+1)^{2}X_{k+1}^{2} - k(k+2)X_{k}X_{k+2}] + + [2(n-k)(n+1)X_{k-1}X_{k} - (n-k+1)(n+1)X_{k-2}X_{k+1} - - (n+1)(n-k-1)X_{k-1}X_{k}] + + [2(n+1)(k+1)X_{k}X_{k+1} - (n+1)(k+2)X_{k-1}X_{k+2} - - k(n+1)X_{k}X_{k+1}] + + [(n+1)^{2}X_{k}^{2} + 2(n-k)(k+1)X_{k-1}X_{k+1} - - (n-k+1)(k+2)X_{k-2}X_{k+2} - (n+1)^{2}X_{k-1}X_{k+1} - - k(n-k-1)X_{k}^{2}].$$

We treat each one of the five brackets in the last expression separately.

By the induction hypothesis, the first bracket is greater (or equal) than X_{k-1}^2 . Similarly, the second bracket is greater (or equal) than X_{k+1}^2 .

Since $X_{k-2}X_{k+1} \leq X_{k-1}X_k$ by the log-concavity assumption, we have:

$$2(n-k)(n+1)X_{k-1}X_k - (n-k+1)(n+1)X_{k-2}X_{k+1} - (n+1)(n-k-1)X_{k-1}X_k \ge 2(n-k)(n+1)X_{k-1}X_k - (n-k+1)(n+1)X_{k-1}X_k - (n+1)(n-k-1)X_{k-1}X_k = 0X_{k-1}X_k = 0,$$

and hence the third bracket is non-negative. Similarly, the fourth bracket is non-negative too.

From the first two brackets, we have two positive elements: X_{k-1}^2 and X_{k+1}^2 . Their sum can be written as $(X_{k-1} - X_{k+1})^2 + 2X_{k-1}X_{k+1}$. Adding $2X_{k-1}X_{k+1}$ to the fifth bracket, we have:

$$(n+1)^2 X_k^2 + 2((n-k)(k+1)+1) X_{k-1} X_{k+1} - (n-k+1)(k+2) X_{k-2} X_{k+2} - (n+1)^2 X_{k-1} X_{k+1} - k(n-k-1) X_k^2.$$

Since $(n+1)^2 = ((n-k) + (k+1))^2 = (n-k)^2 + (k+1)^2 + 2(n-k)(k-1)$, we can simplify the bracket into:

$$(n+1)^2 X_k^2 - (n-k+1)(k+2) X_{k-2} X_{k+2}$$
$$-((k+1)^2 - 1) X_{k-1} X_{k+1} - ((n-k)^2 - 1) X_{k-1} X_{k+1} - k(n-k-1) X_k^2.$$

By the log-concavity assumption, this sum is greater (or equal) than:

$$(n+1)^2 X_k^2 - (n-k+1)(k+2)X_k^2 - ((k+1)^2 - 1)X_k^2 - ((n-k)^2 - 1)X_k^2 - k(n-k-1)X_k^2,$$

which is equal to 0. So, we have that the sum of all five brackets is non-negative and hence we are done. \Box

References

- [1] R. M. ADIN AND Y. ROICHMAN, The flag major index and group actions on polynomial rings, European J. Combin., 22 (2001) 431–446.
- [2] C. A. ATHANASIADIS, Edgewise subdivisions, local h-polynomials and excedances in the wreath product $\mathbb{Z}_r \wr S_n$, SIAM J. Discrete Math., 28 (2014) 1479–1492.
- [3] E. BAGNO AND R. BIAGIOLI, Colored-descent representations of complex reflection groups G(r, p, n), Israel J. Math., 160 (2007) 317–347.
- [4] E. BAGNO, A. BUTMAN AND D. GARBER, Statistics on the multi-colored permutation groups, Electron. J. Combin., 14 (2007) #R24.
- [5] E. BAGNO AND D. GARBER, On the excedance number of colored permutation groups, Sém. Lothar. Combin., B53f (2006) 17 pp.
- [6] E. BAGNO, D. GARBER AND T. MANSOUR, Excedance number for involutions in complex reflection groups, Sém. Lothar. Combin., B56d (2007) 11 pp.
- [7] M. BONA, Combinatorics of permutations, Chapman and Hall/CRC, Second Edition, 2012.
- [8] F. BRENTI, q-Eulerian polynomials arising from Coxeter groups, European J. Combin., 15 (1994) 417-441.
- [9] W. Y. C. CHEN, R. L. TANG AND A. F. Y. ZHAO, Derangement polynomials and excedances of type B, Electron. J. Combin., 16 (2009) #R15.
- [10] E. CLARK AND R. EHRENBORG, Excedances of affine permutations, Adv. in Appl. Math., 46 (2011) 175–191.
- [11] M. FIRE, Statistics on wreath products, (2005) at http://arxiv.org/abs/math/0409421.
- [12] D. FOATA AND G. HAN, The decrease value theorem with an application to permutation statistics, Adv. in Appl. Math., 46 (2011) 296-311.
- [13] D. FOATA AND G. HAN, The Flag-Descent and -Excedance numbers, (2009) preprint. (Electronic version: http://www-irma.u-strasbg.fr/~foata/paper/pub116b.html)
- [14] D. FOATA AND M.-P. SCHÜTZENBERGER, Théorie géométrique des polynômes eulériens, Lecture Notes in Math., Vol. 138, Springer-Verlag, Berlin-New York, 1970.
- [15] F. JANSSON, Variations on the excedance statistic in permutations, (2006) preprint. (Electronic version: http://www.math.chalmers.se/~einar/exjobb/fredrik-jansson.pdf)
- [16] P. A. MACMAHON, Combinatory Analysis, Vol. 1 and 2, Cambridge Univ. Press, Cambridge, 1915 (reprinted by Chelsea, New York, 1955).

- [17] P. A. MACMAHON, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math., 35 (1913) 281-322.
- [18] T. MANSOUR AND Y. SUN, Excedance numbers for permutations in complex reflection groups, Sém. Lothar. Combin., B58b (2008) 7 pp.
- [19] R. P. STANLEY, Enumerative Combinatorics, Volume I, Cambridge University Press, 2002.
- [20] E. STEINGRÍMSSON, Permutation statistics of indexed permutations, European J. Combin., 15 (1994) 187–205.