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1 Introduction

Let Sn be the symmetric group on n letters. The parameter excedance, which is de�ned on a permu-
tation π ∈ Sn by:

exc(π) = |{i ∈ {1, 2, . . . , n} | π(i) > i}|,

is well-known (see [16, Vol. I, pp. 135, 186; Vol. II, p. viii], [17]). Another classical parameter de�ned
on permutations of Sn is the descent number, de�ned by:

des(π) = |{i ∈ {1, 2, . . . , n− 1} | π(i) > π(i+ 1)}|.

Both parameters have the same distribution, which can be read from the following recursion:

a(n, k) = (k + 1)a(n− 1, k) + (n− k)a(n− 1, k − 1), (1)

with the following initial conditions:

a(n, 0) = 1, a(0, k) = 0 ∀k∀n,

where a(n, k) is the number of permutations in Sn with k excedances or k descents. The generating
function

∑
π∈Sn

qexc(π)+1 is called the Eulerian polynomial.

There is a well-known proof for this recursion by enumerating the descents [14], and there is a
bijection from Sn onto itself, taking the descents into the excedances [19]. Later, a di�erent proof
of this recursion, which uses only excedances, was given independently by Jansonn [15] and by the
authors (in this paper).

There are several di�erent de�nitions of the excedance number for generalizations of the symmetric
group. Brenti [8] de�ned a version for the hyperoctahedral group Bn = Z2 o Sn. Chen, Tang and
Zhao [9] used this de�nition to construct a type-B analogue of the derangement polynomials, having
properties such as the Sturm sequence property and their coe�cients having the spiral property.

A di�erent generalization of the excedance number for the colored permutation groups Gr,n = Zr oSn
was introduced by Steingrimsson [20]. This version of the excedance number equidistributes with his
version of the descent number for the colored permutation groups. He supplies some Eulerian-type
recursions for these parameters and presents some geometric applications.

In [5], the �rst two authors de�ned a di�erent version of the excedance number for the colored
permutation groups, called the �ag-excedance number. This de�nition was motivated by the view of
Zr oSn as a subgroup of Sym(Σn), where Σn = {i[c] | 1 ≤ i ≤ n, 0 ≤ c < r} is the set of n digits colored
by r colors:

fexc(π) = |{i ∈ Σn | π(i) > i}|.

One can compute the �ag-excedance number in a di�erent way (all the notations will be de�ned later):

fexc(π) = r · excA(π) + csum(π).

A similar approach was used in the de�nition of the �ag major index in the colored permutation groups,
see [1, 3, 11].
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An interesting application of the parameter fexc(π) was introduced by Athanasiadis: Consider an
(n − 1)-dimensional simplicial complex ∆ and let fi(∆) be the number of i−dimensional faces of ∆.
The h−polynomial of ∆ is de�ned as:

h(δ, x) =

n∑
i=0

fi−1(∆)xi(1− x)n−i.

Now, let V be an n-element set and let Γ be a �nite geometric subdivision of the abstract simplicial
complex 2V . The local h-polynomial `V (Γ, x) is:

`V (Γ, x) =
∑
F⊂2V

(−1)n−|F |h(ΓF , x),

where ΓF is the restriction of Γ to the face F ∈ 2V and h(∆, x) is the h−polynomial of the simplicial
complex ∆. The r−th edgewise subdivision of a simplicial complex is a standard way to subdivide the
complex ∆ in such a way that each face F ∈ ∆ is subdivided into rdim(F ) faces of the same dimension.

Denote by sd(∆)r the r−th barycentric subdivision of ∆. A permutation π ∈ Zr o Sn is called
balanced if the parameter csum(π) (which is de�ned to be the sum of the colors of the digits of π) is
a multiple of r. The subset of Zr oSn, consisting of all the permutations without absolute �xed points,
is de�ned as:

Dr
n = {π ∈ Zr o Sn | ∀i ∈ {1, 2, . . . , n}, π(i) 6= i}.

Let (Dr
n)b denote the set of all balanced permutations in Dr

n. Then, Athansiadis [2] shows the following
result:

Theorem 1.1 (Athanasiadis) Let V be an n-element set. Then

`V (sd(2V )r, q) =
∑

π∈(Drn)b
q

fexc(π)
r .

We survey here some other results dealing with the �ag-excedance parameter de�ned on Gr,n.
In [5], the multi-distributions of the excedance number with some natural parameters were com-

puted. In [4], these de�nitions and results were generalized to the so-called multi-colored permutation

group (Zr1 × · · · ×Zrk) oSn. In [6], the multi-distribution of the excedance number with the number of
�xed points on the set of involutions in Gr,n was computed. In [18], Mansour and Sun consider similar
problems in more general cases.

Recently, Foata and Han [12, 13] have found that this version of the excedance number is equidis-
tributed with some version of the descent number for generalized permutation groups. Moreover,
Clark and Ehrenborg [10] mentioned this version of the excedance number as a possible candidate for
a generalization for an excedance statistic for all �nite Coxeter groups.

We start this paper by presenting a classical way to obtain recursion (1) using only counting of
excedances. This argument appears also in [15].

By our de�nition of excedance, we generalize this recursion for the cases of the hyperoctahedral
group Bn = G2,n and the colored permutation groups Gr,n (all the notations will be de�ned in the
sequel):
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Proposition 1.2 De�ne:

fAi (r, n, k) = |{π ∈ Gr,n | excA(π) = k, csum(π) = i}|.

Then:

fAi (r, n, k) = (n− k)fAi (r, n− 1, k − 1) + (k + 1)fAi (r, n− 1, k) +

+
r−1∑
j=1

[
(n− k)fAi−j(r, n− 1, k) + (k + 1)fAi−j(r, n− 1, k + 1)

]
,

with the following initial conditions:

fAi (r, n, 0) =
∑

(t1, . . . , tj), j ≤ i
1 ≤ t1 < t2 < · · · < tj ≤ n

j!

(
i− 1

i− j

)
(j + 1)n−tj

j∏
u=1

utu−tu−1−1

where t0 = 0, and

fAi (r, 0, k) = 0; fA0 (r, 1, 0) = 1; fA−1(r, n, k) = 0 ∀n∀k.

We have also computed the distribution of a variant of the �ag-excedance number, denoted by
excA. The interesting point is that its enumeration uses the Stirling number of the second kind:

Proposition 1.3 The number of permutations π in Gr,n which satisfy excA(π) = k is given by:

r
n∑
j=1

j−1∑
i=0

(−1)k+j−1−irij!Sn,j

(
j − 1

i

)(
n− 1− i

k

)
,

where Sn,j is the (n, j)-Stirling number of the second kind.

It is well-known that the generating function
∑
π∈Sn

qexc(π) =
d∑
i=0

aiq
i has some symmetry properties.

It is symmetric in the sense that ai = ad−i for i ∈ {1, . . . , bd2c}. We prove here the corresponding
symmetry property for Gr,n. We also prove that its variant excA is log-concave in Gr,n.

The paper is organized as follows. In Section 2, we introduce the colored permutation group
Gr,n = Zr o Sn and we de�ne some of its parameters and statistics. Section 3 deals with the proof
of the recursion for Sn. In Sections 4 and 5, we give the corresponding recursions for Bn and Gr,n,
respectively. Section 6 deals with the distribution of the parameter excA, which involves the Stirling
number of the second kind. In Section 7, we present the symmetry of the generating function of the
excedance number, and in Section 8 we prove the log-concavity property of the parameter excA.

Acknowledgements: We would like to thank an anonymous referee for his advices.
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2 The group of colored permutations and its statistics

Definition 2.1 Let r and n be positive integers. The group of colored permutations of n digits with

r colors is the wreath product
Gr,n = Zr o Sn = Znr o Sn,

consisting of all pairs (~z, τ), where ~z is an n-tuple of integers between 0 and r − 1 and τ ∈ Sn. The
multiplication is de�ned by the following rule: for ~z = (z1, . . . , zn) and ~z′ = (z′1, . . . , z

′
n),

(~z, τ) · (~z′, τ ′) = ((z1 + z′τ−1(1), . . . , zn + z′τ−1(n)), τ ◦ τ
′) (2)

(the operation + is taken modulo r).

Here is an example for the multiplication in G5,3:(
(2, 1, 0),

(
1 2 3
2 1 3

))
·
(

(2, 2, 0),

(
1 2 3
2 3 1

))
=

(
(4, 3, 0),

(
1 2 3
1 3 2

))
.

Another way to present Gr,n is as follows: Consider the alphabet

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

as the set {1, . . . , n} colored by the colors 0, . . . , r−1. Then, an element of Gr,n is a colored permutation,
i.e., a bijection π : Σ → Σ satisfying the following condition: if π

(
i[α]
)

= j[β], then π
(
i[α+1]

)
=

j[β+1] (the addition in the exponents is taken modulo r). Using this approach, the element π =
((z1, . . . , zn), τ) ∈ Gr,n is the permutation of Σ, satisfying π(i) = π(i[0]) = τ(i)[zτ(i)] for each 1 ≤ i ≤ n.

For example, the element π =

(
(2, 1, 0, 3, 0, 0),

(
1 2 3 4 5 6
2 1 4 3 6 5

))
∈ G6,6 satis�es:

π(1) = 2[1], π(2) = 1[2], π(3) = 4[3], π(4) = 3[0], π(5) = 6[0], π(6) = 5[0].

For an element π = (~z, τ) ∈ Gr,n with ~z = (z1, . . . , zn), we write zi(π) = zi, and denote |π| = (~0, τ).
We de�ne also ci(π) = r − zi(π

−1) and ~c(π) = ~c = (c1, . . . , cn). Using this notation, the element

π = (~z, τ) =

(
(2, 1, 0, 3, 0, 0),

(
1 2 3 4 5 6
2 1 4 3 6 5

))
satis�es ~c = (1, 2, 3, 0, 0, 0).

We usually write π in its window notation (or one line notation): π =
(
a
[c1]
1 · · · a[cn]n

)
, where

ai = τ(i), so in the above example, we have: π = (2[1]1[2]4[3]3[0]6[0]5[0]) or just
(

2̄¯̄1¯̄̄4365
)
.

Note that zi is the color of the digit i (i is taken from the window notation), while cj is the color
of the digit τ(j). Here, j stands for the place, whence i stands for the value.

In particular, G1,n = Z1 o Sn is the classical symmetric group Sn, while G2,n = Z2 o Sn is the group
of signed permutations Bn, also known as the hyperoctahedral group, or the classical Coxeter group of

type B.

Given any ordered alphabet Σ′, we recall the de�nition of the excedance set of a permutation π on
Σ′ (see [5]):

Exc(π) = {i ∈ Σ′ | π(i) > i}

and the �ag-excedance number is de�ned to be fexc(π) = |Exc(π)|.
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Definition 2.2 The color order on Σ is de�ned to be:

1[r−1] < · · · < n[r−1] < 1[r−2] < 2[r−2] < · · · < n[r−2] < · · · < 1 < · · ·< n.

Example 2.3 Given the color order:

¯̄1 < ¯̄2 < ¯̄3 < 1̄ < 2̄ < 3̄ < 1 < 2 < 3,

we write σ = (31̄¯̄2) ∈ G3,3 in an extended form:( ¯̄1 ¯̄2 ¯̄3 1̄ 2̄ 3̄ 1 2 3
¯̄3 1 2̄ 3̄ ¯̄1 2 3 1̄ ¯̄2

)
,

and compute: Exc(σ) = {¯̄1, ¯̄2, ¯̄3, 1̄, 3̄, 1} and fexc(σ) = 6.

We present now an alternative way to compute the �ag-excedance number. Let σ ∈ Gr,n. We
de�ne:

csum(σ) =

n∑
i=1

ci(σ).

Note that in the case r = 2 (i.e. the group Bn), the alphabet Σ can be seen as containing the digits
{±1, . . . ,±n} and the parameter csum(π) counts the number of digits i ∈ [n] such that π(i) < 0, so it
is also called neg(π).

De�ne now:

ExcA(σ) = {i ∈ {1, 2, . . . , n− 1} | σ(i) > i},

where the comparison is with respect to the color order, and denote:

excA(σ) = |ExcA(σ)|.

Example 2.4 Given σ = (1̄¯̄342̄) ∈ G3,4, we have csum(σ) = 4, ExcA(σ) = {3} and hence excA(σ) = 1.

We have now (see [5]):

Lemma 2.5

fexc(σ) = r · excA(σ) + csum(σ).

A similar result for the �ag major index statistic was achieved by Adin and Roichman [1].

3 The recursion for Sn

We supply a classical proof for the recursion for the Eulerian polynomial using its interpretation as a
generating function for the excedance number for Sn (this proof appears independently in [15]). Denote
by a(n, k) the number of permutations in Sn with exactly k excedances. Then we have the following
recursion:
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Proposition 3.1

a(n, k) = (k + 1)a(n− 1, k) + (n− k)a(n− 1, k − 1),

with the following initial conditions:

a(n, 0) = 1, a(0, k) = 0, ∀n∀k.

Proof. For any n and 0 ≤ k ≤ n − 1, denote by S(n, k) the set of permutations in Sn with exactly k
excedances. Denote also:

R = {π ∈ S(n, k) | π−1(n) < π(n)}

and

T = {π ∈ S(n, k) | π−1(n) ≥ π(n)}.

De�ne Φ : S(n, k) → S(n − 1, k) ∪ S(n − 1, k − 1) as follows: Let π ∈ S(n, k). Then Φ(π) is the
permutation in Sn−1 obtained from (n, π(n))π by ignoring the last digit.

Let π ∈ S(n, k) = R ∪ T . If π ∈ R, then Φ(π) ∈ S(n − 1, k). Note that |Φ−1(Φ(π))| = k + 1. On
the other hand, if π ∈ T , then Φ(π) ∈ S(n− 1, k − 1) and |Φ−1(Φ(π))| = n− 1− (k − 1) = n− k. 2

We give the following example for illustrating the proof.

Example 3.2 Consider S(5, 2), i.e. the set of permutations in S5 having exactly 2 excedances.
Let

R 3 π =

(
1© 2© 3 4 5
5 3 1 2 4

)
7→
(
1© 2© 3 4 5
4 3 1 2 5

)
7→
(
1© 2© 3 4
4 3 1 2

)
= Φ(π),

so:

Φ−1(Φ(π)) =

{(
1© 2© 3 4 5
5 3 1 2 4

)
,

(
1© 2© 3 4 5
4 5 1 2 3

)
,

(
1© 2© 3 4 5
4 3 1 2 5

)}
.

Let

T 3 π =

(
1© 2 3© 4 5
5 2 4 3 1

)
7→
(

1 2 3© 4 5
1 2 4 3 5

)
7→
(

1 2 3© 4
1 2 4 3

)
= Φ(π).

Then:

Φ−1(Φ(π)) =

{(
1© 2 3© 4 5
5 2 4 3 1

)
,

(
1 2© 3© 4 5
1 5 4 3 2

)
,

(
1 2 3© 4© 5
1 2 4 5 3

)}
.

4 The recursion for Bn

In this section, we generalize the above recursion to Bn = Z2 o Sn. We start with some notation.

FAi (n, k) = {π ∈ Bn | excA(π) = k,neg(π) = i}

fAi (n, k) =
∣∣FAi (n, k)

∣∣ ,
Fi(n, k) = {π ∈ Bn | fexc(π) = k, neg(π) = i}
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fi(n, k) = |Fi(n, k)|,

F (n, k) =

n⋃
i=0

Fi(n, k)

f(n, k) =

n∑
i=0

fi(n, k).

In Bn, we have fexc(π) = 2 · excA(π) + neg(π), hence:

fi(n, k) = fAi

(
n,
k − i

2

)
.

In the following proposition, we give a recursion for fAi (n, k):

Proposition 4.1

fAi (n, k) = (n− k)fAi (n− 1, k − 1) + (k + 1)fAi (n− 1, k) +

+(n− k)fAi−1(n− 1, k) + (k + 1)fAi−1(n− 1, k + 1),

with the following initial conditions:

fAi (n, 0) =
∑

(t1, . . . , ti)
1 ≤ t1 < t2 < · · · < ti ≤ n

i!(i+ 1)n−ti
i∏

u=1

utu−tu−1−1,

where 0 ≤ i ≤ n and t0 = 0, and

fAi (0, k) = 0; fA0 (1, 0) = 1; fA−1(n, k) = 0 ∀n∀k.

Proof. We start with the proof of the recursion. De�ne:

FAi,0(n, k) = {π ∈ Bn | excA(π) = k, neg(π) = i, π−1(n) > 0}

fAi,0(n, k) =
∣∣FAi,0(n, k)

∣∣ ,
FAi,1(n, k) = {π ∈ Bn | excA(π) = k, neg(π) = i, π−1(n) < 0}

fAi,1(n, k) =
∣∣FAi,1(n, k)

∣∣ .
Obviously, FAi (n, k) = FAi,0(n, k) ·∪ FAi,1(n, k), and hence:

fAi (n, k) = fAi,0(n, k) + fAi,1(n, k).

De�ne Φ0 : FAi,0(n, k)→ FAi (n− 1, k)∪FAi (n− 1, k− 1) as follows: Let π ∈ FAi,0(n, k). Then Φ0(π)
is the permutation of Bn−1 obtained from (n, π(n))π by ignoring the last digit.
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Now, de�ne:
R0 = {π ∈ FAi,0(n, k) | π−1(n) < π(n)}

and
T0 = {π ∈ FAi,0(n, k) | π−1(n) ≥ π(n)}.

Let π ∈ FAi,0(n, k) = R0∪T0. If π ∈ R0, then Φ0(π) ∈ FAi (n−1, k). Note that |Φ−10 (Φ0(π))| = k+1.

On the other hand, if π ∈ T0, then Φ0(π) ∈ FAi (n−1, k−1) and |Φ−10 (Φ0(π))| = n−1−(k−1) = n−k.

De�ne Φ1 : FAi,1(n, k)→ FAi−1(n− 1, k) ∪ FAi−1(n− 1, k + 1) similarly.
Now, de�ne:

R1 = {π ∈ FAi,1(n, k) | |π−1(n)| < π(n)}

and
T1 = {π ∈ FAi,1(n, k) | |π−1(n)| ≥ π(n)}.

Let π ∈ FAi,1(n, k) = R1∪T1. If π ∈ R1, then Φ1(π) ∈ FAi−1(n−1, k+ 1). Note that |Φ−11 (Φ1(π))| =
k+ 1. On the other hand, if π ∈ T1, then Φ1(π) ∈ FAi−1(n− 1, k) and |Φ−11 (Φ1(π))| = n− 1− (k− 1) =
n− k.

Combining together all the parts, we get the desired recursion for fAi (n, k).

Now we prove the initial condition:

fAi (n, 0) =
∑

(t1, . . . , ti)
1 ≤ t1 < t2 < · · · < ti ≤ n

i!(i+ 1)n−ti
i∏

u=1

utu−tu−1−1

where t0 = 0.
Let π ∈ Bn and let 1 ≤ t1 < · · · < ti ≤ n be such that π(tj) < 0 for all 1 ≤ j ≤ i.
In order to insure that excA(π) = 0, we have to require that for each ` 6∈ {t1, . . . , ti}, π(`) ≤ `. For

each 1 ≤ ` < t1 (if there are any), we have only one possibility: π(`) = `. For t1 < ` < t2 (if there are
any), we have exactly two possibilities, and so on: for tm < ` < tm+1, 1 ≤ m ≤ i− 1 (if there are any),
we have exactly m+ 1 possibilities. Finally, for ti < ` ≤ n, we have exactly i+ 1 possibilities.

After �xing π(`) for each ` 6∈ {t1, . . . , ti}, we have exactly i! possibilities for locating π(tj), for
1 ≤ j ≤ i. This gives us the desired initial condition. 2

The following example should clarify the proof for the initial condition. Let π ∈ B9 and assume
that t1 = 3, t2 = 6, t3 = 8. Then in order to get excA(π) = 0, we must have π(1) = 1, π(2) = 2.
π(4) can be 3 or 4. π(5) ∈ {3, 4, 5} but once π(4) has been chosen we have only 2 possibilities for
it. π(7) ∈ {3, 4, 5, 6, 7} which yields 3 possibilities and for π(9) we have 4 possibilities. The values
corresponding to {π(3), π(6), π(8)} are already �xed, so we just have to order them.

5 The corresponding recursion for Gr,n

The recursion for Bn can be generalized to Gr,n = Zr o Sn very easily. We continue with similar
notations.

FAi (r, n, k) = {π ∈ Gr,n | excA(π) = k, csum(π) = i}
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fAi (r, n, k) =
∣∣FAi (r, n, k)

∣∣ ,
Fi(r, n, k) = {π ∈ Gr,n | fexc(π) = k, csum(π) = i}

fi(r, n, k) = |Fi(r, n, k)|,

F (r, n, k) =

(r−1)n⋃
i=0

Fi(r, n, k)

f(r, n, k) =

(r−1)n∑
i=0

fi(r, n, k).

In Gr,n, we have fexc(π) = r · excA(π) + csum(π), hence:

fi(r, n, k) = fAi

(
r, n,

k − i
r

)
.

In the following proposition, we give a recurrence for fAi (r, n, k):

Proposition 5.1

fAi (r, n, k) = (n− k)fAi (r, n− 1, k − 1) + (k + 1)fAi (r, n− 1, k) +

+
r−1∑
j=1

[
(n− k)fAi−j(r, n− 1, k) + (k + 1)fAi−j(r, n− 1, k + 1)

]
,

with the following initial conditions:

fAi (r, n, 0) =
∑

(t1, . . . , tj), j ≤ i
1 ≤ t1 < t2 < · · · < tj ≤ n

j!

(
i− 1

i− j

)
(j + 1)n−tj

j∏
u=1

utu−tu−1−1,

where 0 ≤ i ≤ n and t0 = 0, and

fAi (r, 0, k) = 0; fA0 (r, 1, 0) = 1; fA−1(r, n, k) = 0 ∀n∀k.

For completeness, we present here the proof for the general case.
Proof. We start with the proof of the recursion. De�ne for all j such that 0 ≤ j ≤ r − 1:

FAi,j(r, n, k) = {π ∈ Gr,n | excA(π) = k, csum(π) = i, cn(π) = j},

fAi,j(r, n, k) =
∣∣FAi,j(r, n, k)

∣∣ .
Obviously, FAi (r, n, k) =

r−1⋃
·

j=0
FAi,j(r, n, k), and hence:

fAi (r, n, k) =
r−1∑
j=0

fAi,j(r, n, k).
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De�ne Φ0 : FAi,0(r, n, k)→ FAi (r, n−1, k)∪FAi (r, n−1, k−1) as follows: Let π ∈ FAi,0(r, n, k). Then
Φ0(π) is the permutation of Gr,n−1 obtained from (n, π(n))π by ignoring the last digit.

Now, de�ne:

R0 = {π ∈ FAi,0(r, n, k) | π−1(n) < π(n)}

and

T0 = {π ∈ FAi,0(r, n, k) | π−1(n) ≥ π(n)}.

Let π ∈ FAi,0(r, n, k) = R0 ∪ T0. If π ∈ R0, then Φ0(π) ∈ FAi (r, n− 1, k). Note that |Φ−10 (Φ0(π))| =
k+1. On the other hand, if π ∈ T0, then Φ0(π) ∈ FAi (r, n−1, k−1) and |Φ−10 (Φ0(π))| = n−1−(k−1) =
n− k.

For all j such that 1 ≤ j ≤ r − 1, de�ne:

Φj : FAi,j(r, n, k)→ FAi−j(r, n− 1, k) ∪ FAi−j(r, n− 1, k + 1)

similarly.

Now, de�ne:

Rj = {π ∈ FAi,j(r, n, k) | |π−1(n)| < π(n)}

and

Tj = {π ∈ FAi,j(r, n, k) | |π−1(n)| ≥ π(n)}.

Let π ∈ FAi,j(r, n, k) = Rj ∪ Tj . If π ∈ Rj , then Φj(π) ∈ FAi−j(r, n − 1, k + 1). Note that

|Φ−1j (Φj(π))| = k+ 1. On the other hand, if π ∈ Tj , then Φj(π) ∈ FAi−j(r, n−1, k) and |Φ−1j (Φj(π))| =
n− 1− (k − 1) = n− k.

Combining together all the parts, we get the desired recursion for fAi (r, n, k).

Now we prove the initial condition:

fAi (r, n, 0) =
∑

(t1, . . . , tj), j ≤ i
1 ≤ t1 < t2 < · · · < tj ≤ n

j!

(
i− 1

i− j

)
(j + 1)n−tj

j∏
u=1

utu−tu−1−1

where t0 = 0.

Let π ∈ Gr,n. Let j ≤ i and let (t1, · · · , tj) be such that 1 ≤ t1 < · · · < tj ≤ n and ctk(π) > 0 (for
1 ≤ k ≤ j).

In order to insure that excA(π) = 0, we require that for each ` 6∈ {t1, . . . , tj}, π(`) ≤ `. For each
1 ≤ ` < t1 (if there are any), we have only one possibility: π(`) = `. For t1 < ` < t2 (if there are any),
we have exactly two possibilities, and so on: for tm < ` < tm+1, 1 ≤ m ≤ j − 1 (if there are any), we
have exactly m+ 1 possibilities. Finally, for tj < ` ≤ n, we have exactly j + 1 possibilities.

After �xing π(`) for each ` 6∈ {t1, . . . , tj}, we have exactly j!
(
i−1
i−j
)
possibilities to locate π(tk),

1 ≤ k ≤ j, and to color them in such a way that csum(π) = i. This gives us the desired initial
condition for Gr,n. 2
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6 The distribution of the parameter excA

Recall that:

fAi (r, n, k) = |{π ∈ Gr,n | excA(π) = k, csum(π) = i}|.

Let d(r, n, k) =
(r−1)n∑
i=0

fAi (r, n, k) be the number of permutations π ∈ Gr,n having excA(π) = k.

Proposition 5.1 gives that:

d(r, n, k) = (n− k)d(r, n− 1, k − 1) + (k + 1)d(r, n− 1, k)

+(n− k)(r − 1)d(r, n− 1, k) + (k + 1)(r − 1)d(r, n− 1, k + 1),

which is equivalent to:

d(r, n, k) = (n− k)d(r, n− 1, k − 1) (3)

+[(k + 1) + (r − 1)(n− k)]d(r, n− 1, k)

+(k + 1)(r − 1)d(r, n− 1, k + 1).

In order to solve this recurrence, we de�ne the following generating polynomial:

Dr,n(t) =

n∑
k=0

d(r, n, k)tk.

Rewriting Equation (3) in terms of the polynomial Dr,n(t) yields:

Dr,n(t) = ntDr,n−1(t)− t
∂

∂t
(tDr,n−1(t))

+(1 + (r − 1)n)Dr,n−1(t)− (r − 2)t
∂

∂t
Dr,n−1(t)

+(r − 1)
∂

∂t
Dr,n−1(t),

which implies that:

Dr,n(t) = [rn+ (n− 1)(t− 1)]Dr,n−1(t)− (t− 1)(t+ r − 1)
∂

∂t
Dr,n−1(t). (4)

Now, in order to simplify this recurrence, assume thatDr,n(t) can be written asDr,n(t) = Pr,n(t)Er,n(t).
We will give later the condition which Pr,n(t) has to satisfy. Therefore, Equation (4) can be written in
terms of Pr,n(t) and Er,n(t) as

Er,n(t) =
[rn+ (n− 1)(t− 1)]Pr,n−1(t)− (t− 1)(t+ r − 1) ∂

∂tPr,n−1(t)

Pr,n(t)
Er,n−1(t)

− (t− 1)(t+ r − 1)Pr,n−1(t)

Pr,n(t)

∂

∂t
Er,n−1(t).
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Let us assume that

[rn+ (n− 1)(t− 1)]Pr,n−1(t) = (t− 1)(t+ r − 1)
∂

∂t
Pr,n−1(t).

One solution of the above di�erential equation is:

Pr,n(t) =
(t− 1)n+1

t+ r − 1
.

Note that
Pr,n−1(t)
Pr,n(t)

= 1
t−1 . Therefore, for all n ≥ 1,

Er,n(t) = −(t+ r − 1)
∂

∂t
Er,n−1(t). (5)

Checking the recurrence for n = 1, we have by a direct computation that:

Er,1(t) =
Dr,1(t)

Pr,1(t)
=

r(
(t−1)2
t+r−1

) = −(t+ r − 1)
∂

∂t
Er,0(t),

which gives that:
∂

∂t
Er,0(t) = − r

(t− 1)2
.

Hence, we de�ne Er,0(t) = r
t−1 .

Proposition 6.1 For all n ≥ 1,

Er,n(t) = (−1)n−1r
n∑
j=1

j!Sn,j
(t+ r − 1)j

(1− t)j+1
,

where Sn,j is the (n, j)-Stirling number of the second kind.

Proof. By induction on n, the recurrence relation (5) gives that:

Er,n(t) = (−1)n
n∑
j=1

Sn,j(t+ r − 1)j
∂j

∂tj
Er,0(t).

Using the initial condition of this recurrence, namely Er,0(t) = r
t−1 , we obtain that:

Er,n(t) = (−1)n
n∑
j=1

Sn,j(t+ r − 1)j
(−1)jj!r

(t− 1)j+1
.

This is equivalent to:

Er,n(t) = (−1)n−1r
n∑
j=1

j!Sn,j
(t+ r − 1)j

(1− t)j+1
,

which completes the proof. 2

Now we are ready to give an explicit formula for the polynomial Dr,n(t).
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Corollary 6.2 For all n ≥ 1,

Dr,n(t) = r
n∑
j=1

j!Sn,j(t+ r − 1)j−1(1− t)n−j .

Proof. From the de�nitions, we have that:

Dr,n(t) = Pr,n(t)Er,n(t) =
(t− 1)n+1

t+ r − 1
Er,n(t).

Hence, by Proposition 6.1, we get the desired result. 2

Finding the coe�cient of tk in the polynomial Dr,n(t), we obtain an explicit formula for d(r, n, k),
as follows:

Theorem 6.3 The number of permutations π ∈ Gr,n which satisfy excA(π) = k is given by:

d(r, n, k) = r
n∑
j=1

j−1∑
i=0

(−1)k+j−1−irij!Sn,j

(
j − 1

i

)(
n− 1− i

k

)
,

where Sn,j is the (n, j)-Stirling number of the second kind.

7 Symmetry of the �ag-excedance number

In this section, we present the symmetry property of the �ag-excedance number:

Theorem 7.1 The generating polynomial

∑
π∈Gr,n

qfexc(π) =
rn−1∑
i=0

aiq
i

satis�es: ai = arn−1−i for i ∈ {1, . . . , b rn−12 c}.

De�ne a bijection of Gr,n: π 7→ π′ in the following way: For 1 ≤ i ≤ n − 1 , if π(i) = j[β], then
π′(n− i) = (n+ 1− j)[r−β] and if π(n) = j[β], then π′(n) = (n+ 1− j)[r−1−β].

Instead of burdening the reader with the subtle though standard proof, we choose to give an
example of the bijection:

π =

( ¯̄1 ¯̄2 ¯̄3 ¯̄4 1̄ 2̄ 3̄ 4̄ 1 2 3 4

2 1̄ 4 ¯̄3 ¯̄2 1 ¯̄4 3̄ 2̄ ¯̄1 4̄ 3

)

π′ =

( ¯̄1 ¯̄2 ¯̄3 ¯̄4 1̄ 2̄ 3̄ 4̄ 1 2 3 4

1̄ 4 3̄ 2 1 ¯̄4 3 2 ¯̄1 4̄ ¯̄3 ¯̄2

)
.
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8 Log-concavity of the parameter excA

In this section, we show that some variant of the excedance parameter is log-concave. We start by
proving that excA on Bn is log-concave. The corresponding proof for Gr,n is similar.

Theorem 8.1 The parameter excA on Bn is log-concave.

Proof. Recall from Section 4 the following de�nitions:

FAi (n, k) = {π ∈ Bn | excA(π) = k, neg(π) = i},

fAi (n, k) = |FAi (n, k)|.

De�ne:

Xn,k =

n∑
i=0

fAi (n, k).

Note that Xn,k is the number of permutations π ∈ Bn having excA(π) = k.
By the recursion given in Proposition 4.1:

fAi (n, k) = (n− k)fAi (n− 1, k − 1) + (k + 1)fAi (n− 1, k) +

+(n− k)fAi−1(n− 1, k) + (k + 1)fAi−1(n− 1, k + 1),

we have:

Xn,k = (n− k)Xn−1,k−1 + (k + 1)Xn−1,k + (n− k)Xn−1,k + (k + 1)Xn−1,k+1 =

= (n− k)Xn−1,k−1 + (n+ 1)Xn−1,k + (k + 1)Xn−1,k+1.

We prove the log-concavity by induction. For n = 3, the claim can be easily veri�ed. Now we
assume it for n− 1, and we have to show that:

X2
n,k ≥ Xn,k−1Xn,k+1.

Along the following computation, we abbreviate Xn−1,j to Xj . We compute:

X2
n,k −Xn,k−1Xn,k+1 = [(n− k)Xk−1 + (n+ 1)Xk + (k + 1)Xk+1]

2 −
− [(n− k + 1)Xk−2 + (n+ 1)Xk−1 + kXk] ·
· [(n− k − 1)Xk + (n+ 1)Xk+1 + (k + 2)Xk+2] =

=
[
(n− k)2X2

k−1 + (n+ 1)2X2
k + (k + 1)2X2

k+1+

+2(n− k)(n+ 1)Xk−1Xk + 2(n− k)(k + 1)Xk−1Xk+1+

+2(n+ 1)(k + 1)XkXk+1]−
− [(n− k + 1)(n− k − 1)Xk−2Xk + (n− k + 1)(n+ 1)Xk−2Xk+1+

+ (n− k + 1)(k + 2)Xk−2Xk+2 + (n+ 1)(n− k − 1)Xk−1Xk+

+ (n+ 1)2Xk−1Xk+1 + (n+ 1)(k + 2)Xk−1Xk+2+

+ k(n− k − 1)X2
k + k(n+ 1)XkXk+1 + k(k + 2)XkXk+2

]
=
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=
[
(n− k)2X2

k−1 − (n− k + 1)(n− k − 1)Xk−2Xk

]
+

+
[
(k + 1)2X2

k+1 − k(k + 2)XkXk+2

]
+

+ [2(n− k)(n+ 1)Xk−1Xk − (n− k + 1)(n+ 1)Xk−2Xk+1−
− (n+ 1)(n− k − 1)Xk−1Xk] +

+ [2(n+ 1)(k + 1)XkXk+1 − (n+ 1)(k + 2)Xk−1Xk+2−
− k(n+ 1)XkXk+1] +

+
[
(n+ 1)2X2

k + 2(n− k)(k + 1)Xk−1Xk+1−
− (n− k + 1)(k + 2)Xk−2Xk+2 − (n+ 1)2Xk−1Xk+1−
− k(n− k − 1)X2

k

]
.

We treat each one of the �ve brackets in the last expression separately.

By the induction hypothesis, the �rst bracket is greater (or equal) than X2
k−1. Similarly, the second

bracket is greater (or equal) than X2
k+1.

Since Xk−2Xk+1 ≤ Xk−1Xk by the log-concavity assumption, we have:

2(n− k)(n+ 1)Xk−1Xk − (n− k + 1)(n+ 1)Xk−2Xk+1 − (n+ 1)(n− k − 1)Xk−1Xk ≥

≥ 2(n− k)(n+ 1)Xk−1Xk − (n− k + 1)(n+ 1)Xk−1Xk − (n+ 1)(n− k − 1)Xk−1Xk = 0Xk−1Xk = 0,

and hence the third bracket is non-negative. Similarly, the fourth bracket is non-negative too.

From the �rst two brackets, we have two positive elements: X2
k−1 and X2

k+1. Their sum can be
written as (Xk−1 −Xk+1)

2 + 2Xk−1Xk+1. Adding 2Xk−1Xk+1 to the �fth bracket, we have:

(n+ 1)2X2
k + 2((n− k)(k + 1) + 1)Xk−1Xk+1 − (n− k + 1)(k + 2)Xk−2Xk+2−

−(n+ 1)2Xk−1Xk+1 − k(n− k − 1)X2
k .

Since (n + 1)2 = ((n − k) + (k + 1))2 = (n − k)2 + (k + 1)2 + 2(n − k)(k − 1), we can simplify the
bracket into:

(n+ 1)2X2
k − (n− k + 1)(k + 2)Xk−2Xk+2

−((k + 1)2 − 1)Xk−1Xk+1 − ((n− k)2 − 1)Xk−1Xk+1 − k(n− k − 1)X2
k .

By the log-concavity assumption, this sum is greater (or equal) than:

(n+ 1)2X2
k − (n− k + 1)(k + 2)X2

k − ((k + 1)2 − 1)X2
k − ((n− k)2 − 1)X2

k − k(n− k − 1)X2
k ,

which is equal to 0. So, we have that the sum of all �ve brackets is non-negative and hence we are
done. 2
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