Immunological Mechanisms of Autoimmune Thyroid Diseases: A Shift in The Traditional TH1/TH2 Paradigm

Open access


Autoimmune thyroid diseases (AITD) mainly include Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), which are characterised by the presence of circulating antibodies against various thyroid autoantigens and infiltration of the thyroid gland by autoreactive lymphocytes. Despite the significant advancement in the knowledge of AITD pathogenesis in the last decade, the specific immunological mechanisms responsible for development of the disease are not thoroughly understood. Classically, HT has long been considered as a T helper (Th)1-mediated disease, while a Th2-driven autoimmune response is dominant for GD development. However, this classification has changed due to the description of Th17 lymphocytes, which suggested participation of these cells in AITD, particularly HT pathogenesis. Moreover, a shift in the balance between Th17 and T regulatory (Treg) cells has been observed in thyroid autoimmunity. We have observed overexpression of IL-17, the prominent effector cytokine of Th17, within thyroid tissues from HT and GD patients in our studies. The present review will focus on recent data regarding the role of Treg and Th17 lymphocytes in AITD pathogenesis. In addition, the impact and proposed mechanisms of the predominant environmental factors triggering the autoimmune response to the thyroid will be discussed.

Aghini Lombardi, F., Fiore, E., Tonacchera, M., Antonangeli, L., Rago, T., Frigeri, M., Provenzale, A. M., Montanelli, L., Grasso, L., Pinchera, A., Vitti, P. (2013). The effect of voluntary iodine prophylaxis in a small rural community: The pescopagano survey 15 years later. J. Clin. Endocrin. Metab., 98, 1031–1039.

Anonymous (2018). Statistics on medicines consumption 2017. State Agency of Medicines. Available from: (accessed 15 June 2018).

Badenhoop, K., Schwarz, G., Walfish, P. G., Drummond, V., Usadel, K. H., Bottazzo, G. F. (1990). Susceptibility to thyroid autoimmune disease: Molecular analysis of HLA-D region genes identifies new markers for goitrous Hashimoto’s thyroiditis. J. Clin. Endocrin. Metab., 71 (5), 1131–1137.

Berger, A. (2000). Th1 and Th2 responses: What are they? BMJ, 321, 424.

Bliddal, S., Borresen, S. W., Feldt-Rasmussen, U. (2017). Thyroid autoimmunity and function after treatment with biological antirheumatic agents in rheumatoid arthritis. Front Endocrinol., 8, 179.

Bossowski, A., Moniuszko, M., Idźkowska, E., Dąbrowska, M., Jeznach, M., Sawicka, B., Borysewicz-Sańczyk, H., Bossowska, A., Rusak, M., Bodzenta-Łukaszyk, A. (2012) Evaluation of CD4+CD161+CD196+ and CD4+IL-17+ Th17 cells in the peripheral blood of young patients with Hashimoto’s thyroiditis and Graves’ disease. Pediatr Endocrinol Diabetes Metab, 18, 89–95 (in Polish).

Brix, T. H., Kyvik, K. O., Christensen, K., Hegedüs, L. (2001). Evidence for a major role of heredity in Graves’ disease: A population-based study of two Danish twin cohorts. J. Clin. Endocrin. Metab., 86, 930–934.

Brix, T. H., Kyvik, K. O., Hegedüs, L. (2000). A population-based study of chronic autoimmune hypothyroidism in Danish twins. J. Clin. Endocrin. Metab., 85, 536–539.

Carayanniotis, G. (2011). Molecular parameters linking thyroglobulin iodination with autoimmune thyroiditis. Hormones, 10 (1), 27–35.

Carlé, A., Pedersen, I. B., Knudsen, N., Perrild, H., Ovesen, L., Rasmussen, L. B., Laurberg, P. (2011). Epidemiology of subtypes of hyperthyroidism in Denmark: A population-based study. Eur. J. Endocrinol., 164 (5), 801–809.

Carvalho, G. A. de, Perez, C. L. S., Ward, L. S. (2013). The clinical use of thyroid function tests. Arquivos Brasil. Endocrinol. Metab., 57, 193–204.

Chang, L. S., Barroso-Sousa, R., Tolaney, S. M., Hodi, F. S., Kaiser, U. B., Min, L. (2019). Endocrine toxicity of cancer immunotherapy targeting immune checkpoints, Endocr. Rev., 40, 17–65

Chaudhry, A., Samstein, R. M., Treuting, P., Liang, Y., Pils, M. C., Heinrich, J. M., Jack, R. S., Wunderlich, F. T., Brüning, J. C., Müller, W., Rudensky, A. Y. (2011). Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 34, 566–578.

Chrousos, G. P., Elenkov, I. J. (2006). Interactions of the endocrine and immune systems. In: DeGroot, L. J., Jameson, J. L. (eds.). Endocrinology. Saunders Elsevier, Philadelphia, PA, pp. 799–818.

Combs, G. F. (2015). Biomarkers of selenium status. Nutrients, 7, 2209–2236.

Cooper, G., Stroehla, B. (2003). The epidemiology of autoimmune diseases. Autoimmun. Rev., 2, 119–125.

Croxford, A. L., Mair, F., Becher, B. (2012). IL-23: One cytokine in control of autoimmunity. Eur. J. Immunol., 42, 2263–2273.

Dittmar, M., Libich, C., Brenzel, T., Kahaly, G. J. (2011). Increased familial clustering of autoimmune thyroid diseases. Hormone Metab. Res., 43 (3), 200–204.

Effraimidis, G., Strieder, T. G. A., Tijssen, J. G. P., Wiersinga, W. M. (2011). Natural history of the transition from euthyroidism to overt autoimmune hypo- or hyperthyroidism: A prospective study. Eur. J. Immunol., 164, 107–113.

Effraimidis, G., Wiersinga, W. M. (2014). Mechanisms in endocrinology: Autoimmune thyroid disease: Old and new players. Eur. J. Immunol., 170(6), R241–R252.

Fang, S., Huang, Y., Zhong, S., Li, Y., Zhang, Y., Li, Y., Sun, J., Liu, X., Wang, Y., Zhang, S., Xu, T., Sun, X., Gu, P., Li, D., Zhou, H., Li, B., Fan, X. (2017). Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in Graves orbitopathy, J. Clin. Endocrinol. Metab., 102, 4273–4283

Fasching, P., Stradner, M., Graninger, W., Dejaco, C., Fessler, J. (2017). Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules, 22, 134.

Figueroa-Vega, N., Alfonso-Pérez, M., Benedicto, I., Sánchez-Madrid, F., González-Amaro, R., Marazuela, M. (2010). Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab., 95, 953–962.

Fröhlich, E., Wahl, R. (2017). Thyroid autoimmunity: Role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Frontiers Immunol., 8, 521.

Ghoreschi, K., Laurence, A., Yang, X. P., Tato, C. M., McGeachy, M. J., Konkel, J. E., O’Shea, J. J. (2010). Generation of pathogenic TH17 cells in the absence of TGF-β2 signalling. Nature, 467, 967–971.

Glick, A. B., Wodzinski, A., Fu, P., Levine, A. D., Wald, D. N. (2013). Impairment of regulatory T-Cell function in autoimmune thyroid disease. Thyroid, 23, 871–878.

González-Amaro, R., Marazuela, M. (2016). T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity. Endocrine, 52 (1), 30–38.

Han, Y., Guo, Q., Zhang, M., Chen, Z., Cao, X. (2009). CD69+CD4+CD25-T Cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-β1. J. Immunol., 182, 111–120.

Hansen, P. S., Brix, T. H., Iachine, I., Kyvik, K. O., Hegedüs, L. (2006). The relative importance of genetic and environmental effects for the early stages of thyroid autoimmunity: A study of healthy Danish twins. Eur. J. Endocrinol., 154, 29–38.

Hansen, P. S., Brix, T. H., Iachine, I., Kyvik, K. O., Hegedüs, L. (2006). The relative importance of genetic and environmental effects for the early stages of thyroid autoimmunity: A study of healthy Danish twins. Eur. J. Endocrinol., 154, 29–38.

Harpaz, I., Abutbul, S., Nemirovsky, A., Gal, R., Cohen, H., Monsonego, A. (2013). Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: Glucocorticoids as a double-edged sword. Eur. J. Immunol., 43 (3), 758–769.

Hollowell, J. G., Staehling, N. W., Flanders, W. D., Hannon, W. H., Gunter, E. W., Spencer, C. A., Braverman, L. E. (2002). Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab., 87 (2), 489–499.

Hu, S., Rayman, M. P. (2017). Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid, 27 (5), 597–610.

Huber, S., Gagliani, N., Esplugues, E., O’Connor, W., Huber, F. J., Chaudhry, A., Kamanaka, M., Kobayashi, Y., Booth, C. J., Rudensky, A. Y., Roncarolo, M. G., Battaglia, M., Flavell, R. A. (2011). Th17 cells express interleukin-10 receptor and are controlled by Foxp3– and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity, 34 (3), 554–565.

Iyer, P. C., Cabanillas, M. E., Waguespack, S. G., Hu, M. I., Thosani, S., Lavis, V. R., Busaidy, N. L., Subudhi, S. K., Diab, A., Dadu, R. (2018). Immune-related thyroiditis with immune checkpoint inhibitors. Thyroid, 28, 1243–1251.

Katagiri, R., Yuan, X., Kobayashi, S., Sasaki, S. (2017). Effect of excess iodine intake on thyroid diseases in different populations: A systematic review and meta-analyses including observational studies. PLoS one, 12 (3), e0173722.

Khong, J. J., Goldstein, R. F., Sanders, K. M., Schneider, H., Pope, J., Burdon, K. P., Craig, J. E., Ebeling, P. R. (2014). Serum selenium status in Graves’ disease with and without orbitopathy: A case-control study. Clinical Endocrinology, 80 (6), 905–910.

Kim, S. E., Yoon, J. S., Kim, K. H., Lee, S. Y. (2012). Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol., 250, 1521–1526.

Konca Degertekin, C., Aktas Yilmaz, B., Balos Toruner, F., Kalkanci, A., Turhan Iyidir, O., Fidan, I., Yesilyurt, E., Cakir, N., Kustimur, S., Arslan, M. (2016). Circulating Th17 cytokine levels are altered in Hashimoto’s thyroiditis. Cytokine, 80, 13–17.

Konrade, I., Kalere, I., Strele, I., Makrecka-Kuka, M., Jekabsone, A., Tetere, E., Veisa, V., Gavars, D., Rezeberga, D., Pīrāgs, V., Lejnieks, A., Dambrova, M. (2015). Iodine deficiency during pregnancy: A national cross-sectional survey in Latvia. Publ. Health Nutr., 18 (16), 2990–2997.

Kristensen, B., Hegedüs, L., Lundy, S. K., Brimnes, M. K., Smith, T. J., Nielsen, C. H. (2015). Characterization of regulatory B cells in Graves’ disease and Hashimoto’s thyroiditis. PLoS one, 10 (5), e0127949.

Latina, A., Gullo, D., Trimarchi, F., Benvenga, S. (2013). Hashimoto’s thyroiditis: Similar and dissimilar characteristics in neighboring areas. Possible implications for the epidemiology of thyroid cancer. PloS one, 8(3), e55450.

Lee, H. J., Li, C. W., Hammerstad, S. S., Stefan, M., Tomer, Y. (2015). Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J. Autoimmun., 64, 82–90.

Li, C., Yuan, J., Zhu, Y. F., Yang, X. J., Wang, Q., Xu, J., He, S. T., Zhang, J. A. (2016). Imbalance of Th17/Treg in different subtypes of autoimmune thyroid diseases. Cell. Physiol. Biochem., 40 (1–2), 245–252.

Li, D., Cai, W., Gu, R., Zhang, Y., Zhang, H., Tang, K., Xu, P., Katirai, F., Shi, W., Wang, L., Huang, T., Huang, B. (2013). Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin. Immunol., 149, 411–420.

Maddur, M. S., Miossec, P., Kaveri, S. V., Bayry, J. (2012). Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Amer. J. Pathol., 181 (1), 8–18.

Maldonado, R. A., von Andrian, U. H. (2010). How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol., 108, 111–165.

Mandac, J. C., Chaudhry, S., Sherman, K. E., Tomer, Y. (2006). The clinical and physiological spectrum of interferon-alpha induced thyroiditis: Toward a new classification. Hepatology, 43, 661–672.

Mao, C., Wang, S., Xiao, Y., Xu, J., Jiang, Q., Jin, M., Jiang, X., Guo, H., Ning, G., Zhang, Y. (2011). Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J. Immunol., 186 (8), 4734–4743.

Markou, K., Georgopoulos, N., Kyriazopoulou, V., Vagenakis, A. G. (2001). Iodine-Induced hypothyroidism. Thyroid, 11, 501–510.

McInnes, I. B., Mease, P. J., Kirkham, B., Kavanaugh, A., Ritchlin, C. T., Rahman, P., Mpofu, S. (2015). Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet, 386, 1137–1146.

Miranda, D. M. C., Massom, J. N., Catarino, R. M., Santos, R. T. M., Toyoda, S. S., Marone, M. M. S., Monte, O. (2015). Impact of nutritional iodine optimization on rates of thyroid hypoechogenicity and autoimmune thyroiditis: A cross-sectional, comparative study. Thyroid, 25, 118–124.

Morris, G. P., Brown, N. K., Kong, Y. C. (2009). Naturally-existing CD4+CD25+Foxp3+regulatory T cells are required for tolerance to experimental autoimmune thyroiditis induced by either exogenous or endogenous autoantigen. J. Autoimmun., 33 (1), 68–76.

Morshed, S. A., Latif, R., Davies, T. F. (2012). Delineating the autoimmune mechanisms in Graves’ disease. Immunol. Res., 54, 191–203.

Papp, G., Boros, P., Nakken, B., Szodoray, P., Zeher, M. (2017). Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun. Rev., 16 (5), 435–444.

Paschou, S. A., Palioura, E., Kothonas, F., Myroforidis, A., Loi, V., Poulou, A., Goumas, K., Effraimidis, G., Vryonidou, A. (2018). The effect of anti-TNF therapy on thyroid function in patients with inflammatory bowel disease. Endocr. J., 65, 1121–1125.

Peck, A., Mellins, E. D. (2010). Plasticity of T-cell phenotype and function: The T helper type 17 example. Immunology, 129, 147–153.

Pedersen, I. B., Knudsen, N., Carlé, A., Schomburg, L., Köhrle, J., Jørgensen, T., Rasmussen, L. B., Ovesen, L., Laurberg, P. (2013). Serum selenium is low in newly diagnosed Graves’ disease: A population-based study. Clin. Endocrinol., 79, 584–590.

Pedersen, I. B., Knudsen, N., Carlé, A., Vejbjerg, P., Jørgensen, T., Perrild, H., Laurberg, P. (2011). A cautious iodization programme bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin. Endocrinol., 75, 120–126.

Pedersen, I. B., Laurberg, P., Knudsen, N., Jørgensen, T., Perrild, H., Ovesen, L., Rasmussen, L. B. (2007). An increased incidence of overt hypothyroidism after iodine fortification of salt in Denmark: A prospective population study. J. Clin. Endocrinol. Metab., 92, 3122–3127.

Pyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., Roliński, J. (2015). Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J. Immunol. Res., 2015, 979167.

Qin, H., Wang, L., Feng, T., Elson, C. O., Niyongere, S. A., Lee, S. J., Reynolds, S. L., Weaver, C. T., Roarty, K., Serra, R., Benveniste, E. N., Cong, Y. (2009). TGF-β promotes Th17 cell development through inhibition of SOCS3. J. Immunol., 183, 97–105.

Qin, Q., Liu, P., Liu, L., Wang, R., Yan, N., Yang, J., Wang, X., Pandey, M., Zhang, J. A. (2012). The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Brazilian J. Med. Biol. Res., 45, 1202–1208.

Ramos-Leví, A. M., Marazuela, M. (2016). Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. Endocrinología y Nutrición, 63, 421–429.

Rayman, M. P. (2012). Selenium and human health. The Lancet, 379, 1256–1268.

Rebuffat, S. A., Nguyen, B., Robert, B., Castex, F., Peraldi-Roux, S. (2008). Antithyroperoxidase antibody-dependent cytotoxicity in autoimmune thyroid disease. J. Clin. Endocrinol. Metab., 93, 929–934.

Rodríguez-Muñoz, A., Vitales-Noyola, M., Ramos-Levi, A., Serrano-Somavilla, A., González-Amaro, R., Marazuela, M. (2016). Levels of regulatory T cells CD69+NKG2D+IL-10+are increased in patients with autoimmune thyroid disorders. Endocrine, 51, 478–489.

Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. (2014). Tr1 cells and the counter-regulation of immunity: Natural mechanisms and therapeutic applications. Curr. Topics Microbiol. Immunol., 380, 39–68.

Roura-Mir, C., Catálfamo, M., Cheng, T.-Y., Marqusee, E., Besra, G. S., Jaraquemada, D., Moody, D. B. (2005). CD1a and CD1c activate intrathyroidal T cells during Graves’ disease and Hashimoto’s thyroiditis. J. Immunol., 174, 3773–3780.

Salmaso, C., Bagnasco, M., Pesce, G., Montagna, P., Brizzolara, R., Altrinetti, V., Giordano, C. (2002). Regulation of apoptosis in endocrine autoimmunity: Insights from Hashimoto’s thyroiditis and Graves’ disease. Ann. New York Acad. Sci., 966, 496–501.

Shevach, E. M. (2006). From vanilla to 28 flavors: Multiple varieties of T regulatory cells. Immunity, 25 (2), 195–201.

Shevach, E. M., Thornton, A. M. (2014). tTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev, 259, 88–102.

Song, X., Gao, H., Qian, Y. (2014). Th17 differentiation and their proinflammation function. Adv. Exper. Med. Biol., 841, 99–151.

Stadhouders, R., Lubberts, E., Hendriks, R. W. (2018). A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J. Autoimmun., 87, 1–15.

Stritesky, G. L., Yeh, N., Kaplan, M. H. (2008). IL-23 promotes maintenance but not commitment to the Th17 lineage. J. Immunol., 181, 5948–5955.

Teng, W., Shan, Z., Teng, X., Guan, H., Li, Y., Teng, D., Li, C. (2006). Effect of iodine intake on thyroid diseases in China. New England J. Med., 354, 2783–2793.

Tomer, Y. (2014). Mechanisms of autoimmune thyroid diseases: From genetics to epigenetics. Annu. Rev. Pathol., 9, 147–156.

Tomer, Y., Davies, T. F. (2003). Searching for the autoimmune thyroid disease susceptibility genes: From gene mapping to gene function. Endocr. Rev., 24, 694–717.

Tomer, Y., Huber, A. (2009). The etiology of autoimmune thyroid disease: A story of genes and environment. J. Autoimmun., 87 (1), 404–407.

Toulis, K. A., Anastasilakis, A. D., Tzellos, T. G., Goulis, D. G., Kouvelas, D. (2010). Selenium supplementation in the treatment of Hashimoto’s thyroiditis: A systematic review and a meta-analysis. Thyroid, 20, 1163–1173.

Valea, A., Georgescu, C. E. (2018). Selenoproteins in human body: focus on thyroid pathophysiology. Hormones, 17, 183–196.

Villanueva, R., Greenberg, D. A., Davies, T. F., Tomer, Y. (2003). Sibling recurrence risk in autoimmune thyroid disease. Thyroid, 13, 761–764.

Vita, R., Lapa, D., Trimarchi, F., Benvenga, S. (2014). Stress triggers the onset and the recurrences of hyperthyroidism in patients with Graves’ disease. Endocrine, 48 (1), 254–263.

Weetman, A. P. (2010). Immunity, thyroid function and pregnancy: Molecular mechanisms. Nature Rev. Endocrinol., 6 (6), 311–318.

Wichman, J., Winther, K. H., Bonnema, S. J., Hegedüs, L. (2016). Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: A systematic review and meta-analysis. Thyroid, 26 (12), 1681–1692.

Winther, K. H., Wichman, J. E. M., Bonnema, S. J., Hegedüs, L. (2017). Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine, 55 (2), 376–385.

Wu, Q., Rayman, M. P., Lv, H., Schomburg, L., Cui, B., Gao, C., Chen, P., Zhuang, G., Zhenan, Z., Peng, X., Li, H., Zhao, Y., He, X., Zeng, G., Qin, F., Hou, P., Shi, B. (2015). Low population selenium status is associated with increased prevalence of thyroid disease. J. Clin. Endocrinol. Metab., 100, 4037–4047.

Xiong, H., Wu, M., Yi, H., Wang, X., Wang, Q., Nadirshina, S., Zhou, X., Liu, X. (2016). Genetic associations of the thyroid stimulating hormone receptor gene with Graves diseases and Graves ophthalmopathy: A meta-analysis. Sci. Rep. 6, 30356.

Xu, C., Wu, F., Mao, C., Wang, X., Zheng, T., Bu, L., Xiao, Y. (2016). Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. J. Autoimmun., 75, 50–57.

Xue, H., Wang, W., Li, Y., Shan, Z., Li, Y., Teng, X., Gao, Y., Fan, C., Teng, W. (2010). Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr. J., 57 (7), 595–601.

Yu, X., Li, L., Li, Q., Zang, X., Liu, Z. (2011). TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced experimental autoimmune thyroiditis in NOD mice. Biol. Trace Element Res., 143, 1064–1076.

Zake, T., Skuja, S., Kalere, I., Konrade, I., Groma, V. (2018). Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Medicine, 97, e11211.

Zeitlin, A. A., Heward, J. M., Newby, P. R., Carr-Smith, J. D., Franklyn, J. A., Gough, S. C. L., Simmonds, M. J. (2008). Analysis of HLA class II genes in Hashimoto’s thyroiditis reveals differences compared to Graves’ disease. Genes Immun., 9 (4), 358–363.

Zimmermann, M. B., Boelaert, K. (2015). Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol., 3, 286–295.

Journal Information

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 145 26
PDF Downloads 129 129 17