Targeted Protection of Mitochondria of Mesophyll Cells in Transgenic CYP11A1 CDNA Expressing Tobacco Plant Leaves After NaCl-Induced Stress Damage

Open access

Abstract

Recently we have showed that the expression of the mammalian CYP11A1 cDNA in plants confers their resistance to abiotic and biotic stresses. To determine the role of heterologous expression of cytochrome P450scc cDNA in resistance to ROS (radical oxygen species) dependent abiotic stresses, the structural changes of mitochondria and peroxisomes were studied under 150 mM NaCl-induced 14-day salinity treatment on juvenile tobacco plants in in vitro culture. Ultrastructural analysis of mesophyll cells of transgenic tobacco leaves constitutively expressing CYP11A1 cDNA was performed. Under NaCl stress, a change in shape from rounded to elon-gated, reduced section area, formation of branched mitochondria, as well as the emergence of triangular and rhomboid cristae, densification of a mitochondrial matrix, increase in density of contrasting membranes and their thickness were observed in non-transgenic plants. Transgenic plants without stress applied had mitochondria with rounded and elongated shape, twice as small as in non-transgenic plants, with a dense matrix and sinuous cristae. Surprisingly, the effect of NaCl led to increase in size of mitochondria by 1.5 times, decomposition of matrix and the emergence in organelles of light zones presumably containing mitochondrial DNA strands. Thus, the structural organisation of transgenic plant mitochondria under salinity treatment was comparable to that of non-transgenic plants under native conditions. It was also noted that the transgenic plant peroxisomes differed in non-transgenic tobacco both in normal condition and under the action of NaCl. The observed differences in ultrastructural organisation of mitochondria not only support our earlier notion about successful incorporation of the mature P450scc into this organelle, but for the first time demonstrate that the mammalian CYP11A1 signal peptide sequence could be efficiently used in the formation of targeted mitochondria protection of plants from salinity-induced damage.

Acosta-Motos, J. R., Ortuńo, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7 (1), 18.

Baranova, E. N., Christov, N. K., Kurenina, L. V., Khaliluev, M. R., Todorovska, E. G., Smirnova, E. A. (2016). Formation of atypical tubulin structures in plant cells as a nonspecific response to abiotic stress. Bulg. J. Agric. Sci., 22 (6), 987–992.

Baranova, E. N., Gulevich, A. A., Maisuryan, A. N., Lavrova, N. V. (2011). Ultrastructure of the cells of tomato transgenic plants with gene FeSOD after salinization of nutrient medium. [Баранова, E. H., Гулевич, А. А., Майсурян, A. H., Лаврова, H. В. Ультраструктурная организация клеток трансгенных растений томата с геном Fe-SOD при засолении питательной среды]. Izv. Timiryazevsk. Skh. Akad. [Известия Тимирязевской сельскохозяйственной академии], No. 1, 90-96 (in Russian).

Baranova, E. N., Kurenina, L. V., Smirnov, A. N., Beloshapkina, O. O., Gulevich, A. A. (2017). Formation of the hypersensitivity response due to the expression of FeSODl gene in tomato when it is inoculated with Phytophthora infestans. [Баранова, E. H., Куренина, Л. В., Смирнов, A. H., Белошапкина, О. О., Гулевич, А. А. Формирование реакции сверхчувствительности в результате экспрессии гена FeSODl у томата при инфицировании Phytophthora infestans.] Russian Agricultural Sciences [Российская сельскохозяйственная наука]. 43 (1), 15-21 (in Russian).

Baranova, E. N., Nodel’man, E. K., Kurenina, L. V., Gulevich, A. A., Baranova, G. B., Bogoutdinova, L. R., Khaliluev, M. R. (2014). Ultrastructural organization of chloroplasts and mitochondria of transgenic tomato plants expressing the FeSOD1 gene from Arabidopsis thaliana (L.) Heynh. under salt stress. Russian Agric. Sci., 40 (6), 426–431.

Corpas, F. J., Barroso, J. B., Sandalio, L. M., Palma, J. M., Lupiáñez, J. A., del Río, L.A. (1999). Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol., 121 (3), 921–928.

Foyer, C. H., Noctor, G. (2000). Oxygen processing in photosynthesis: Regulation and signalling. New Phytol., 146, 359–388.

Gerszberg, A., Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: A review of most often engineered target sequences. Plant Growth Regul., 17, 1–24.

Hammani, K., Giegé, P. (2014). RNA metabolism in plant mitochondria. Trends Plant Sci., 19 (6), 380–389.

Huang, A. H. C. (Ed.). Plant Peroxisomes. Elsevier, 2012.

Kartel, N. A. Shpakovski, G. V., Spivak, S. G., Brichkova, G. G., Yarmolinsky, D. G., Berdichevets, I. N., Maneshina, T. V. (2004). Recombinant plasmid pGBP450f to obtain transgenic plants and a method of producing transgenic plants with improved productivity and resistance to fungal phytopathogens. [Картель, H. А., Шпаковский, Г. В., Спивак, С. Г., Бричкова, Г. Г., Ярмолинский, Д. Г., Бердичевец, И. Н., Манешина, Т. В. Рекомбинантная плазмида pGBP450f для получения трансгенных растений и способ получения трансгенных растений табака с повышенной продуктивностью и устойчивостью к грибным фитопатогенам]. Patent of the Russian Federation No. 2237717 [Патент Российской Федерации № 2237717]. Priority from 20.12.2002. Issued 10.10.2004. Bulletin of Inventions, No. 10.

Kartel, N. A. Spivak, S. G., Shpakovski, G. V., Maneshina, T. V., Brichkova, G. G., Yarmolinsky, D. G., Berdichevets, I. N. (2007). Genetic engineering construction expressing cDNA of CYP11A1 gene of animal origin in plants, and a method for producing transgenic plants with increased yield and resistance to phytopathogens. [Генно-инженерная конструкция, экспрессирующая кДНК гена CYP11A1 животного происхождения в растениях, и метод получения трансгенных растений с повышенной урожайностью и устойчивостью к фитопатогенам]. Patent of the Republic of Belarus No. 9201. [Патент Республики Беларусь № 9201]. Priority from 30.12.2002. Issued 25.01.2007.

Koyro, H. W. (1997). Ultrastructural and physiological changes in root cells of Sorghum plants (Sorghum bicolor × S. sudanensis cv. Sweet Sioux) induced by NaCl. J. Exper. Bot., 48 (3), 693–706.

Lee, J., Kim, D. H., Hwang, I. (2014). Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Frontiers Plant Sci., 5, 111–116.

Lindemann, P. (2015). Steroidogenesis in plants – Biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids, 103, 145–152.

Luzikov, V. N., Novikova, L. A., Spiridonova, V. A., Isaeva, L. V., Whelan, J., Hugosson M., Glazer E. (1994). Design of heterologous mitochondria: Import of cattle cytochrome P-450scc precursor into plant mitochondria. Biochemistry (Moscow), 59 (7), 1098–1101.

Mittova, V., Guy, M., Tal, M., Volokita, M. (2004). Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exper. Bot., 55 (399), 1105–1113.

Møller, I. M. (2001). Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.

Murashige, T., Skoog, F. A. (1962). Revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15 (3), 473–497.

Pauli, G. F., Friesen, J. B., Gödecke, T., Farnsworth, N. R., Glodny, B. (2010). Occurrence of progesterone and related animal steroids in two higher plants. J. Nat. Prod., 73 (3), 338–345.

Perry, A. J., Hulett, J. M., Likić V. A., Lithgow T., Gooley P. R. (2006). Convergent evolution of receptors for protein import into mitochondria. Curr. Biol., 16 (3), 221–229.

Poljakoff-Mayber, A. (1975). Morphological and anatomical changes in plants as a response to salt stress. In: Poljakoff-Mayber, A., Gale, J. (eds.). Plants in Saline Environments. Springer-Verlag, Berlin, pp. 97–117.

Rahman, S., Matsumuro, T., Miyake H., Takeoka Y. (2000). Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Prod. Sci., 3 (4), 422–429.

Rejeb, I. B., Pastor V., Mauch-Mani B. (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3 (4), 458–475.

del Rio, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gomez, M., Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exper. Bot., 53, 1255–1272.

Saxena, B., Shukla, K., Giri, B. (2017). Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu, Qiang-Sheng (Ed.). Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore, pp. 67–97.

Serenko, E. K., Baranova, E. N., Balakhnina, T. I., Kurenina, L. V., Gulevich, A. A., Kosobruhov, A. A., Polyakov, V. Y. (2011). Structural organization of chloroplast of tomato plants Solanum lycopersicum transformed by Fe-containing superoxide dismutase. Biochemistry (Moscow). Supplemental Series A: Membrane and Cell Biology, 5 (2), 177–184.

Shematorova, E. K., Slovokhotov, I. Yu., Baranova, E. N., Khaliluev, M. R., Babak, O. G., Klykov, V. N., Shpakovski, D. G., Spivak, S. G., Shpakovski, G. V. The role of organelles in the functioning of steroid hormonal systems in animals and higher plants. [Шематорова, E. K., Словохотов, И. Ю., Баранова, E. Н., Халилуев, М. Р., Бабак, О. Г., Клыков, В. Н., Шпаковский, Д. Г., Спивак, С. Г., Шпаковский, Г. В. Роль органелл в функционировании стероидных гормональных систем у животных и высших растений]. Proceedings of the International Conference “Mechanisms of regulation of eukaryotic cell organelles functions” [Механизмы регуляции функций органелл эукариотической клетки], Irkutsk, 22-24 May 2018), pp. 155-157 (in Russian).

Shematorova, E. K., Slovokhotov, I. Y., Khaliluev, M. R., Berdichevets, I. N., Baranova, E. N., Babak, O. G., Shpakovski, D. G., Spivak, S. G., Shpakovski, G. V. (2014). Mitochondria as a possible place for initial stages of steroid biosynthesis in plants. [Шематорова, E. К., Словохотов, И. Ю., Халилуев, М. Р., Бердичевец, И. Н., Баранова, E. Н., Бабак, О. Г., Шпаковский, Д. Г., Спивак, С. Г., Шпаковский, Г.В. Митохондрии как возможное место инициации синтеза стероидных гормонов в растениях]. J. Stress Physiol. Biochem. [Журнал стресс-физиологии и биохимии], 10 (4), 85-97 (in Russian).

Shpakovski, G. V., Spivak, S. G., Berdichevets, I. N., Babak, O. G., Kubrak, S. V., Kilchevsky, A. V., Aralov, A. V., Slovokhotov, I. Yu., Shpakovski, D. G., Baranova, E. N., Khaliluev, M. R., Shematorova, E. K. (2017). A key enzyme of animal steroidogenesis can function in plants enhancing their immunity and accelerating the processes of growth and development. BMC Plant Biol., 17 (Suppl 1): 189, pp. 120–131.

Simerský, R., Novák, O., Morris, D. A., Pouzar, V., Strnad, M. (2009). Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. J. Plant Growth Regul., 28 (2), 125–136.

Spivak, S. G., Berdichevets, I. N., Litvinovskaya, R. P., Drach, S. V., Kartel, N. A., Shpakovski, G. V. (2010). Some peculiarities of steroid metabolism in transgenic Nicotiana tabacum plants bearing the CYP11A1 cDNA of cytochrome P450scc from the bovine adrenal cortex. Russ. J. Bioorg. Chem., 36 (2), 224–232.

Spivak, S. G., Berdichevets, I. N., Yarmolinsky, D. G., Maneshina, T. V., Shpakovski, G. V., Kartel, N. A. (2009). Construction and characteristics of transgenic tobacco Nicotiana tabacum L. plants expressing CYP11A1 cDNA encoding cytochrome P450scc. Russ. J. Gen., 45 (9), 1067–1073.

Tenberge, K. B., Ruholl, C., Heinze, M., Eising, R. (1997). Purification and immuno-electron microscopical characterization of crystalline inclusions from plant peroxisomes. Protoplasma, 196 (3), 142–154.

Verma, V., Ravindran, P., Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol., 16 (1), 86.

Vinocur, B., Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol., 16 (2), 123–132.

Wang, W., Vinocur, B., Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218 (1), 1–14.

van Wijk, K. J. (2015). Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annu. Rev. Plant Biol., 66, 75–111.

Yang, X. H., Xu, Z. H., Xue, H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell, 17 (1), 116–131.

Ylstra, B., Touraev, A., Brinkmann, A. O., Heberle-Bors, E., Tunen, A. (1995). Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiol., 107 (2), 639–643.

Yoshida, T., Furihata, H. Y., Kawabe, A. (2017). Analysis of nuclear mitochondrial DNAs and factors affecting patterns of integration in plant species. Genes Genetic Syste., 92 (1), 27–33.

Zlobin, I. E., Kartashov A. V., Shpakovski, G. V. (2017). Different roles of glutathione in copper and zinc chelation in Brassica napus roots. Plant Physiol. Biochem., 118 (9), 333–341.

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 22
PDF Downloads 45 45 23