The Importance of Cyclin D1, P53, Cd56 Antigen Expression in Plasma Cells and its Correlation with Serological and Clinical Parameters in Patients with Multiple Myeloma

Open access

Abstract

CD56, p53, and Cyclin D1 detection in plasma cells (PC) can help to predict prognosis of multiple myeloma (MM). Clinical and biochemical prognostic parameters were analysed in a group of 122 patients with primary diagnosed MM in the period 2011–2015. Bone marrow biopsies were analysed with Cyclin D1, p53, CD56 antibodies. Statistical analysis was performed using Microsoft Excel 2010 and Graph Pad Prism 5. Lack of CD56 expression and p53-positivity were significantly correlated with a low glomerular filtration rate (GFR), low platelet count and haemoglobin level, as well as with high serum creatinine levels. Patients with Cyclin D1 expression in PC had a significantly higher serum calcium level and more common osteolytic lesion in bones. CD56-negative as well as p53, Cyclin D1-positive groups had advanced Salmon–Durie MM stages by and significantly higher ß2-microglobulin. Expression of p53, Cyclin D1 and lack of CD56 antigen in PC are negative predictive factors in cases of MM, as these patients were diagnosed as having late Salmon–Durie stage and higher ß2-microglobulin level. Expression of p53 and lack of CD56 antigen in PC is associated with an increased creatinine level in blood and decreased GFR; therefore, these are criteria for chronic renal failure progression and poorer prognosis of MM.

Alt, J. R., Cleveland, J. L., Hannink, M., Diehl, J. A. (2000). Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Devel., 14 (24), 3102–3114.

Athanasiou, E., Kaloutsi, V., Kotoula, V., Hytiroglou, P., Kostopoulos, I., Zervas, C., Kalogiannidis, P., Fassas, A., Christakis, J. I., Papadimitriou, C. S. (2001). Cyclin D1 Overexpression in Multiple Myeloma. Amer. J. Clin. Pathol., 116, 535–542.

Chang, H., Samiee, S., Yi. Q. L. (2006). Prognostic relevance of CD56 expression in multiple myeloma: A study including 107 cases treated with high-dose melphalan-based chemotherapy and autologous stem cell transplant. Leukemia Lymphoma, 47 (1), 43–47.

Chang, H., Yeung, J., Qi, C., Xu, W. (2007). Aberrant nuclear p53 protein expression detected by immunohistochemistry is associated with hemizygous P53 deletion and poor survival for multiple myeloma. Brit. J. Haematol., 138 (3), 324–329.

Chen, M. H., Qi, C. X., Saha, M. N., Chang, H. (2012). p53 nuclear expression correlates with hemizygous TP53 deletion and predicts an adverse out-come for patients with relapsed/refractory multiple myeloma treated with lenalidomide. Amer. J. Clin. Pathol., 137 (2), 208–212.

Cook, J. R., Hsi, E. D., Worley, S., Tubbs, R. R., Hussein, M. (2006). Immunohistochemical analysis identifies two cyclin D1+ subsets of plasma cell myeloma, each associated with favorable survival. Amer. J. Clin. Pathol., 125 (4), 615–624.

De Falco, M., Fedele, V., De Luca, L., Penta, R., Cottone, G., Cavallotti, I., Laforgia, V., De Luca, A. (2004). Evaluation of cyclin D1 expression and its subcellular distribution in mouse tissues. J. Anat., 205 (5), 405–412.

Dunphy, C. H., Nies, M. K., Gabriel, D. A. (2007). Correlation of plasma cell percentages by CD138 immunohistochemistry, cyclin D1 status, and CD56 expression with clinical parameters and overall survival in plasma cell myeloma. Appl. Immunohistochem. Mol. Morphol., 15 (3), 248–254.

Durie, B. G. M., Salmon, S. E. (1975). A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer, 3 (36), 842–854.

Goldschmidt, H., Lannert, H., Bommer, J., Ho, A. D. (2001). Renal failure in multiple myeloma “The myeloma kidney”: State of the art. Saudi J. Kidney Dis. Transplant., 12 (2), 145–150.

Greipp, P. R., Katzmann, J. A., O’Fallon, W. M., Kyle, R. A. (1988). Value of beta 2-microglobulin level and plasma cell labeling indices as prognostic factors in patients with newly diagnosed myeloma. Blood, 72 (1), 219–223.

Greipp, P. R., San Miguel, J., Durie, B. G. M., Crowley, J. J., Barlogie, B., Bladé, J., Boccadoro, M., Child, J. A., Avet-Loiseau, H., Kyle, R. A., Lahuerta, J. J., Ludwig, H., Morgan, G., Powles, R., Shimizu, K., Shustik, C., Sonneveld, P., Tosi, P., Turesson, I., Westin, J. (2005). International staging system for multiple myeloma. J. Clin. Oncol., 23 (15), 3412–3420.

Harada, H., Kawano, M. M., Huang, N., Harada, Y., Iwato, K., Tanabe, O., Tanaka, H., Sakai, A., Asaoku, H., Kuramoto, A. (1993). Phenotypic difference of normal plasma cells from mature myeloma cells. Blood, 15, 81 (10), 2658–2663.

Harrington, A. M., Hari, P., Kroft, S. H. (2009). Utility of CD56 Immunohistochemical studies in follow-up of plasma cell myeloma. Amer. J. Clin. Pathol., 132, 60–66.

Hitomi, M., Stacey, D. W. (1999). Cellular ras and cyclin D1 are required during different cell cycle periods in cycling NIH 3T3 cells. Mol. Cell. Biol., 19 (7), 4623–4632.

Hundemer, U., Klein, D. Hose, Raab, M. S., Cremer, F. W., Jauch, A., Benner, A., Heiss, C., Moos, M., Ho, A. D., Goldschmidt, H. (2007). Lack of CD56 expression on myeloma cells is not a marker for poor prognosis in patients treated by high-dose chemotherapy and is associated with translocation t(11;14). Bone Marrow Transplant., 40, 1033–1037.

Lokhorst, H. (2002). Clinical features and diagnostic criteria. In: Mehta, J., &Singhal, S. (eds.). Myeloma. Martin Dunitz Ltd., London, pp. 151–168.

Lonial, S., Durie, B., Palumbo, A., San-Miguel, J. (2016). Monoclonal antibodies in the treatment of multiple myeloma: Current status and future perspectives. Leukemia, 30 (3), 526–535.

Markovic, O., Marisavljevic, D., Cemerikic, V., Suvajdzic, N. , Milic, N., Colovic, M. (2004). Immunohistochemical analysis of cyclin D1 and p53 in multiple myeloma: Relationship to proliferative activity and prognostic significance. Med. Oncol., 21 (1), 73–80.

Padhi, S., Varghese, R. G., Ramdas, A. (2013). Cyclin D1 expression in multiple myeloma by immunohistochemistry: Case series of 14 patients and literature review. Ind. J. Med. Paediatr. Oncol., 34 (4), 283–291.

Pildava, S. (2012). Multiplā mieloma. Doctus, 16.07.2012. Available from: http://www.doctus.lv/2012/7/multipla-mieloma (last accessed 21.03.2016).

Rawstron, A., Barrans, S., Blythe, D., Davies, F., English, A., Pratt, G., Child, A., Morgan, G., Jack, A. (1999). Distribution of myeloma plasma cells in peripheral bloodand bone marrow correlates with CD56 expression. Brit. J. Haematol., 104, 138–143.

Sahara, N., Takeshita, A., Shigeno, K., Fujisawa, S., Takeshita, K., Naito, K., Ihara, M., Ono, T., Tamashima, S., Nara, K., Ohnishi, K., Ohno, R. (2002). Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Brit. J. Haematol., 117, 882–885.

Sailer, M., Vykoupil, K. F., Peest, D., Coldewey, R., Deicher, H., Georgii, A. (1995). Prognostic relevance of a histologic classification system applied in bone marrow biopsies from patients with multiple myeloma: A histopathological evaluation of biopsies from 153 untreated patients. Eur. J. Haematol., 54 (3), 137–146.

Soussi, T. (2010).The history of p53: A perfect example of the drawbacks of scientific paradigms. EMBO Reports, 11 (11), 822–826.

Soverini, S., Cavo, M., Cellini, C., Terragna, C., Zamagni, E., Ruggeri, D., Testoni, N., Tosi, P., De Vivo, A., Amabile, M., Grafone, T., Ottaviani, E., Giannini, B., Cangini, D., Bonifazi, F., Neri, A., Fabris, S., Tura, S., Baccarani, M., Martinelli, G. (2003). Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation, Blood, 102 (5), 1588–1594.

Strachan, T., Read, A. P. (eds.) (1999). Human Molecular Genetics. 2nd edn. Wiley-Liss, New York, Chapter 18, p. 576.

Teoh, P. J., Chng, W. J. (2014). p53 abnormalities and potential therapeutic targeting in multiple myeloma. BioMed Res. Int., 2014, 1–9.

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 116 9
PDF Downloads 87 87 7