Motion-Induced Blindness Using Increments and Decrements of Luminance

Open access

Abstract

Motion-induced blindness describes the disappearance of stationary elements of a scene when other, perhaps non-overlapping, elements of the scene are in motion. We measured the effects of increment (200.0 cd/m2) and decrement targets (15.0 cd/m2) and masks presented on a grey background (108.0 cd/m2), tapping into putative ON- and OFF-channels, on the rate of target disappearance psychophysically. We presented two-frame motion, which has coherent motion energy, and dynamic Glass patterns and dynamic anti-Glass patterns, which do not have coherent motion energy. Using the method of constant stimuli, participants viewed stimuli of varying durations (3.1 s, 4.6 s, 7.0 s, 11 s, or 16 s) in a given trial and then indicated whether or not the targets vanished during that trial. Psychometric function midpoints were used to define absolute threshold mask duration for the disappearance of the target. 95% confidence intervals for threshold disappearance times were estimated using a bootstrap technique for each of the participants across two experiments. Decrement masks were more effective than increment masks with increment targets. Increment targets were easier to mask than decrement targets. Distinct mask pattern types had no effect, suggesting that perceived coherence contributes to the effectiveness of the mask. The ON/OFF dichotomy clearly carries its influence to the level of perceived motion coherence. Further, the asymmetry in the effects of increment and decrement masks on increment and decrement targets might lead one to speculate that they reflect the ‘importance’ of detecting decrements in the environment.

Agresti, A., Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. American Statist., 54, 280-288.

Agresti, A., Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Statist., 52, 119-126.

Balasubramanian, V., Sterling, P. (2009). Receptive fields and functional architecture of the retina. J. Physiol., 12, 2753-2767.

Bonneh, Y. S., Cooperman, A., Sagi, D. (2001). Motion-induced blindness in normal observers. Nature, 411, 797-801.

Bonneh, Y. S., Donner, T. H., Sagi, D., Fried, M., Cooperman, A., Heeger, D. J., Arieli, A. (2010). Motion-induced blindness and microsaccades: Cause and effect. J. Vis., 10, 1-15.

Bonneh, Y. S., Donner, T. H., Cooperman, A., Heeger, D. J., Sagi, D. (2014). Motion-induced blindness and Troxler fading: Common and different mechanisms. PLoS ONE, 9, e92894.

Burr, D. C., Ross, J. (2002). Direct evidence that “speedlines” influence motion mechanisms. J. Neurosci., 22, 8661-8664.

Caetta, F., Gorea, A., Bonneh, Y. S. (2007). Sensory and decisional factors in motion-induced blindness. J. Vis., 7 (7), 1-12.

Clarke, F. J. J., Belcher, S. J. (1962). On the localization of Troxler’s effect in the visual pathway. Vis. Res., 2, 53-68.

Dacey, D. M. (2004). Origins of perception: Retinal ganglion cell diversity and the creation of parallel visual pathways. In: Gazzaniga, M. S. (Ed.). The Cognitive Neurosciences. 3rd edn. MIT Press, Cambridge, MA, pp. 281-303.

Dacey, D. M., Joo, H. R., Peterson, B. B., Haun, T. J. (2010). Morphology, mosaics, and targets of diverse ganglion cell populations in macaque retina: Approaching a complete account. Investig. Ophthalmol. Vis. Sci., Vol. 51, April, 889. Available from: http://iovs.arvojournals.org/article.aspx?articleid=2369842&resultClick=1

Del Viva, M. M., Gori, M., Burr, D. C. (2006). Powerful motion illusion aused by temporal asymmetries in ON and OFF visual pathways. J. Neurophysiol., 95, 3928-3932.

DeMarco, P. J., Hughes, A., Purkiss, T. J. (2000). Increment and decrement detection on temporally modulated fields. Vis. Res., 40, 1907-1919.

Dolan, R. P., Schiller, P. H. (1994). Effects of ON channel blockade with 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys. Vis. Neurosci., 11, 23-32.

Donner, T. H., Sagi, D., Bonneh, Y. S., Heeger, D. J. (2008). Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. J. Neurosci., 28, 10298-10310.

Donner, T. H., Sagi, D., Bonneh, Y. S., Heeger, D. J. (2013). Retinotopic patterns of correlated fluctuations in visual cortex reflect the dynamics of spontaneous perceptual suppression. J. Neurosci., 33, 2188-2198.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7, 1-26.

Efron, B., Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, FL. 456 pp.

Funk, A. P., Pettigrew, J. D. (2003). Does interhemispheric competition mediate motion-induced blindness? A transcranial magnetic stimulation study. Perception, 32, 1328-1338.

Gorea, A., Caetta, F., (2009). Adaptation and prolonged inhibition as a main cause of motion-induced blindness. J. Vis., 9, 1-17.

Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578-580.

Glass, L., Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived. Perception, 5, 67-72.

Graf, E. W., Adams, W. J., Lages, M. (2002). Modulating motion-induced blindness with depth ordering and surface completion. Vis. Res., 42, 2731-2735.

Grindley, G. C., Townsend, V. (1965). Binocular masking induced by a moving object, Quarterly J. Exper. Psychol., 17, 97-109.

Hsu, L.-C., Yeh, S.-L., Kramer, P. A common mechanism for perceptual filling- in and motion-induced blindness. Vis. Res., 46, 1973-1981.

Jin, J., Wang, Y., Lashgari, R., Swadlow, H. A., Alonso, J.-M. (2011). Faster thalamocortical processing for dark than light visual targets. J. Neurosci., 31, 17471-17479.

Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception Psychophysics, 63, 1421-1455.

Komban, S. J., Alonso, J.-M., Zaidi, Q. (2011). Darks are processed faster than lights. J. Neurosci., 31, 8654-8658.

Krauskopf, J. (1963). Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Optical Soc. Amer., 53, 741-744.

Krekelberg, B., Dannenberg, S., Hoffmann, K. P., Bremmer, F., Ross, J. (2003). Neural correlates of implied motion. Nature, 424, 674-677.

Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., Dyar T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297-305.

Mather, G., Pavan, A., Marotti, R. B., Campana, G., Casco, C. (2013). Interactions between motion and form processing in the human visual system. Frontiers Comput. Neurosci., 7, 1-6.

Moors, J., Coenen, A. M. L., Gerrits, H. J. M., Vendrik, A. J. H. (1974). The filling-in phenomenon in vision and McIlwain’s periphery effect. Exper. Brain Res., 19, 343-450.

New, J. J., Scholl, B. J. (2008). “Perceptual scotomas'”: A functional account of motion-induced blindness. Psychol. Sci., 19, 653-659.

Ramachandran, V. S., Gregory, R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature, 350, 699-702.

Ratliff, C. P., Borghuis, B. G., Kao Y.-H., Sterling, P., Balasubramanian, V. (2010). Retina is structured to process an excess of darkness in natural scenes. Proc. Nat. Acad. Sci., 107, 17368-17373.

Ross, J., Badcock, D. R., Hayes, A. Coherent global motion in the absence of coherent velocity signals. Curr. Biol., 10, 679-682.

Schiller, P. H. (1992). The ON and OFF channels of the visual system. Trends Neurosci., 15, 86-92.

Schiller, P. H., Sandell, J. H., Maunsell, J. H. R. (1986). Functions of the ON and OFF channels of the visual system. Nature, 322, 824-825.

Schölvinck, M. L., Rees, G. (2009). Attentional influences on the dynamics of motion-induced blindness. J. Vis., 9, 1-12.

Tanaka, K. (1992). Inferotemporal cortex and higher visual functions. Curr. Opin. Neurobiol., 2, 502-505.

Troxler, D. (1804). Über das Verschwindern gegebener Gegenstände innerhalb unsers Gesichtskrcises. In: Himley, K., Schmidt, J. A. (eds.). Ophthalmologisches Bibliothek. Vol. II. Fromann, Jena, pp. 51-53.

Wells, E. T., Leber, A. B., Sparrow, J. E. (2011). The role of mask coherence in motion-induced blindness. Perception, 40, 1503-1518.

Westheimer, G. (2007). The ON-OFF dichotomy in visual processing: From receptors to perception. Progr. Retinal Eye Res., 26, 636-648.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. J. Amer. Statist. Assoc., 22, 209-212.

Xing, D., Yeh, C.-I., Shapley, R. M. (2010). Generation of black-dominant responses in V1 cortex. J. Neurosci., 30, 13504-13512.

Yeh, C.-I, D. Xing, R. M. Shapley (2009). “Black” responses dominate macaque primary visual cortex V1. J. Neurosci., 29, 11753-11760.

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 171 13
PDF Downloads 88 88 5