Perception of Biological Motion in Central and Peripheral Visual Fields

Open access

Abstract

Studies analysing biological motion perception based on reduced number of dots have demonstrated that biological motion can be perceived even when only the lower part of the body is visible or when the number of dots representing the object is reduced. What is the minimal amount of information that enables biological motion to be distinguished from its scrambled version? The results of the current experiment demonstrate that biological motion can be distinguished from its scrambled version when the object is formed of approximately 5 (4.7 ± 0.1) dots. Additionally, we also investigated whether the threshold value for biological motion perception differs in central and peripheral visual fields. By using stimulus magnification, we demonstrate that the number of dots sufficient for biological motion perception is similar in the central visual field and near periphery. Hence, stimulus magnification can compensate for reduced task performance in the peripheral visual field. The current results suggest that reduced performance of biological motion perception in the peripheral visual field (as demonstrated in other studies) is due to difficulties with the global perception of biological motion.

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47, 3023-3029.

Barclay, C. D., Cutting, J. E., Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys., 23 (2), 145-152.

Barrett, H. C., Todd, O. M., Miller, G. F., Blythe, P. W. (2005). Accurate judgments of intention from motion cues alone: A cross-cultural study. Evol. Hum. Behav., 26 (4), 313-331.

Beintema, J. A., Lappe, M. (2002). Perception of biological motion without local image motion. Proc. Natl. Acad. Sci. USA, 99 (8), 5661-5663.

Bertenhal, B. I., Pinto, J. (1994). Global processing of biological motion. Psychol. Sci., 5 (4), 221-225.

Blake, R., Schiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58, 47-73.

Boyton, G. M., Duncan, R. O. (2002). Visual acuity correlates with cortical magnification factors in human V1 [Abstract]. J. Vis., 2 (10), 11.

Campbell, R. A., Lasky, E. Z. (1968). Adaptive Threshold Procedures: BUDTIF. J. Acoust. Soc. Amer., 44 (2), 537-541

Chung, S. T. L., Mansfield, J. S., Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vis. Res., 38 (19), 2949-2962.

Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34, 1171-1180.

Cutting, J. E., Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychonomic Soc., 9 (5), 353-356.

Cutting, J. M., Moore, C., Morrison, R. (1988). Masking the motions of human gait. Percept. Psychophys., 44 (4), 339-347.

Duncan, R., O., Boynton, G., M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron, 38, 659-667.

Finlay, D. (1982). Motion perception in the peripheral visual field. Perception, 11 (4), 457-462.

Freire, A., Lewis, T. L., Maurer, D., Blake, R. (2006). The development of sensitivity to biological motion in noise. Perception, 35, 647-657.

Giese, M. A. (2015). Biological and body motion perception In: Wagemans, J. (Ed.). The Oxford Handbook of Perceptual Organization. Oxford University Press, Oxford, pp. 575-600.

Giese, M. A., Lappe, M. (2002). Measurement of generalization fields for the recognition of biological motion. Vis. Res., 42 (15), 1847-1858.

Gurnsey, R., Roddy, G., Ouhnana, M., Troje, N. F. (2008). Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vis. Res., 48, 2827-2834.

Gurnsey, R., Roddy, G., Troje, N. F. (2010) Limits of peripheral direction discrimination of point-light walkers. J. Vis., 10 (2), 1-17.

Higgins, K. E., Arditi, A., Knoblauch, K., (1996). Detection and identification of mirror-image letter pairs in central and peripheral vision. Vis. Res., 36 (2), 331-337.

Hunt, A. R. Halper, F. (2008). Disorganizing biological motion. J. Vis., 8 (12), 1-5.

Ikeda, H., Blake, R., Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vis. Res., 45, 1935-1943.

Johansson, G. (1973), Visual perception of biological motion and a model for its analysis. Percept. Psychophys., 14, 201-211.

Johansson, G., Van Hofsten, C., Jansson, G. (1980). Event perception. Ann. Rev. Psychol., 31, 27-63.

Johnston, A., Wright, M., (1986). Matching velocity in central and peripheral vision. Vis. Res., 26, 1099-1109.

Kalloniatis, M., Luu, C. (2005). Visual Acuity. In: Kolb, H., Fernandez, E., Nelson, R. (eds.). Webvision: The Organization of the Retina and Visual System. Salt Lake City (UT): University of Utah Health Sciences Center. May 1 [Updated 2007 Jun 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK11509/ (accessed 15 September 2016).

Kozlowski, L.T., Cutting, J. E. (1977). Recognising the sex of a walker from a dynamic point-light display. Percept. Psychophys., 21, 575-580

Lappin, J. S., Tadin, D., Nyquist, J. B., Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. J. Vis., 9 (1):30, 1-14.

Levitt, H. (1970). Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Amer., 49 (2), 467-477.

Mather, G., Radford, K., West, S. (1992). Low level visual processing of biological motion. Proc. Roy. Soc. London B: Biol. Sci., 249, 149-155.

Mather, G., Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proc. Biol. Sci., 258 (1353), 273-279.

McKay, L., Mackie, J., Piggott, J., Simmons, D. R., Pollick, F. E. (2006). Biological motion processing in autistic spectrum conditions: Perceptual and social factors. J. Vis., 6, 1036.

McKee, S. P., Nakayama, K., (1984). The detection of motion in the peripheral visual field. Vis. Res., 24 (1), 25-32.

Meissirel, C., Wikler, K. C., Chalupa, L. M., Rakics, P., (1997). Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system. Proc. Natl. Acad. Sci. USA, 94 (11), 5900-5905.

Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., Alaerts, K., (2012). Recognizing biological motion and emotions from point-light displays in autism spectrum disorders, PLOS ONE, 7 (9), e44473.

Neri, P., Concetta Morrone, M., Burr, D. C. (1998). Seeing biological motion. Nature, 395, 894-896.

Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. MIT Press. 258 pp.

Rovamo, J., Virsu, V., Näsänen, R., (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271, 54-56.

Sally, S. L., Gurnsey, R. (2003). Orientation discrimination in foveal and extra- foveal vision: Effects of stimulus bandwidth and contrast. Vis. Res., 43 (12), 1375-1385.

Schouten, B., Davila, A., Verfaillie, K. (2013). Further explorations of the facing bias in biological motion perception: Perspective cues, observer sex, and response times. PloS One, 8 (2), e56978.

Sperling, G., Landy, M. S., Dosher, B. A., Perkins, M. E. (1989). Kinetic depth effect and identification of shape. J. Exper. Psychol.: Human Percept. Perform., 15 (4), 826-840.

Tannazzo, T., Kurylo, D. D., Bukhari, F. (2014). Perceptual grouping across eccentricity. Vis. Res., 103, 101-108.

Thompson, B., Hansen, B. C., Hess, R. F., Troje, N. F. (2007). Peripheral vision: Good for biological motion, bad for signal noise segregation? J. Vis., 7 (10):12, 1-7.

Tran, T. H., Guyader, N., Guerin, A., Despretz, P., Boucart, M., (2011). Figure ground discrimination in age-related macular degeneration. Investig. Ophthalm. Vis. Sci., 52, 1655-1660.

Troje, N. F., Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “Life Detector”? Curr. Biol., 16, 821-824.

Vanrie, J., Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Meth. Instrum. Comp., 36, 625-629.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull., 138 (6), 1172-1217.

Wang, L., Yang, X., Shi, J., Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224.

Wallach, H., O’Connell, D. N. (1953). The kinetic depth effect. J. Exper. Psychol., 45 (4), 205-217.

Wurbs, J., Mingolla, E., Yazdanbakhsh, A. (2013). Modeling a space-variant cortical representation for apparent motion. J. Vis., 13 (10):2, 1-17.

Zacks, J. M., Tversky, B., Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. J. Exper. Psychol. Gen., 130 (1), 29-58.

Zlatkova, M. B., Anderson, R. S., Ennis, F. A. (2001). Binocular summation for grating detection and resolution in foveal and peripheral vision. Vis. Res., 41 (24), 3093-3100.

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 241 8
PDF Downloads 128 127 4