
INTRODUCTION

The broad field of chaos theory has been among the most
interesting issues researchers have studied in recent dec-
ades. Concepts related to chaos theory and its related disci-
plines are employed in different fields, including medicine
(Sarbaz et al., 2012; Aghababa and Borjkhani 2014; Provata
et al., 2012), economics (Pan et al., 2012; Airaudo and
Zanna, 2012), functioning of laser diodes (Banerjee et al.,
2012; Gao, 2012), and mathematics (Hosseinalipour, 2013;
Kupka, 2014). The control of chaos-related phenomena has
attracted wide attention from many different kinds of re-
searchers.

Although the idea of fractional-order operators has a history
as long as that of integer-order operators, interest in this
field is expanding due to an increasing amount of attention
from scientists and mathematicians. In recent decades,
fractional-order operators have been the driving force be-
hind an increasing number of investigations. With the de-
velopment of studies in this area, practical and theoretical
investigations into the application of fractional-order opera-
tors in engineering sciences have now become widespread
in the academic community (Padula and Visioli, 2014;
Pakzad et al., 2013; Tripathy et al., 2015a; Tripathy et al.,
2015b). For example, fractional-order calculations have
been applied in mechanical and electrical engineering, biol-
ogy, economics, and mathematics, among other fields (Her-

nandez et al., 2014; Wang and Li, 2014; Cortes and
Elejabarrieta, 2007).

A chaotic system is a highly complex, dynamic nonlinear
system. The important and salient characteristics of chaotic
systems include their extreme sensitivity to initial condi-
tions, making the synchronisation of chaotic systems vital.
The rapid increase in interest in fractional-order chaotic sys-
tems has manifested in investigations into the chaotic be-
havior of fractional-order horizontal platform systems
(Aghababa, 2014) and in the proliferation of other published
articles on these systems (Yin et al., 2013; Li and Chen,
2014; Li and Tong, 2013).

During the past two decades, the control and synchronisa-
tion of fractional-order and integer-order chaotic systems
have largely attracted scientists and researchers due to their
potential applications in secure communications, biological
systems, medicine, and other fields. For example, an
active-control technique has been provided for the identical
and non-identical synchronisation of fractional-order cha-
otic systems (Srivastava et al., 2014). In a different applica-
tion, function-projective synchronisations (FPS) of identical
and non-identical modified finance systems (MFS) and the
Shimizu–Morioka system (S-MS) have been studied via ac-
tive control technique (Kareem et al., 2012). Fast projective
synchronisation of fractional-order chaotic and reverse cha-
otic systems with its application to an affine cipher using
date of birth (DOB) have also been reviewed (Muthukumar
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et al., 2015). Specifically related to our paper, an adaptive
sliding mode controller with a robust synchronisation ap-
proach has been proposed for fractional-order chaotic sys-
tems in the presence of uncertainty (Zhang and Yan, 2014).
A new controller for the master–slave synchronisation of a
chaotic Lur’e system has been provided by Xiao et al.

(2014). In addition, a discrete-time sliding mode controller
has been suggested for the master–slave synchronisation of
chaotic systems in the presence of uncertainties (Pai, 2014).
Faieghi and Delavari studied chaotic synchronisation of the
Genesio-Tesi system utilising either an active-control or a
sliding-mode strategy (Faieghi and Delavari, 2012).

In this paper, a set of fractional-order chaotic systems with
uncertainty and external noise is considered, which can in-
clude a variety of fractional-order chaotic systems such as
Chen, Lorenz, Lu, Liu, and financial. A fractional-order
sliding mode controller is proposed based on the system’s
error dynamics, leading to the control and synchronisation
of fractional-order uncertain chaotic systems in the presence
of external noise. In addition, asymptotic stability of the
proposed controller is investigated. The simulation results
clearly demonstrate the effectiveness of the proposed
method in the elimination of uncertainty and the quicker
convergence response from the system.

PRELIMINARIES

The derivative operator-integrator is characterised by a t

q
D ,

a combination of differential–integral operators used in the
calculations. This operator symbol is defined as follows:

a t

q

q

q

q

q

t

D

d

dt
q

q

dt q

�

�

�

�

�

�
�

�

�
�

	


0

1 0

0( )

(1)

where q is the fractional order. There are various definitions
for fractional derivative and integral factors; the most com-
mon are the Grunwald–Letnikov derivative, the Riemann–
Liouville fractional derivative, and the Caputo derivative.
For the remainder of this paper the Riemann-Liouville (RL)
definition of fractional derivative is used. The RL fractional
derivative in the order of q is explained below (Monje et al,
2010):
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where m is the first integer that is not less than q, i.e.
m q m	 � �1 , and �(. ) is the well-known Euler’s gamma
function:
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Lemma 1 (Matignon, 1996). The following autonomous
system:

d x
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q

q
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with 0 1� �q , x R
n� , and A R

n n� � , is asymptotically stable
if and only if
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In this case, each component of these states decays toward 0
like t

q	 . Also, this system is stable if and only if
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and those critical eigenvalues that satisfy

arg( ( ))eig A
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2
have a geometric multiplicity of one.

SYSTEM DESCRIPTION

In this paper, we consider chaos synchronisation for the uni-
fied fractional-order chaotic system (Chai, 2013). The math-
ematical model for the unified fractional-order chaotic sys-
tem is given by
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where x x x1 2 3, , are state variables and parameter � �� � 0 1, .
In fact, the aforementioned chaotic system has chaotic be-
havior for � �� � 0 1, . It is called a general Lorenz system
when � �� � 0 0 8, . ; it becomes a general Lu system when
� � 0 8. , and a general Chen system at � �� � 0 81. , .

If we consider System (5) to be the master, the slave system
would be as follows
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where y y y1 2 3, , are state variables and q consists of frac-
tional orders that satisfy 0 1� �qi . For added convenience,
we rewrite the master and slave system as below.

D X t AX t Bg X
q ( ) ( ) ( )� � (7)

D Y t AY t Bg Y
q ( ) ( ) ( )� � (8)

where
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To control and synchronise unified fractional-order chaotic
systems, the control input � �U t u t u t u t( ) ( ), ( ), ( )� 1 2 3 is added
to the slave system:

D Y t AY t Bg y U t
q ( ) ( ) ( ) ( )� � � (9)

The aim of adding the sliding mode controller U t( ) to Sys-
tem (8) is the minimisation of synchronisation error; i.e.,
lim ( )
t

e t
��

� 0. In this formulation, e t y t x t( ) ( ) ( )� 	 .

SYNCHRONISATION VIA FRACTIONAL-ORDER
SLIDING MODE CONTROLLER

A sliding mode controller usually is implemented with two
objectives. First, it allows definition of the vector of the
sliding surface. Second, the control signal to reach the slid-
ing surface can be determined. In this article, a fractional-
order sliding surface is proposed that guarantees the syn-
chronisation of both master and slave systems.

Design of switching surface

The sliding fraction-integer integral surface is as follows:

S t D E t A K E d
q

t
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0
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where D E t D Y t D X t
q q q	 	 	� 	1 1 1( ) ( ) ( ), � �S S S S� 1 2 3, , , and

K R� �3 3 is a designed parameter matrix. In the sliding
mode, the sliding surface and its derivative must satisfy:

s t s t( ) , �( )� �0 0 (11)

This means that:
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Thus, for satisfaction of Equation (11), Ueq will be as fol-
lows:
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To satisfy the sliding condition, the reaching law can be
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In addition, r and � stand for non-negative constant or con-
trol gains.

Using Equations (13) and (14), the control rule is defined as
follows:

U t U t U t KE t Bg X Bg Yeq r( ) ( ) ( ) ( ) ( ) ( )� � � � 	 	

	 �( ( ))rS sign S� (16)

Theorem 1. The Control law (16) based on the defined slid-

ing surface (10) synchronises the trajectories of systems (7)

and (9) and within r � 0 and � � 0 gains, dependent on the

appropriate selection of matrix K to be like
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q
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2
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2
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guaranteed that the state jumps at the switching instants.
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Since the Lyapunov function is positive and its derivation is
negative, the asymptotic stability of the controller is
achieved only when the controller’s gains are selected ap-
propriately, i.e. r � 0 and � � 0.

Design of sliding mode controller for synchronisation of un-
certainty systems

Now, consider the System (5) in the presence of uncertainty
and external noise:
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where �f x x x ii ( , , ), , ,1 2 3 12 3� , are the parameter uncertain-
ties, and d t ii ( ), , ,�12 3 are external noise perturbations. For
convenience, we rewrite System (18) as below.

D X t AX t Bg X H X t
q ( ) ( ) ( ) ( , )� � � (19)

where � � �f x x x f x x x f x x x( , , ) [ ( , , ), ( , , ),1 2 3 1 1 2 3 2 1 2 3�
�f x x x

T

3 1 2 3( , , )] , d t d t d t d t
T( ) [ ( ), ( ), ( )]� 1 2 3 and matrices A,

B and function g(. ) are defined as in System (7) and
H X t f x x x d t( , ) ( , , ) ( )� �� 1 2 3 .

In addition, considering that the uncertainties and external
noises are finite, the upper bound of H X t( , ) is assumed to be
equal to  1 . i.e. H X t( , ) �  1 .

When uncertainty, noise, and control signal are added to the
slave system, we have:
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where �f y y y ii ( , , ), , ,1 2 3 4 5 6� , are the parameter uncer-
tainties and d t ii ( ), , ,� 4 5 6 are external noise perturba-
tions. With rewriting of System (20) as shown below, we
will have:

D Y t AY t Bg Y H Y t U t
q ( ) ( ) ( ) ( , ) ( )� � � � (21)

where � � �f y y y f y y y f y y y( , , ) [ ( , , ), ( , , ),1 2 3 4 1 2 3 5 1 2 3�
�f y y y

T

6 1 2 3( , , )] , d t d t d t d t
T( ) [ ( ), ( ), ( )]� 4 5 6 , U t( ) �

[ ( ), ( ), ( )]u t u t u t1 2 3 , and matrices A, B and function g(. ) are
defined as in System (8) and H Y t f y y y d t( , ) ( , , ) ( )� �� 1 2 3 .
In addition, we have assumed that the upper bound of
H Y t( , ) is equal to, i.e. H Y t( , ) �  2 . The designed sliding
mode controller based on sliding surface Equation (10) is
presented as:

U t KE t Bg X Bg Y rS sign S( ) ( ) ( ) ( ) ( ( )� � 	 	 � ��  1 1

��  2 2 sign S( )) (22)

Similar to Theorem 1, we can design a sliding mode con-
troller for asymptotic stability of the error trajectories be-
tween the master and slave systems.

Theorem 2. Consider the master–slave configuration of a

fractional-order chaotic unified system in the presence of

uncertainty and external noise in Equations (19) and (21).

With proper adoption of the control law in Eq. (22), where

r � 0, �1 1� 	 , and �1 1� , as well as an appropriate matrix

K, to be like arg( ( ))eig A K
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2
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and the proposed sliding surface is asymptotically stable.

Proof. The candidate Lyapunov function is as below:
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Therefore, a Lyapunov function has been found that satis-
fies the conditions of the Lyapunov theorem (V � 0, � )V � 0 .
The calculated Control law (22) is asymptotically stable.

Designing a sliding mode controller for two separate, frac-
tional-order uncertain chaotic system in the presence of ex-
ternal noise

The goal is the synchronisation of the two separate frac-
tional-order chaotic systems. Therefore, we rewrite the mas-
ter system in the presence of uncertainty and external noise
as below.

D X t A X t B g X H X t
q 1

1 1( ) ( ) ( ) ( , )� � � (25)

where H X t f x x x d t( , ) ( , , ) ( )� �� 1 2 3 . In addition, the slave
system is as follows:
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where H Y t f y y y d t( , ) ( , , ) ( )� �� 1 2 3 .

Using Equations (25) and (26), we define the error signal
as:

D Y t D X A Y t B g Y H Y t U t
q q2 1

2 2( ) ( ) ( ) ( , ) ( )	 � � � � 	

	 	 	A X t B g X H X t1 1( ) ( ) ( , ). (27)

By adding D X t D X t
q q2 2( ) ( )	 and A X t A X t2 2( ) ( )	 expressions
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where D E t D Y t D X t
q q q2 2 2( ) ( ) ( )� 	 and A E t A Y t2 2( ) ( )� 	

A X t2 ( ).

As a choice, a new fraction-integer integral switching sur-
face S t( ) is selected as follows:

S t D E t A K E d
q
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0
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The proposed control law for the two separate frac-
tional-order chaotic systems is as follows

U t KE t B g X B g Y A X t A X t( ) ( ) ( ) ( ) ( ( ) ( ))� � 	 	 	 	1 2 2 1

	 	 	( ( ) ( ))D X t D X t
q q1 2

	 � �( ( ) ( ))rS sign S sign S�  �  1 1 2 2 (31)

Theorem 3. The trajectories of the system in Equation (26)

tend to those of the master system in Equation (25) if the

sliding surface and control law are selected as Equations

(30) and (31), respectively, where constants of gain control

are adopted as r � 0, �1 1� 	 , �2 1� , and an appropriate

matrix K is selected such

that. arg( ( ))eig A K
q

2
2

2
� �

�
.

Proof. Choosing the candidate Lyapunov function as

V S S
T�

1

2
(32)

We have
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Since the Lyapunov function is positive and its derivation is
negative, asymptotic stability of the controller is only
achieved when the controller’s gains are selected appropri-
ately, i.e., r � 0, �1 1� 	 , and �2 1� .

SIMULATION RESULT

In this section, two clear examples are presented based on
the proposed sliding mode controller. The output results
support the theoretical results.

Example 1. The fractional-order Lorenz chaotic system is a
subsidiary of the unified fractional-order chaotic systems in
Equation (5) (� � 0). Chaotic behavior has been shown
without uncertainty, external noise, and input in Fig. 1.
Here, we have considered Master System (18) in the pres-
ence of uncertainty:

�f x x x x x x( , , ) . [sin( ) sin( ) cos( ),1 2 3 1 2 30 3 2� � � �

cos( ) cos( ) sin( ),sin ( ) sin( )]� � � � �x x x x x
T

1 2 3
2

1 32

and external noise d t t t t
T( ) . [cos( ),cos( ),cos( )]� 0 3 3 4 6 , and

Slave System (20) in the presence of uncertainty:

�f y y y y y y( , , ) . [cos( ) cos( ) cos( ),1 2 3 1 2 30 25 3� � � �

sin( ) sin ( ),sin( ) cos ( )]� � � �y y y y
T

1
2

3 1
2

22 2

and external noise d t t t t
T( ) . [sin( ),sin( ),sin( )]� 0 25 3 4 7 . In ad-

dition, we have H X t( , ) .� 0 6 and H Y t( , ) .� 0 5.

For simulation results, we have suggested:

q � [ . , . , . ]0 995 0 995 0 995 ,

[ ( ) ( ) ( )] [ ,. . .
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1 0

0 005
2 0

0 005
30 0 0 8 6D x D x D xt t t

	 	 	 � 	 , ]12
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0 005
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30 0 0 2 5D y D y D yt t t

	 	 	 � 	 , ]	8

for the fractional-order and initial conditions of the master
and slave systems, respectively; we choose

	 	 	

	 	
�

�

�
�
�

�

�

�
�
�

15 15 9

13 0 4

0 0 0

to place eigenvalues ! i i, , ,�12 3 of A K� as (-21.3066,
-4.6934, -2.6667) and guarantee min arg( ) .i i! � �31416
q�

2
15629� . . Thus, the stability of sliding motion is ensured.

Moreover, in this simulation control parameters r �1, �1 1� ,
�2 12� . ,  1 0 6� . ,  2 0 5� . have been selected.

The simulation results are shown in Figures 2–4. Fig. 2
gives the time of synchronisation error states. Fig. 3 shows
the synchronisation on the effectiveness of the sliding mode
control-system variables x y x y x y1 1 2 2 3 3, , , , , . Fig. 4 gives
the trajectory of the control input for [ , , . ]r � � �1 1 121 2� �
and [ . , . , . ]r � � �12 12 151 2� � .

As can be seen in Example 1, the greater the increase in the
constants of Gain Controller Equation (22), the lower the
decrease in synchronisation time and the chattering phe-
nomenon.

Example 2. This example shows the synchronisation of two
separate fractional-order chaotic systems. We have adopted
Chen and Lorenz systems as the master and slave systems,
respectively. Also, chaotic behavior in the Chen system has
been shown without uncertainty, external noise, and input in
Fig. 5 ( )� �1 . Here, we have considered System (25) to be
the master system in the presence of uncertainty:

�f x x x x x x( , , ) . [sin( ) cos( ) cos( ),1 2 3 1 2 30 4� � � �

Fig 1. Phase diagram of the
Lorenz system with fractional
order q = [0.995, 0.995, 0.995].
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sin( ) cos( ) sin( ),� � �x x x1 2 34 3

cos( ) cos( ) cos( )]4 3 21 2 3� � �x x x
T

and external noise d t t t t
T( ) . [sin( ),sin( ),sin( )]� 0 4 6 4 2 , and

System (26) as the slave system in the presence of uncer-
tainty:

Fig 2. Time of synchronisa-
tion error states.

Fig 3. Result of synchronisa-
tion of the state variables.

Fig 4. The evolutions of con-
trol law (22) for U t1( ) where
[ , , . ]r � � �1 1 121 2� � and U t2 ( )
where [ . , . ,r � �12 121�
�2 15� . ].
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�f y y y y y y( , , ) . [cos( ) cos( ) sin( ),1 2 3 1 2 30 35 3 2� � � �

sin( ) sin( ) sin( ),� � �y y y1 2 35 2

cos( ) sin( ) sin( )]� � �y y y
T

1 2 32 4

and external noise d t t t t
T( ) . [cos( ),cos( ),cos( )]� 0 35 4 4 2 .

In addition, we have H X t( , ) .� 0 8 and H Y t( , ) .� 0 7. For
simulation results, we have suggested
q1 0 95 0 95 0 95� [ . , . , . ],
[ ( ) ( ) ( )] [ , ,. . .

0
0 05

1 0
0 05

2 0
0 05

30 0 0 9 5 1D x D x D xt t t

	 	 	 � 	 	 4] ,
and q2 0 993 0 993 0 993� [ . , . , . ]
[ ( ) ( ) ( )] [ , ,. . .

0
0 007

1 0
0 007

2 0
0 007

30 0 0 8 9D y D y D yt t t

	 	 	 � 	9]
for the fractional-order and initial conditions of the master
and slave systems, respectively. We choose

K �

	 	 	

	 	 	

	

�

�

�
�
�

�

�

�
�
�

9 9 2

16 16 15

1 0 0

to place eigenvalues ! i i, , ,�12 3 of A K2 � as (–21.5622,
–14.6310, –2.4735) and guarantee min arg( ) .i i! � �31416
q2

2
15598

�
� . . Thus, the stability of sliding motion is ensured.

Moreover, in this simulation, control parameters r � 0 9. ,
�1 1� , �2 11� . ,  1 0 8� . ,  2 0 7� . have been selected.

The simulation results are shown in Figures 6–8. Fig. 6
gives time of synchronisation error states. Fig. 7 shows the
synchronisation on the effectiveness of the sliding mode
control system variables x y x y x y1 1 2 2 3 3, , , , , . Fig. 8 gives
the trajectory of the control input for [ . , , . ]r � � �0 9 1 111 2� �
and [ , , . ]r � � �3 3 351 2� � .

CONCLUSION

In this article, a fractional-order sliding mode controller was
proposed for the synchronisation of unified fractional-order
chaotic systems in the presence of uncertainty and external
noise, with the intent to provide very clear proof of the as-
ymptotic stability of the proposed controller and its effec-

Fig 5. Phase diagram of
Chen system with fractional
order q = [0.95, 0.95, 0.95].

Fig 6. Time of synchronisa-
tion of error states.
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tiveness in the elimination of uncertainty and external noise.
In addition, a decline in the chattering phenomenon is pro-
moted through the convergence response effectuated by in-
creasing the control parameters, as can be observed in the
examples.
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NENOTEIKTO FRAKCIONÂLI NOZÎMÇTO HAOTISKO VIENOTO SISTÇMU ROBUSTA SINHRONIZÂCIJA

Frakcionâli nozîmçtâs haotiskâs vienotas sistçmâs (FNHVS) ietilpst tâdas sistçmas, kâ Chen, Lorenz, Lu, Liu un finanðu sistçmas. Rakstâ
aprakstîts kontrollers slîdoðâ reþîmâ, kas sinhronizç FNHVS nenoteiktîbas un ârçjo traucçjumu klâtbûtnç. Modelçðana ar MATLAB
parâdîja, ka piedâvâtâ metode samazina rezultâtu nenoteiktîbu.
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