
INTRODUCTION

Many engineering structures consist of elements that can be
modelled as a beam. To study the dynamics of this struc-
tural component under longitudinal parametrical excita-
tions, the well-known Timoshenko partial differential equa-
tion (Timoshenko and Gere, 1961) has been used for a long
time:
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where t is time, x is axial coordinate, E is Young modulus
of elasticity, J is axial moment of inertia, P(t) is disturbance
longitudinal force, m is mass of unit of beam length, and D

is viscous damping coefficient.

The boundary conditions for the above equation depend on
the beam fastening. For a simply supported beam with free
warping displacement the boundary conditions for (1) are
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The disturbance longitudinal force usually is divided into
two terms:

P t P P t( ) ( )� �0 1 , (4)

where the bounded continuous function P t1 ( ) satisfies the
assumption of zero mean, that is

lim ( )
t

t

t
P s ds

��
�

1
01

0

. (5)

The problem of elastic stability of beams may be formulated
as the asymptotic stability problem of the trivial solution of
equation (1). Substituting the series
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in equation (1) the authors reduce this problem to analyse
stability of the second order differential equations of the fol-
lowing type:
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. The most advanced results are reached

for equation (7) with periodic or almost periodic function
f tn ( ), which is called the Mathieu-Hill equation with damping
(Bolotin,1964). This model has been analysed in detail in
many classical monographs and textbooks (see, for example,
Timoshenko and Gere, 1961; Bolotin, 1964; Leipholz, 1978).
The asymptotic stability criterion for these equations can be
formulated in the following form: for all free oscillation fre-
quencies�n n, �N there exist such positive numbersDn

cr that
with unlimited time increment nontrivial solutions of (7) tend
to zero for all D Dn

cr� and unboundedly increase for all
D Dn

cr� . This means that there exists a critical value of damp-
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ing D Dcr
n

n

cr� max which guaranties stability of bridge with
dynamics (1) for all D Dn

cr� . Unfortunately, there are no suf-
ficiently efficient methods for analytical calculation of Dn

cr ,
even for periodic continuous functions f tn ( ). The most pro-
ductive analysis of equations (1) and (7) can be done under
the assumptions that the perturbation function P t1 ( ) is suffi-
ciently small. Substituting P t p t1 ( ) ( )� � in the formula for
f tn ( ) we introduce a small positive parameter � in equation

(7) and search for Dn

cr ( )� as an analytical function of �. In this
case we can apply the very productive Krylov–Bogolyubov
method (Bogoljubov et al., 1976) of asymptotical analysis
and find the critical dissipation Dn

cr ( )� as an infinitesimal of
the second order. In reality, there are some random factors
that affect beam dynamics. In this case we may not apply the
Krylov–Bogolyubov algorithm per se and use the proposed
stochastic modification for this method (Skorokhod, 1989).
This method can by helpful in engineering applications in
conditions where the small perturbation function P t1 ( ) in (1)
be modelled as a continuous ergodic Markov process defined
by the stochastic Ito differential equation (Pavlovic and
Kozic, 2003; Ariaratnam, 1972; Li et al., 2004). In this paper
we also propose an algorithm for calculation of the critical
damping Dcr in (1) under the assumption that perturbation is
an impulse type random process given by formula
P t h y t1 ( ) ( ( ))� � , where y t( ) is the compound Poisson process
(Dynkin, 1965) with a stationary uniform distribution. To
achieve this result we apply the proposed (Katafygiotis and
Tsarkov 1996) stochastic averaging procedure for impulse
type Markov dynamical systems.

This approach is schematically described in the next chapter

of this paper. Applying the proposed diffusion approximation

algorithm for a scalar second order differential equation (7)

we find in the third chapter the critical dampingDn

cr and in the

fourth chapter we discuss the dependence of the critical

damping D Dcr
n

n

cr� max on parameters J, m, L in (1), variance

and intensity of perturbations.

STOCHASTIC AVERAGING PROCEDURES FOR DY-
NAMICAL SYSTEMS WITH IMPULSE TYPE
MARKOV SWITCHING

Let { ( ), }y t t � 0 be the Markov process with values at the seg-
ment Y : [ , ]� 0 1 defined for an arbitrary function { ( ),v y y �Y}
by the infinitesimal operator (Dynkin, 1965):

y �Y : ( )( ) [ ( ) ( )]Qv y v z v y dz� ��
Y

, (8)

where � � 0. Any realisation of this Markov process
(Dynkin, 1965) is a piecewise constant function having
jumps at increasing random time moments { . }� j j �N, which
may be defined by formulae:

� � � � �0 1 10� � � � � �� �, ( / ( ) ) exp{ }P t y y tj j j (9)

The jump at any time moment � j is the uniform R(0,1) dis-
tributed random variable. We will deal with the impulse
type dynamical system on the phase space

R � S
1, S

1 :={ / , ( ) ( / )}0 2 0 2� � �� � � � � � � , (10)

defined by the phase coordinates { ( ) , ( ) }x t t
n

� ��� �R S
1 .

We assume that the random processes { ( ) ,x t
n

� �R

�� ( ) }t �S
1 satisfy:

• the differential equations
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for all j N t j j� � �, ( , );� �1

• the jump equations
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for all j �N;

where � is small positive parameter, � �� ( , )0 0 ,

A y A y A y( , , ) ( , ) ( , ),� � � � �� �1 2

f y f y f y( , , ) ( , ) ( , ),� � � � �� �1 2

B y B y B y( , , ) ( , ) ( , ),� � � � �� �1 2

g y g y g y( , , ) ( , ) ( , )� � � � �� �1 2

and y t y t� �( ) ( )� .

Under the above assumption the triple { ( ), ( ), ( ),y t x t t� � ��
t � 0}defines the homogeneous Markov process on the space
Y � R � S

1 (Skorokhod, 1989) with the weak infinitesimal
operator
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where

G v y x
a y

v z,x B y x g y
� �

�
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Y

�v z x dz( , , )]�

The stochastic averaging approach is based on the limit the-
orem (Skorokhod, 1989) for the pair of random processes
{ ( ), ( ), }x t t t� �� � 0 under the condition that � � 0. The first
step for asymptotic analysis of the Markov dynamical sys-
tem (11)–(14) is the averaging procedure based on the limit
calculation
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, (17)

F f y a y g y1 1 1( ) [ ( , ) ( ) ( , )]:� � �� � �
� � [ ( , ) ( ) ( , )]f y a y g y dy1 1� �

Y

, (18)

for an arbitrary sufficiently smooth function v x( , )� and spe-
cially selected function v y x1 ( , , )� .

Now we can construct the system of equations for an aver-

age motion:

d

dt
x t A x t( ) ( ) ( )� 1 � , (19)

d

dt
t F� �( ) ( )� 1 , (20)

and define the averaging principle:

• for any T C� �0 0,
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• if the trivial solution of equation (19) is asymptotical sta-
ble then there exists such a positive number �0 that
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for any � �� ( , )0 0 .

If A1 0( )�  we can apply the diffusion approximation
(Carkovs and Stoyanov, 2005) for the Markov dynamical
system (11)–(14). For that we should look for the limit
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where L is a diffusion operator, which is given by equality
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for an arbitrary sufficiently smooth function v x( , )� . This
operator defines the system of stochastic differential Ito
equations (Dynkin, 1965):

dx t A t x t dt t x t dw t�( ) �(� ( ) �( ) (� ( ) �( ) ( )� � �� ! �1 1

�! �12 2(� ( ) �( ) ( )t x t dw t , (23)

d t m t dt t dw t t dw t� ( ) (� ( )) (� ( ) ( ) (� ( )) ( )� � ! � ! �� � �2 1 12 2 (24)

where w t1 ( ) and w t2 ( ) are the independent standard Wiener
processes. The finite dimensional distributions of initial
processes { ( ), ( )}x t t� �� for sufficiently small � � 0 may be
approximated (Tsarkov, 1993) by the corresponding distri-
butions of the processes {�( ), � ( )}x t t� . For sufficiently small
positive � the asymptotic stability of the trivial solution of
equation (4) follows the asymptotic stability of equation
(23).

STABILITY ANALYSIS OF THE RANDOM LINEAR
OSCILLATOR SUBJECTED TO SMALL RANDOM
SWITCHING OF FREQUENCY

As it was mentioned in the Introduction, we assume that
P t h y t1 ( ) ( ( ))� � where � is a small positive parameter and
y t( ) is defined by the weak infinitesimal operator (8) Pois-
son process. The substituted D m� 2 2# � will be searching
for the critical damping Dn

cr ( )� as an infinitesimal of the sec-
ond order. After substitution of the decomposition (6) in (1)
we have to deal with the second order random differential
equation of the following form:

��( ) ( ) � ( ) ( ) ( ( ))x t x t x t x t p y t� � � �� #� �2 22 . (25)

To take advantage of the diffusion approximation method
proposed in the previous chapter, we have to rewrite the
above equation in polar coordinates. Substituting
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we may rewrite the second order differential equation (25)
as a system of two differential equations:
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To analyse )-exponential stability of the solution for equa-
tion (25) we will apply the second Lyapunov method
(Carkovs and Stoyanov, 2005) with Lyapunov function
F r y r V y( , , ) ( , )$ $) �� . By definition
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� �r QV y r V y
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where

L( )� � �� � �Q Q Q0 1 2
2 ,

Q Q0 2:� ��
�
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1
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�
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�
$

�
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, (31)
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Q2 2 1 2: [ cos ] sin� � � �)# $ # $
�
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. (32)

If there exists such a function V y
� $( , ), which satisfies in-

equalities
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r F y
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r F y
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2 2

( , ) ( , ) (33)

and

L( ) ( , )� $�
V y � �1, (34)

then for any initial condition r r( )0 0� the solution of equa-
tion (28) tends to zero with probability one (Carkovs and
Stoyanov, 2005). To find a solution of equation (34) we ap-
ply the algorithm proposed by Carkovs and Matvejevs
(2015). We will look for the solution of this equation as a
singular at the point � � 0 function

V y q V y V y
� $ � � $ $( , ) ( , ) ( , )� � �� �2 1

1 2 , (35)

where q is a constant. Substituting (35) in (34) and equating
the coefficients near ��1 we will have an equation for un-
known function V y1 ( , )$
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It is not so difficult to ensure that by definition (8)
Qp y p y( ) ( )� �� . Therefore, we can look for a solution of
(36) in the following form

V y
p y

q C C1 1 22
( , )

( )
[( sin cos )]$

)

�
$ $� � �

with unknown coefficients C1 and C2. Substituting this
function in (36) and equating the coefficients near sin$
and cos$ we can find a solution of the equation (36) as fol-
lows:

V y qp y1 22 4
2( , )

)
( )( sin cos )$
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��� �
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"
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�
� . (37)

Now we should look for a solution of the equation

Q V y Q q Q V y0 2 2 1 11( , ) ( , )$ $� � � � .

Substitution using the formulae (31), (32) and (37) we have
to look for a solution of the equation
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According to the Fredholm alternative this equation has a
solution if and only if the right part in (38) satisfies equal-
ity:
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.

This equality permits to find an unknown constant q:

q � �
�

�

*

+
,

-

.
/

�

�

) #
�! )

� � �
1

2

2 2 2

1
2

8 4
( )

( )
, (39)

where !2 2

0

1

�  p y dy( ) . Remember that we search for the

Lyapunov function

F r y r V y r q V y V y( , , ): ( , ) ( ( , ) ( , ))$ $ � � $ � $) � )� � � ��2
1

2
2 ,

where functions V y1 ( , )$ and V y2 ( , )$ are bounded by defini-
tion and q is given by formula (39). Therefore, if parameter
� � 0 is sufficiently small, the solution of the Lyapunov equa-

tion satisfies inequality (33) if and only if #
�! )
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�

�

�

2

2 2 2

2
8 4

( )
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As far as in the above formula ) is an arbitrarily chosen posi-
tive number, we can ensure that there exists such a critical
value for damping

#
�!

� � �cr � �

2

2 2 24 4( )
, (40)

that P(lim ( ) )
t

r t
��

� �0 1, if # #� cr and P(lim ( ) )
t

r t
��

� � �1, if

# � #cr .

STABILITY ANALYSIS OF A PIN-JOINED BEAM
WITH RANDOM PULSATING LOAD

After substitution of the series u t x T t
nx

L
n

n

( , ) ( ) sin� �
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equation (1) we proceed to equations (7) for the amplitudes
{ ( ), }T t nn �N of the longitudinal oscillations

�� ( ) � ( ) ( ) ( ( )) ( )T t T t T t h y t T tn n n n n n� � � �2 02 2� # � � , (41)
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1 2
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#
�

�
D

m2 2
(42)

Remember that P t p y t1 ( ) ( ( ))� , where y t( ) is a piecewise
constant stationary process with uniform R(0,1) distribution
and E{ ( ( ))}p y t � 0, E{ ( ( ))}p y t

2 2� ! . Now we can apply the
necessary and sufficient condition, achieved in the previous
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section, for the almost sure asymptotic stability of the longi-
tudinal oscillations in a form of inequality:

�
��

� � �
��
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n n
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2

2 2 24 4( )
: , (43)

where �
	


n
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2
4

22
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�
�
� . Substituting (42) in this formula we

can derive the necessary and sufficient condition for the lon-
gitudinal oscillations (41) exponential decay in a form of in-
equalities
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for each n �N. It is not so difficult to ensure that

max ( , , , ) ( , , , )
n

n

cr cr
D L P D L P� 
 � 
0

2
1 0

2� for any P0 > 0, � � 0,


2 0� , and L > 0. Therefore, the necessary and sufficient con-

dition for beam stability may be written in a form of inequal-

ity for a dissipation parameter:
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The critical dissipation D L P mcr ( , , , , )� 
0
2 is an increasing

function of a mass parameter m and of a variance 
2 of the
longitudinal force, and is a decreasing function of the con-
stant component P0 of the longitudinal force. However, de-
pendence of this function on switching intensity � and
length L has a form rather like a mountainous surface
(mountain ridge):

To ensure beam stability under longitudinal impulse type
perturbations of any intensity we need the critical value of
dissipation

D L P m D L P mcr cr( , , , , ): max ( , , , , )� 
 � 

�0

2

0 0
2� �

�

�
�

	 

	
L m

EJ P L

2 2

2
0

2 3 28( ) /
(46)

It is not so difficult to be sure that for any values of the pa-
rameters P0, 
2, and m the critical value of dissipation (46)
is a unimodal function on length L (see the example at Fig.
2) having the maximum for length L EJP� �	 2 0

1 :

D D P m D L P mcr
L

cr� � �
�

� ( , , ): max ( , , , , )0
2

0 0
2
 � 


� �
� �D L P m

m

P EJ
cr L EJP

( , , , , )� 
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2

2

2

0

2
0

1 2

12 3
(47)

Therefore, if we have only the expected value and variance of
the longitudinal force switched by random Markov process,
given by statistical observations, we may be sure of the beam

stability if and only ifD
L m

EJ P L
�

�
	 

	

2 2

2
0

2 3 28( ) /
. But if need to be

ensure stability for a beam of any length we need more dissi-

pation: D
m

P EJ
�


2

012 3
.

REMARK

It should be mentioned that the linear equation (1) allows to
analyse only small deformations of a beam. As it has been
shown previously (Katafygiotis and Tsarkov, 1996), the solu-
tions of the linear second order equations of type (41) for suf-
ficiently small have an exponential behaviour. Therefore, if
equilibrium of equation (1) is not stable the beam vibration
amplitudes exponentially increase and we cannot assume the
beam deformations to be small. In this case, we should apply
non-linear Euler-Bernoulli beam theory including the effects
of mid-plane stretching (Rao, 2007). This approach requires

involving a non-linear term -
E

L

u

x

u

x
dx

L

2

2

2

2

0

�
�

�
�

�
�


�
�
�� in equation

(1) and we cannot analyse the resulting equation applying the
substitution (6). We will return to the equilibrium instability
problem later in another paper.
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GADÎJUMA PULSÇJOÐAI SLODZEI PAKÏAUTU AR ÐARNÎRIEM PIESTIPRINÂTU SIJU STABILITÂTE

Ðajâ rakstâ pçtîti stabilitâtes nosacîjumi ar ðarnîriem piestiprinâtâs sijâs, kurâs garenvirziena spçks pakïauts gadîjuma perturbâcijâm,
modelçjot to kâ saliktu Puasona procesu ar mazâm nejauðâm amplitûdâm. Pieòemot, ka amplitûdas ir savstarpçji neatkarîgas un nav
atkarîgas arî lçcienu laiku momentos, mçs lietojâm otrâs Ïapunova metodes modifikâciju gandrîz droða lîdzsvara asimptotiskâs stabilitâtes
analîzei.
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