Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

Open access

Abstract

Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

Agarwal, A., Singh, K. P., Jain, A. (2010). Medical significance and management of staphylococcal biofilm. FEMS (Federation of European Microbiological Societies) Immunol. Med. Microbiol. 58, 147-160.

Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J. M. (2010). Biodegradable polymer matrix nanocompositesfor tissue engineering: A review. Polymer Degrad. Stability, 95 (11), 2126-2146.

Belcarz, A., Ginalska, G., Zalewska, J., Rzeski, W., Slósarczyk, A., Kowalczuk, D., Godlewski, P., Niedêwiadek, J. (2009). Covalent coating of hydroxyapatite by keratin stabilizes gentamicin release. J. Biomed. Mater. Res. B. Appl. Biomater., 89 (1), 102-113.

Busscher, H. J., van der Mei, H. C., Subbiahdoss, G., Jutte, P. C., van den Dungen, J. J. A. M., Zaat, S. A. J., Schultz, M. J., Grainger, D. W. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med., 4 (153), 153rv10.

Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510-514.

Christner, M., Franke, G. C., Schommer, N. N., Wendt, U., Wegert, K., Pehle, P., Kroll, G., Schulze, C., Buck, F., Mack, D., Aepfelbacher, M., Rohde, H. (2010). The giantextracellularmatrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol., 75, 187-207.

Costerton, J. W., Stewart, P. S., Greenberg, E. P. (1999). Bacterial biofilms: Acommon cause of persistent infections. Science, 284 (5418), 1318-1322.

Cunha, B. A. (2001). Nosocomial pneumonia. Diagnostic and therapeutic considerations. Med. Clin. North Amer., 85 (1), 79-114.

Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Inf., 5, (13), 1213-1219.

Grainger, D. W., van der Mei, H. C., Jutte, P. C., van den Dungen, J. J., Schultz, M. J., van der Laan, B. F., Zaat, S. A., Busscher, H. J. (2013). Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 34 (37), 9237-9343.

Guo, Y. J., Long, T., Chen, W., Ning, C., Zhu, Z. A., Guo, Y. P. (2013). Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater. Sci. Eng. C. Mater. Biol. Appl., 33 (7), 3583-3591.

Harmsen, M., Yang, L., Pamp, S. J., Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa bioflm formation, tolerance, and dispersal. FEMS Immunol Med. Microbiol., 59, 253-268.

Hetrick, E. M., Schoenfisch, M. H. (2006). Reducing implant-related infections: Active release strategies. Chem. Soc. Rev., 35 (9), 780-789.

Hodgson, S. D., Greco-Stewart, V., Jimenez, C. S., Sifri, C. D., Brassinga, A. K. C., Ramirez-Arcos, S. (2014). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion, 54 (2), 461-470.

Hoiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O., Kharazmi, A. (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Inf., 3 (1), 23-35.

Jaiswal, S., Bhattacharya, K., McHale, P., Duffy, B. (2015). Dual effects of _-cyclodextrin-stabilised silver nanoparticles: Enhanced biofilm inhibition and reduced cytotoxicity. J. Mater. Sci. Mater. Med., 26 (1), 5367

Jr. Pruitt, B. A., McManus, A. T., Kim, S. H., Goodwin, C. W. (1998). Burn wound infections: Current status. World J. Surg., 22, 135-145.

Kiedrowski, R. M., Horswill, A. R. (2011). New approaches for treating staphylococcal biofilm infections. Ann. NY Acad. Sci., 1241, 104-121.

Lepretre, S., Chai, F., Hornez, J. C., Vermet, G., Neut, C., Descamps, M., Hildebrand, H. F., Martel, B. (2009). Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials, 30, 6086-6093

Li, Z., Kong, W., Li, X., Xu, C., He, Y., Gao, J., Ma, Z., Wang, X., Zhang, Y., Xing, F., Li, M., Liu, Y.. Antibiotic-containing biodegradable bead clusters with porous PLGA coating as controllable drug-releasing bone fillers. J. Biomater. Sci. Polym. Ed., 22 (13), 1713-1731

Locs, J., Zalite, V., Berzina-Cimdina, L., Sokolova, M. (2013). Ammonium hydrogen carbonate provided viscous slurry foaming - a novel technology for the preparation of porous ceramics. J. Eur. Ceram. Soc., 33, 3437-3443.

McCann, M. T., Gilmore, B. F., Gorman, S. P. (2008). Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol., 60, 1551-1571.

Meurice, E., Leriche, A., Hornez, J. C., Bouchart, F., Rguiti, E., Boilet, L., Descampsa, M., Cambier, F. (2012). Functionalisation of porous hydroxyapatite for bone substitutes. J. Eur. Ceram. Soc., 32, 2673-2678.

O’Gara, J. P, Humphreys, H. (2001). Staphylococcus epidermidis biofilms: Importance and implications. J. Med. Microbiol., 50 (7), 582-587.

Peel, T. N., Cheng, A. C., Buising, K. L., Choong, P. F. (2012). The microbiological aetiology, epidemiology and clinical profile of prosthetic joint infections: Are current antibiotic prophylaxis guidelines effective? Antimicrob. Agents Chemother., 56, 2386-2391.

Pritchard, E. M., Valentin, T., Panilaitis, B., Omenetto, F., Kaplan, D. L. (2013). Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv. Funct. Mater., 23 (7), 854-861.

Reinis, A., Pilmane, M., Stunda, A., Vetra, J., Kroica, J., Rostoka, D., Salms, G., Vostroilovs, A., Dons, A., Berzina-Cimdina, L. (2010). An in vitro and in vivo study on the intensity of adhesion and colonization by Staphylococcus epidermidis and Pseudomonas aeruginosa on originally synthesized biomaterials with different chemical composition and modified surfaces and their effect on expression of TNF- á, â-defensin 2 and IL-10 in tissues. Medicina, 47 (10), 560-565.

Ruckh, T. T., Oldinski, R. A., Carroll, D. A., Mikhova, K., Bryers, J. D., Popat., K. C. (2012). Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J. Mater. Sci. Mater. Med., 23 (6), 1411-1420.

Sampedro, M. F., Piper, K. E., McDowell, A., Patrick, S., Mandrekar, J. N., Rouse, M. S., Steckelberg, J. M., Patel, R. (2009). Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn. Microbiol. Infect. Dis., 64 (2), 138-145

Sokolova, M., Putniòð, A., Kreicbergs, I., Loès, J. (2014). Scale-up of wet precipitation calcium phosphate synthesis. Key Eng. Mater., 604, 216-219.

von Eiff, C., Peters G., Heilmann, C. (2002). Pathogenesis of infections due to coagulase- negative staphylococci. Lancet Inf. Dis., 2 (11), 677-685.

Xiong, M. H., Bao, Y., Yang, X. Z., Zhu, Y. H., Wang, J. (2012). Delivery of antibiotics with polymeric particles. Adv. Drug Delivery Rev., 78 (30), 63-76.

Xu, Q., Czernuszka, J. T. (2008). Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. J. Control Release, 128 (2), 146-153

Yuehuei, H. A., Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Appl. Biomater., 43, 338-348.

Zeller, V., Ghorbani, A., Strady, C., Leonard, P., Mamoudy, P., Desplaces, N. (2007). Propionibacterium acnes: An agent of prosthetic joint infection and colonization. J. Infect., 55, 119-124.

Zimmerli, W., Trampuz, A., Ochsner, P. E. (2004). Prosthetic-joint infections. New Engl. J. Med., 351 (16), 1645-1654.

Journal Information

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 222 15
PDF Downloads 94 77 10