Long-term changes of Daugava River ice phenology under the impact of the cascade of hydro power plants

Open access


This paper presents the results of the study of long-term changes of Daugava River ice phenology, i.e. the freeze-up date, the break-up date, and the duration of ice cover from 1919/1920 to 2011/2012, under the impact of the cascade of hydro power plants. The long-term changes of ice phenology were determined by global climate warming at the turn of the 20th and the 21st centuries and anthropogenic activities after the year 1939. The Mann-Kendall test showed that the ice freeze-up date has a positive trend, while the ice break-up date and the duration of ice cover had negative trends. The changes were statistically significant. Data series covering twenty years before and after construction of the hydro power plants were used for assessing the impact of each hydro power plant on changes of Daugava River ice phenology parameters. The study results showed that the duration of ice cover was significantly longer in water reservoirs, i.e. the freeze-up date was earlier and the break-up date was later. Downstream of dams duration of ice cover was shorter with later freeze-up dates and earlier break-up dates. The impact of hydro power plants on ice phenology parameters gradually decreased with distance down from the dams.

Anonymous (2007). Climate Change 2007: The Physical Sciences Basis. Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.). Cambridge University Press. Cambridge, UK, and New York. 996 pp.

Anonymous (2013). R: A Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/.

Glazacheva, L. I. (1963). Impact by the Ķegums HPP upon the freeze-up and break-up dates of the Daugava [Глазачева, Л. И. Влиание Кегумской ГЭС на сроки замерзания и вскрытия Западной Двины]. Meteorologia i Gidrologia [Метеорология и гидрология], 8, 38-42 (in Russian).

Glazacheva, L. I. (1965). Ice and thermal regime of rivers and lakes of the Latvian SSR [Глазачева, Л. И. Ледовый и термический режим рек и озер Латвийской ССР]. Zvaigzne, Rīga. 232 pp. (in Russian).

Hirsch, R. M., Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Res., 20 (6), 727-732.

Hirsch, R. M., Slack, J. R., Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Res., 18 (1), 107-121.

Kanaviņš, E. (1942). Ledus apstākļi Daugavā agrāk un šinī ziemā [Ice conditions in the Daugava River earlier and this winter]. Satiksme un Tehnika, 4, 3-7 (in Latvian).

Kanaviņš, E. (1943a) Ledus apstākļi Daugavā 1942./43. g. un straumes ledus novērošanai lietotie paņēmieni [Ice conditions in the Daugava in 1942/43 and the methods applied for observations of the stream ice]. Satiksme un Tehnika, 4, 1-4 (in Latvian).

Kanaviņš, E. (1943b) Ledus iešanas norise 1943. gada pavasarī Daugavā, posmā Jēkabpils-Ķegums, un ledus iziešanas atvieglošanai lietotie paņēmieni [The process of ice drifting in the Daugava in spring of 1943 in the section Jēkabpils-Ķegums and the methods applied for facilitating the ice moving]. Satiksme un Tehnika, 6, 1-3 (in Latvian).

Kļaviņš, M., Briede, A., Rodinov, V. (2009). Long-term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability. Climate Change, 95, 485-498. Lizuma, L., Kļaviņš, M., Briede, A., Rodinovs. V. (2007). Long-term changes of air temperature in Latvia. In: Kļaviņš, M. (Ed.). Climate Change in Latvia. Academic Publishers, University of Latvia, Riga, pp. 11-19.

Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, T. D., Vuglinski V. S. (2000). Historical trends in lake and river ice cover in the Northern hemisphere. Science. 289, 1743-1746.

Pastor, A. A. (1987). Ice congestions and ice jams on the Daugava River in the section Jēkabpils-Pļaviņas. In: Collection of the Centre of the Hydrometeorology. Hydrometeorology of the Latvia USS and the Gulf of Riga, Vol. 1 (21). [Пастор, А. А. Зажоры и заторы льда на р. Даугаве на участке г. Екабпилс - г. Плявиняс. Сборник работ гидрометеологического центра, гидрометеорология Латвийской ССР и Рижского залива, выпуск 1 (21) Leningrad, Hydrometeoizdat, pp. 107-120. (in Russian).

Šarauskienė, D., Jurgelėnaitė, A. (2008). Impact of climate change on river ice phenology in Lithuania. Environ. Res. Eng. Manag., 4 (46), 13-22.

Sokal, R. R., Rohlf, F. J. (1995) Biometry: The Principles and Practice of Statistics in Biological Research. 3rd edition. W. H. Freeman and Co, New York. 778 pp.

Solomon, B. G., Knut, T. A. (2011). Investigation of river ice regimes in some Norwegian water courses. In: CGU HS Committee on River Ice Processes and the Environment, 16th Workshop on River Ice, 18-22 September 2011, Winnipeg, Manitoba, pp. 1-17.

Stakle, P. P. (1933). Conditions of the ice regime of the Latvian rivers, in particular the Daugava river. In: IV Hydrological Conference of the Baltic States, September 1933 [Стакле, П. П. Условия ледового режима Латвийских рек, в частности р. Даугавы (Зап. Двина)]. IV Гидрологическая конференция Балтиских стран, сентябрь 1933. г.]. Leningrad, pp. 1-32 (in Russian).

Stakle, P., Kanaviņš, E. (1941). Latvijas iekšzemes ūdeņu hidrometriskie pētījumi no 1929. g. 1. XI līdz 1940. g. 31. X [Hydrometric Studies of the Inland Waters of Latvia from 01.11.1929 to 31.10.1940]. Jūrniecības pārvaldes izdevums, Rīga. 624 lpp. (in Latvian).

Stonevicius, E., Stankunavicius, G., Kilkus, K. (2008). Ice regime dynamics in the Nemunas River, Lithuania. Climate Res., 36 (1), 17-28.

Ziverts, A., Zakis, G., Jauja, J. (2000). Ice processes in the Daugava River. In: Nilsson, T. (Ed.). Proceedings of XXI Nordic Hydrological Conference Report No. 46, Volume 2, Uppsala, Sweden, pp. 638-645.

Journal Information

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 120 3
PDF Downloads 98 81 3