
INTRODUCTION

Chir pine trees are abundant in altitudes ranging from 1000
m to 2000 m in the Himalayan region of India. Needles that
fall from pine trees have traditionally been used by indige-
nous communities for carpeting cattle sheds as well as
cooking purposes during monsoon, and as fertiliser (Dhaun-
diyal and Tewari, 2015). However, being highly combusti-
ble due to the high percentage of lignin, pine needles inten-
sify forest fires and create problem to the environment
(Ghosh and Ghosh, 2011; Dhaundiyal and Gupta, 2014).
The forest thinning of chir pine (pinus roxburghii) trees is
responsible for a large amount of forest waste in the form of
pine needle litter, which still contains significant energy po-
tential. Non-utilisation of pine needles and consignment of
them to waste on forest floor is unethical and uneconomical.
Moreover, a higher level of utilisation of residual biomass
energy potential could be used in energy production.

There are various models which have been used to demon-
strate biomass pyrolysis mathematically. Mainly, these
models can be classified as: the single-reaction and the
multi-reaction models (Conesa et al., 1995; Conesa et al.,
2001; Capart et al., 2004; Pysiak and Badwi, 2004; Criado
et al., 2005; Mysyk et al., 2005). The most accurate and
well defined approach for the modelling of biomass pyroly-
sis is to adopt the distributed activation energy model
(DAEM) (Burnham et al., 1995; Burnham and Braun, 1999;
Ferdous et al., 2002; Galgano and Blasi, 2003). The distrib-
uted activation energy model also applies to the pyrolysis of

other materials, including fossil fuel, residual oils, resin
chars (Zhu et al., 2009), medical waste (Koreòová et al.,
2006), waste car tires (Folgueras et al., 2003), sewage
sludge (Lakshmanan et al., 1991) and kerogen (Brown,
1988). DAEM has proven to be very successful in describ-
ing pyrolysis of various types of biomass under varying
temperature ranges. The asymptotic solutions of the kinetic
model equation are used to evaluate the kinetic parameters.
In order to obtain a good approximation, the parameters af-
fecting the numerical solutions of the model equation must
be known. Influence of various parameters affecting the nu-
merical solution of single reaction models is stated in litera-
ture (Teng and Hsieh, 1999)

The paper focussed mainly on parametric values relevant to
forest waste. The numerical solution of the DAEM requires
the iterative evaluation of a double integral, which involves
rapidly varying functions, and hence, resulting significant
numerical complication. This paper used the asymptotic
method to make an accurate approximation for the mathe-
matical simulation of biomass pyrolysis as well as exam-
ined the effects of various kinetic parameters on the numeri-
cal results of the non-isothermal, n

th-order DAEM, using
the Gaussian distribution.

MATERIALS AND METHODS

The non-isothermal n
th

DAEM pyrolysis of forest waste

using the Gaussian distribution and its asymptotic solu-
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tions. The concept of DAEM was proposed by Vand (Vand,
1943) and it was adopted in coal the devolatilisation prob-
lem by Pitt (Pitt, 1962). Later, the model was used by
Hanbaba and his co-worker (Hanbaba et al., 1968), and
Anthony and Howard (1976) in their work. The model pos-
tulates that the decomposition mechanism takes a large
number of independent, parallel, and the first order chemi-
cal reactions with different activation energies exhibiting
variation in the bond strength of constituent species of bio-
mass. Here in this paper, we discussed first order as well as
n

th-order DAEM and the derivation can be found in litera-
ture (Antal et al., 2006). The non-isothermal n

th order
DAEM is given below:
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where E is the activation energy, � is the heating rate, A is
the frequency factor, R is the ideal gas constant, n is the re-
action order, T is absolute temperature, To is the initial reac-
tion temperature, X is the conversion rate and f(E) is the ini-
tial distribution function of activation energies.

The activation energy distribution can be considered by us-
ing the Gauss, the Gamma or the Weibull distribution func-
tions. Usually, the Gaussian distribution is used to describe
activation energy distribution since the integral curve of
biomass pyrolysis decomposition is similar to the Gauss
function.

The integrand in equation (1) consists of two parts. The first
double exponential (DExp) term depends on time through
which the temperature range varies in non-isothermal pyro-
lysis. The second part is independent of time and depends
solely on the distribution of activation energy of constitu-
ents. The behaviour of the temperature dependent part
DExp is considered first and thereafter a useful approxima-
tion is derived, which are relevant for biomass pyrolysis.
The non-isothermal temperature regime is investigated to-
gether with initial distribution of volatile content of bio-
mass.

Double Exponential Integrand simplification for DAEM.
Approximation to the double exponential is considered. The
approach applied here is similar to that of Niksa and Lau
(Niksau and Lau, 1993), but it is different in the sense that
we used a more systematic method and a more accurate ap-
proximation.

DExp Ae dt

E

RT l

t

� �
�

�

�
�

�

�

	
	

�

�exp ( )

0

(2)

where T (l) is specified temperature and E can take any pos-
itive value.

In order to apply the systematic simplifications of this
integrand it is necessary to assume some typical range of
the parameters and functions on which it depends. The fre-
quency factors are typically in the range of 1010 � A �
1013s–1, whereas the activation energies fall into the region
of 100- 300 kJ mol-1. The temperature history depends on
the particular experiments, but 100 to 600 °C is mainly used
in pyrolysis. However, we can also apply the same approach
in the combustion problem where the temperature range can
be significantly larger than any other applications. It is eas-
ier to extrapolate in the higher temperature range than that
of the lower temperature regimes. In order to describe the
stepwise simplification of the Gaussian distribution, the
case of ramping temperature is used. Taking a typical value,
E

RT
� 10 whereas tA ~ 1010. The large size of both of these

parameters makes the function very rapidly vary with E.

If the temperature variation is considered to ramp linearly
with time, t, DExp becomes

T t� � (4)
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In equation (5), the integral in the exponent can be approxi-
mated by using the conventional Laplace approach, where
E

R t�
is assumed to be large and hence the dominant contri-

bution from the integral is when l is near the stationary
point, t (and corresponding temperature is near its maxi-
mum). Hence, this provides a well known asymptotic ap-
proximation to the function:
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Equation (6) can be rewritten as:
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As E increases over a range of size Ew around Es, the func-
tion varies rapidly from zero to one and this can be approxi-
mated as below.

Defining g (E) as:
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Then equation (7) can be rewritten as
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As behaviour of function near Es is of interest, expand g(E)
with the help of Taylor series

g E( ) � g E E E g Es s( ) ( ) ( ) ...� � � � (9)

Using equation (8) and the predefined function g(E), the
values of Es, Ew are chosen in such a manner such that
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where, W(x) is a Lambert W function, which is one of real
roots of the equation
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It is important to know the approximation of W(x) for long
and short duration of times (Armstrong and Kulesza, 1981),
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and W � x x� 2 (for x � 1)

DExp varies like a smooth step function, rising rapidly (for
larger values of product of frequency factor and time, (A.t))
from zero to one in the range of activation energies of width
Ew around the value of E = Es, where both Es and Ew vary
with time. In the total integrand of equation (1), DExp is
multiplied by the initial distribution function f (E). The ini-
tial distribution is mainly centred around mean activation
energy E0 and has a width designated by standard deviation,

�, both of which are constant. There are two different limits
to evaluate the Gaussian distribution: wide initial distribu-
tion and narrow initial distribution. The wide initial distri-
bution has wide initial distribution compared with the width
of DExp; whereas the narrow distribution is relatively nar-
row with respect to width of DExp. The shape of the total
integrand depends on which limit is applied. When the ini-
tial distribution is relatively wide compared to Ew, the total
integrand behaves similarly to the initial distribution f (E).
As time proceeds, the initial distribution is progressively
chopped off from the left by the step-like function, DExp.
The location of the maximum of the total integrand can
move significantly, and the shape becomes quite skewed.
When the initial distribution is relatively narrow, the total
integrand remains similar in shape to the initial distribution

with amplitude that is subsequently reduced by Dexp as
time proceeds. Symmetrically, the total integrand in the nar-
row distribution is more symmetrical than that of the wide
distribution limit. However, the location of the maximum
changes as time varies. Here we discuss only the wide dis-
tribution case. In order to describe the approach, the initial
distribution f(E) is assumed to be the Gaussian, centred at
the mean activation energy, E0 with standard deviation, �.
Approximation is sought to the integral
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Es and Ew are functions of time as stated in equation (10)
and Equation (11), respectively.

The rescaling factor ‘y’ is introduced to rescale energy as:
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The wide distribution. First order reaction. In order to
apply this, the limit y w  � 1 is considered. As discussed
previously, DExp leaps from zero to one near y y w� , in a
manner that has been approximated in literature (Vand,
1943; Howard, 1981; Suuberg, 1983; Niksa and Lau, 1993)
by the step-function.
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As it is clearly seen, the second integral is a complementary
error function, and therefore it can be easily computed. The
integrand in the first integral is multiplied by a function that
is negligibly small everywhere except in a neighbourhood
of size yw around the point y= ys. Therefore, this can be ap-
proximated by expanding the initial distribution term as a
Taylor series about y= ys giving
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Each of the integral terms, arising from a term in the Taylor
series, can be separately integrated to yield
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where the remaining integrals to be evaluated are repre-
sented by
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The values of &i need to be calculated once, as they are in-
dependent of any other parameters.

& & &0 1 20 5772 0 98906 181496' � ' � ' �. , . , . ,
& &3 45 89037 7 3969' � ' �. , .

Similarly for n
th order reaction, we can derive the expres-

sion by using equation (13)
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The remaining integral terms to be expressed are as follows:
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Application. For applications, a thermogravimetric experi-
ment has been conducted for the non-isothermal pyrolysis
of pine needles samples in the presence of the inert gas,
nitrogen. It has been noted that the experimental results of
this paper have implemented in the process of obtaining the
n

th-order Gaussian DAEM prediction. Chemical composi-
tion of pine needles sample was evaluated using a CHN-O
analyser, the results of which are shown in Table 1. Figure 1
shows the comparison of the n

th-order Gaussian DAEM
simulated pyrolytic conversion with the experimental data.
In addition, it was also shown that the n

th-order Gaussian
DAEM fits the experimental data very well. The Matlab al-
gorithm was used to simulate the thermo-gravimetric pro-
cess.

RESULTS

After implementing the asymptotic method and the energy
rescaling (y) on equation (1), the outer ‘dE’ integration up-
per limit must be determined. For the parametric values rel-
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T a b l e 1

CHEMICAL COMPOSITION OF PINE NEEDLES

Biomass
type

C H N O V.M H.H.V S Ash

Pine needle 53.64 5.36 0.62 33.92 68.4 20.8 0.20 2.1

Fig. 1. Comparison between experimental data and the n
th-order Gaussian

DAEM prediction.



evant to biomass pyrolysis, the effects of upper limit (E�)
of dE integral on the numerical results of the non-isothermal
n

th order DAEM is shown in Figure 2. At the initial state of
pyrolysis reaction, the remaining mass fraction (1-X) must
be in the vicinity of one; whereas in Figure 2, it is seen that
remaining mass fraction is less than one for E� < 70 kJ/mol.
As E� approaches 80 kJ/ mol, the results are found to be
more precise and closely approximate to each other. But as
the value of E� increases, a shifting of the inflexion point is
seen; therefore at the higher values of E�, the curves chop
off from the bottom and shift to the right side at the low fre-
quency factor. However, with increase in the value of the
frequency factor, the upper limit of dE will also change.
Therefore, 80 kJ/ mol can be used for the upper limit of the
dE integral at the lower values of A. The main reason of
shifting at the higher value is because, as the outer value in-
creases, it moves away from the central value Es, and be-
cause the behaviour of the whole integrand is similar to the
Gaussian distribution. As time proceeds, it moves away
from the central value Es, and hence the inflexion does not
occur (the whole integrand shifts away from zero to other
values within the interpolating range).

The effect of the frequency factor (A) values on the numeri-
cal results is illustrated in Figure 3. According to these
curves, increase in the frequency factor values causes (1-X)
curves to shift to the left side. As the value of the frequency
factor increases at the lower outer values of integral ‘dE’,

the central value has been shifted to the left side. In addition
to shifting of the central value, the inflexion occurs at the
lower temperature domain; whereas the lower values of fre-
quency factor A shifts (1-X) curves to the right as time pro-
ceeds. The whole integrand curve behaves similar to DExp
with increase in the value of A and hence the step size (yw)
approaches zero. So, (1-X) curves have the same behaviour
as the complementary error (erfc) at the higher values of A.

The effect of heating rate on asymptotic solution is illus-
trated in Figure 4. The behaviour of the whole integrand
with change in heating rate has shown that the remaining
mass fraction curve is shifted towards the left with increase
in temperature, and the inflexion point approaches the zero
mass fraction. Thus, it is concluded that at the higher heat-
ing rate, the proylsis will be fast and the rate of conversion
will also be increased. In addition, the remaining mass frac-
tion curves become constant as time proceeds at the higher
heating rates. With further increase in the heating rate,
inflexion point will vanish and the remaining mass fraction
curves behave linearly with temperature and become con-
stant at the extremum of asymptotic solution.

The influence of the reaction order on the asymptotic solu-
tion is shown in Figure 5, where it is seen that increase in
the reaction-order values (n) shifted the lower part of (1-X)
curves down about the inflexion point; whereas the upper
parts of curves lead toward the right direction. Using the ef-
fect of these parametric values, n

th-order Gaussian distribu-
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Fig. 2. The effect of upper limit (E�) of dE integral on the asymptotic re-
sults (A = 293 s-1, � = 10°C/min, T0 = 292.37); a, first order reaction, b,
n

th-order, n = 2.1.

Fig. 3. The effect of the frequency factor (A) on the asymptotic results
(E� = 58 kJ/mol, � = 10 °C/min, T0 = 292.37 K); a, first order reaction, b,
n

th-order, n = 1.5.



tion prediction was performed to compare it with thermo-
analytical data, which is illustrated in Figure 5. The simula-
tion of experimental data is very useful to provide accurate
information of kinetics of biomass pyrolysis and with this
information, kinetic parameters can be obtained.

CONCLUSIONS

The main purpose of this paper is to compare the mathemat-
ical behaviour with the thermal behaviour of forest waste,
pine needles, using kinetics parameters that highly affect the
kinetic mechanism of biomass pyrolysis. Using a mathemat-

ical model, we described the kinetic behaviour of biomass
pyrolysis with respect to the selected parameters. The as-
ymptotic solution of the non-isothermal n

th-order DAEM
involved the Gaussian distribution for the main attribute of
biomass pyrolysis kinetics; 80 kJ/ mol can be used for the
upper limit of the outer dE integral. The variation in the fre-
quency factor, the heating rate, and the reaction order
merely shifted the inflexion point as well as affect the shape
the mass fraction curves. The results are helpful for know-
ing the kinetic parameters of the non-isothermal n

th-order
Gaussian DAEM from the thermo-analytical data of bio-
mass pyrolysis. Mathematical simulation was conducted us-
ing the designed Matlab algorithm to optimise the thermo-
gravimetric data to predict the behaviour of loose biomass
with change in the temperature profile.
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MEÞA ATKRITUMU PIROLÎZES SADALÎTAS AKTIVÇÐANAS ENERÌIJAS MODELÇÐANA, IZMANTOJOT GAUSA
SADALÎJUMU

Rakstâ analizçta daþu meþu biomasas pirolîzes faktoru ietekme uz n-pakâpes sadalîtas aktivçðanas enerìijas modeïa asimptotisko
risinâjumu, izmantojot Gausa sadalîjumu.


