
AREAS FOR APPLICATION OF SURFACE CLEANING
PREPARATIONS

Cleaning and disinfecting the indoor environments repre-
sents a huge area of current research. The studies are fo-
cused not only on buildings of the health care sector. The
microbial ecology of different indoor environments deter-
mines the human microbiome. Therefore, potential strate-
gies for controlling the presence of human pathogens in
apartments, automobiles and other built environments are of
a great importance worldwide (Klepeis et al., 2001; Kembel
et al., 2012; Stephenson et al., 2014).

Sources of microbes for indoor microbiomes are mainly
from outside air or the human skin (Pakarinen et al., 2008;
Rintala et al., 2008; Grice and Segre, 2011). In particular,
staphylococci frequently colonize human skin and mucosal
surfaces, and thus are transmitted to surfaces that humans
come into contact with (Stephenson et al., 2014; Foster,
2009; Payne et al., 2013).

Stephenson and coworkers (2014) studied the most highly
colonised locations of pathogens in automobiles. These ar-

eas were suspected to have frequent touching by the occu-
pants, such as locations on the steering wheel, the gear
shifter, door handles and window switches, and the centre
console near the beverage holder (Stephenson et al., 2014).

For hard surfaces, washing with soap and water and rinsing
can significantly reduce bacterial loadings (Cogan et al.,
2002). Disinfection in hospitals is recommended only for
surfaces in frequent contact with hands and skin of patients
and personnel, as repeated disinfection of other areas is un-
necessary and leads to allergic symptoms in health care
workers (Dascher et al., 2004; Henry, 2011). Disinfection
of wet cleaning cloths is necessary, because the probability
of contamination and transfer is high (Bloomfield and Scott,
1997).

CHARACTERISTICS OF TARGET MICROORGAN-
ISMS

Microorganisms vary considerably in their response to dis-
infectants. Bacterial spores are the least susceptible, fol-
lowed by mycobacteria and then by Gram-negative bacteria,
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notably pseudomonads. Gram-positive cocci, including an-
tibiotic-resistant staphylococci are readily inactivated by
disinfectants. Enterococci are also susceptible but somewhat
less so than staphylococci (Maillard, 2002; Russel, 2002).

It is desirable to test a broad spectrum of organisms for their
susceptibility to disinfectants. In this respect, additional at-
tention should be paid to: i) the high levels of antibiotic re-
sistance in plant-colonising enterococci; ii) the fact that
Burkholderia cepacia can cause both plant and human in-
fections; iii) the ability of protozoa to act as reservoirs of
animal and human pathogens (Dixon, 2002).

Hospital isolates are often more resistant to biocides than
laboratory or ‘standard’ strains. Overusage of antibiotics
(e.g., animal feedstuffs) and disinfectants (e.g., domiciliary
environments) can lead to selection for antibiotic-resistant
bacteria, a potentially serious situation (Russel, 2002). As
reported earlier, both antimicrobials, i.e. biocides and anti-
biotics, might develop shared resistance mechanisms, e.g.
efflux pumps, permeability changes and biofilms (Anony-
mous, 2009). Resistance to these compounds may be ac-
quired either by mutation or by the acquisition of genetic el-
ements (plasmids, transposons).

There are two major mechanisms whereby bacteria show re-
sistance to disinfectants. The first one is based on imperme-
ability of the outer bacterial cell layers and is formed in bac-
terial spores, mycobacteria and Gram-negative organisms.
Alternatively, some organisms, such as P. aeruginosa, can
efflux some agents such as triclosan, chlorhexidine and qua-
ternary ammonium compounds (QACs) (Chuanchen et al.,
2001; Poole, 2001; Russel, 2002).

By analogy with antibiotics, disinfectant rotation policies
are practised in some hospitals. Such policies attract strong
opinions in support and against (Murtough et al., 2002;
Russel, 2002).

METHODS FOR EVALUATION OF DISINFECTANTS

Unlike sterilisation, disinfection is not sporicidal. A few
disinfectants kill spores with prolonged exposure times
(3–12 hours); these are called chemical sterilants. High-, in-
termediate- and low-level disinfectants differ in their
antimicrobial spectrum and rapidity of action (Rutala and
Weber, 2008).

Studies on efficiency of surface disinfectant cleaners carried
out with test-microorganisms in suspension and not under
practical conditions, can be considered as a strong limitation
(Reichel et al., 2014). In case the efficiency of a disinfectant
applied to surfaces is based on counting the microbial survi-
vors sampled in a liquid, then total cell removal from sur-
faces is seldom achieved. As a result, the efficiency of sur-
face disinfection procedures can be overestimated (Grand et

al., 2011). Use of fluorescent dyes in microscopy can im-
prove the assessment of cell viability, even for sur-
face-associated cells (Davinson et al., 2010; Bridier et al.,
2011; Grand et al., 2011).

Some studies aimed at developing disinfection procedures
at food processing plants have led to modification of the
standard methods in order to adapt them to technological
conditions. Thus, for a fish processing plant, bactericidal ef-
ficiency of common disinfectants against adherent cells on
stainless steel surface was carried out with mixed culture of
Pseudomonas putida, Serratia liquefaciens and Shewanella

putrefaciens isolated from shrimp and fish processing plants
(Duong, 2005).

Standard methods for determining bactericidal, sporicidal,
fungicidal and yeasticidal effect of the chemical disinfec-
tants and antiseptics on the surface and in suspension, are
provided in EU documents (Anonymous, 1997a; 1997b;
2001).

FACTORS AFFECTING THE EFFICACY OF DISINFEC-
TION

Among the factors influencing an efficacy of disinfection,
specificity of target microorganisms, physicochemical prop-
erties of surrounding media and treatment mode are consid-
ered as most important.

Target microorganisms. Susceptibility of microorganisms
to the disinfectant is dependent on the type, source, concen-
tration of microorganisms, as well as the presence of
biofilm. Activity of a disinfectant might also differ between
different strains of the same species (Maillard, 2002).

Media. The pH level, hardness, salinity, the presence of or-
ganic or inorganic interfering material, physical nature of
the object (e.g., crevices, hinges, and lumens) can suffi-
ciently influence the outcome of disinfection procedure.
The presence of divalent cations increases susceptibility to
QAC (Crismaru et al., 2011). Quaternary-containing disin-
fectants are affected by water hardness and less affected by
organic matter (Anonymous, 2000; Duong, 2005).

Treatment mode. Sufficient contact time is critical to en-
sure disinfection. For example, the standard suspension
methods suggest a contact period with disinfectant of 5 min
and 15 min for tests with bacteria and fungi/yeast cultures,
respectively. An appropriate neutraliser should be used be-
fore counting the number of cells surviving the test disinfec-
tion procedure (Anonymous, 1997a; 1997b).

CHEMISTRY OF SURFACE CLEANING PREPARA-
TIONS

Waterless cleaning preparations. A formulated waterless
cleaning composition may contain the following com-
pounds: primary surfactant, cosurfactant, solvents,
cosolvent, organotropic (organic solubilising) agent,
hydrotropic (water solubilizing) agent, water and salts, and
special additives. The water content of most cleaning aids
ranges from 5% to 15%. Additives, such as softening,
retexturing (sizing), antistatic, oxidising (bleaching), disin-
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fecting, and optical brightening agents, can be beneficial in
cleaning aids.

The most important and usually the most effective constitu-
ent of a cleaning aid is a surface-active substance. His-
torically, six classes of surfactants have been used in water-
less cleaning detergents (Schwartz, 1949):

1. Alkyl phenol and alkyl benzene sulfonates;

2. Sulfated fatty alcohols and sulfated oleic or ricinolieic
acid;

3. Petroleum sulfonates;

4. Cetyl pyridinium bromide and other cationic agents;

5. Esters of long-chain fatty acids with low- molecular-
weight hydroxycarboxylic acids, such as stearyl tartrate;

6. Oil-soluble nonionic agents, such as low HLB alcohol
ethoxylates (HLB, hydrophilic-lipophilic balance of a surf-
actant).

As the above list indicates, very few oil-soluble surfactants
fail to fit one of these classes.

A commercial waterless cleaning detergent may contain
40% to 90% active ingredients and be used at 0.5% to 4% in
the cleaning solvent.

Quaternary ammonium compounds: surfactants with

disinfecting properties. Among the broad spectrum of
chemicals used in cleaning compositions, particular atten-
tion is paid to quaternary ammonium compounds. Quater-
naries are unique surfactants that act as antistatic agents, de-
tergents, oil-in-water emulsifiers, corrosion inhibitors, and
lubricants. They can be either oil soluble, water soluble, or
dispersible depending on the molecular weight and presence
of fatty chains. While most commercial cationics contain
one or more long alkyl chains, the most common types in
waterless cleaning aids are based on diethylamine plus sev-
eral moles of propylene oxide then quaternised with methyl
chloride (Friedli, 2001).

Quaternary ammonium compounds are rather specific in
their antimicrobial mechanism. Even very low concentra-
tions cause damage to the cytoplasmic membrane due to
perturbation of the bilayers by the molecules’ alkyl chains
(Wessels and Ingmer, 2013). QACs interfere with normal
ammonium uptake (Sutterlin et al., 2008; Buffet-Bataillon
et al., 2012). QACs irreversibly bind to the phospholipids
and proteins of the membrane, thereby impairing permeabil-
ity. Several active compounds have less inhibitory effect on
Pseudomonas spp. than on Bacillus spp., due to the pres-
ence of lipoproteins and liposaccharides on the outer layer
of peptidoglycane (Maris, 1995). Minimum inhibitory con-
centrations (MICs) of different QACs were recently sum-
marised by Buffet-Bataillon et al. (2012).

McBain and coworkers (2004) examined QAC effects on
bacterial community dynamics in a drain microcosm with

mixed cultures. Increased susceptibility to QACs among
some strains (e.g., belonging to genus Pseudomonas sp. and
Enterococcus saccharolyticus) and decreased susceptibility
among others (Pseudomonas sp., Eubacterium sp.,
Chryseobacterium sp., Ralstonia sp. and Aranicola sp.) was
detected.

The probable production of QAC’s per year in the EU is
more than 1000 tons of pure compounds, several of the indi-
vidual compounds being produced at more than 10 tons per
year (Anonymous, 2013). It was previously reported that
adaptation or resistance to QACs can develop (Reichel et

al., 2014; Block, 1991; Boyce and Pittet, 2002).

ECOTOXICOLOGICAL IMPACT OF SURFACE
CLEANING PREPARATIONS

Due to the enormous economic importance and massive
worldwide use of surfactants and disinfectants, their envi-
ronmental impact has to be evaluated and controlled. Espe-
cial attention is paid to ecological threat caused by water
disinfection. In particular, the use of chlorine dioxide and
ozone lead to bacterial mutagenicity (Monarco et al., 2000).
A new class of disinfection byproducts (DBPs), i.e.,
halobenzoquinones (HBQs), which were observed to occur
widely in treated drinking water and recreational water,
were shown to be highly cytotoxic and potentially geno-
toxic and carcinogenic (Li et al., 2015). Hospital effluents
possess environmental risks, since they are 5–15 more toxic
than urban effluents (Panouillères et al., 2007). Panouillères
et al., (2007) and Angerville et al., (2009) reported the ef-
fect of binary mixtures of detergents and disinfectants in
different concentrations on the ecotoxicological status of
hospital effluents. Acute toxicity tests performed on Daph-

nia magna with binary mixtures of i) sodium hypochlorite
and three detergents or ii) peracetic acid and three deter-
gents in different concentrations showed mostly antagonis-
tic interactions (Panouillères et al., 2007; Angerville et al.,
(2009).

A complex preparation for waterless surface cleaning con-
sisting of detergents, propanol, wax emulsion, mineral oil
and quaternary ammonium compounds was found to exhibit
strong disinfecting properties. Toxicity of this SCP for a
battery of test organisms ranged as follows: crustaceans
Thamnocephalus platyurus > algae Selenastrum capri-

cornutum > Gram-positive bacteria P. fluorescens > higher
plants Triticum sp., Lepidium sativum (Vecstaudza et al.,
2015).

Data on toxicity of different types of detergents and disin-
fectants used for SCPs are shown in Table 1.

BIODEGRADABILITY OF SURFACE CLEANING
PREPARATIONS

During biodegradation, microorganisms can either utilise
surface active compounds as substrates for energy and nu-
trients or co-metabolise them by microbial metabolic reac-
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tions (Ying, 2006). Released into the environment, the
biodegradability of QACs may be limited by their anti-
microbial activity (Lucchesy et al., 2010).

The biodegradation process of SCPs is affected by physico-
chemical factors, e.g., solubility, concentration, structure of
the target molecule, as well as conditions of media, e.g., dis-
solved oxygen, temperature, pH, light, nutrient concentra-
tion (Jurado et al., 2009, Jurado et al., 2013).

Although many bacteria are able to metabolise organic pol-
lutants, a single bacterium does not possess the enzymatic
capability to degrade all or even most of the organic com-
pounds (Fritsche and Hofrichter, 2000). Biodegradation of
organic pollutants by a consortium of microorganisms is
more efficient. In biodegradation experiments with decyl-
trimethylammonium bromide (DTM), it was shown that
Xanthomonas sp. cannot degrade DTM completely, and that
the products of partial degradation would be available to

T a b l e 1

ECOTOXICOLOGICAL IMPACT OF SCPS AND THEIR ACTIVE INGREDIENTS

Active ingredient Test organism/ Environment Concentration Results Reference

Sodium hypochlorite Streptococcus pneumoniae and coagulated
blood

0.55% Among different kinds of cleaning
agents, sodium hypochlorite showed
the best results in blood stems remov-
ing from hard surfaces and bacterial
disinfection, but only when environ-
ment was not too wet

Gold and Hitchins, 2013

Quarternary ammo-
nium compounds

Pseudomonas fluorescens 300 mg/L MIC for growth inhibition during 24h
batch cultivation

Davids et al., 2015

Nitrifying bacteria 2 mg/L First negative effects IIvankoviã and Hrenoviã,
2010

Algae Dunaliella sp. 0.79 mg/L EC50 – after 24 h cultivation

Crustaceans Daphnia magna 0.38 mg/L EC50 – after 24 h immobilisation

Sodium dodecyl
sulphate

Acinetobacterjohnsonii and Oligotropha

carboxidovorans

0.2 mg/L 2 mg/L Bacteria showed 50% and 20% viabil-
ity during treatment with given concen-
trations of sodium dodecyl sulphate

Algae Raphidocelis subcapitata 36.58 mg/L IC50 – cell density measurements after
72 h

Crustaceans Artemia salina 41.04 mg/L LC50 – larvae mortality measurements
after 24 h

Alcohol ethoxylate Crustaceans Ceriodaphnia dubia 0.39 mg/L EC50 – after 48h immobilisation

Multiple algae species 0.030÷9.791mg/
L

EC10*

Nanosilver product-
Nanocid® L2000

Escherichia coli, Listeria monocytogenes, Sal-

monella typhimurium and Vibrio

parahaemolyticus

0.78÷100 µg/mL MIC values showed that the MIC for
all bacteria was 3.12 µg/mlL, but for
Listeria monocytogenes it was 6.25
µg/ml. Based on contact time (for
Lysteria it needs to be at least 7 hours),
the MIC values for all bacteria was
6.25 µg/ml

Zarei et al., 2014

Alkyl
ethoxysulphate

Crustaceans Artemia franciscana 23.92 mg/L LC50** – Nauplii mortality after 72 h Ivankoviã and Hrenoviã,
2010

Algae Pseudokirchneriella

subcapitata and Raphidocelis subcapitata

3.15 mg/L 2.18
mg/L

EC50* – Cell density 72 h
IC50*** – Cell density 72 h

Different fish species 0.8 mg/L ÷250
mg/L

EC50

Linear alkylbenzene
sulphonic acid

Bacteria Pseudomonas putida 33.4 mg/L EC50 – Growth inhibition after 16 h

Algae Dunaliella sp. 3.5 mg/L EC50 – 24 h

Flathead minnow 0.63 mg/L ÷1.2
mg/L

First effect concentration on flathead
minnow survival

Lewis, 1991

Crustaceans Daphnia magna 1.7 mg/L÷3.4
mg/L

First effect concentration on Daphnia

magna survival

Nonionic alkyl
ethoxylates

Crustaceans Daphnia magna 0.1 mg/L ÷1
mg/L

First effect concentration on Daphnia

magna reproduction

** LC50 – lethal concentration; *** IC50 – half maximal inhibitory concentration.
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support replication of Pseudomonas sp. so that the two or-
ganisms together would be able to grow on DTM (Dean-
Raymond and Alexander, 1977).

Table 2 summarizes some results on biodegradation studies
performed with different surfactants under different condi-
tions.

CONCLUSIONS

Increased knowledge and better understanding of the anti-
microbial capacity of disinfectants are essential to optimise
sanitation procedures, to reduce costs, environment waste
and to improve shelf life (Duong, 2005).

Special surfactants used in waterless cleaning vary widely.
The literature on nonaqueous cleaning process is inade-
quate. More research is required to better understand the
cleaning mechanism in solvent systems.
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BEZÛDENS TÎRÎÐANAS LÎDZEKÏI AR DEZINFICÇJOÐO IEDARBÎBU: EFEKTIVITÂTE UN APKÂRTÇJAS VIDES ASPEKTI

Arvien svarîgâka nozîme mûsdienâs tiek veltîta daþâdu lîdzekïu izpçtei, kurus izmanto medicînas iestâdçs, dzîvojamo un raþoðanas telpu
apkopç un dezinfekcijâ. Rakstâ apkopoti literatûrâ atrodamie dati par preparâtu specifiskâm îpaðîbâm tâ sauktajâ virsmas bezûdens tîrîðanâ
un dezinfekcijâ. Sniegts apraksts par preparâtu pielietoðanas iespçjâm, íîmisko sastâvu, testçðanas metodçm, kâ arî preparâtu
ekotoksiskuma potenciâlu un biodegradâciju. Preparâti savstarpçji atðíiras pçc íîmiskâ sastâva. To sastâvâ ir iekïautas virsmas aktîvâs
vielas (VAV), ðíîdinâtâji, sâïi, mîkstinâtâji, antistatiskas un dezinficçjoðas vielas. Îpaða uzmanîba pievçrsta èetraizvietojamâ amonija
sâïiem, kuri veic VAV un dezinficçjoðâs funkcijas. Bez tam ðî vielu grupa pieðíir preparâtam antistatiskas, antiseptiskas, antikorozijas,
emulìçjoðas u.c. îpaðîbas. Lai novçrtçtu preparâta dezinficçjoðo iedarbîbu, jâòem vçrâ mikroorganismu sugas specifiskumu attiecîba gan uz
konkrçto antimikrobu aìentu, gan preparâtu. Aktuâla problçma ir konkrçto mikroorganismu celmu rezistences veidoðanâs dezinfektantu
iedarbîbâ. Ðâdâ aspektâ aktîvi tiek risinâts jautâjums par mikroorganismu iespçjamo mehânismu veidoðanos uz dezinfektantu un antibiotiku
izturîbu. Daþi autori uzskata, ka ðie procesi ir savstarpçji saistîti. Svarîgi òemt vçrâ arî izmantotâs metodikas, testçjot bezûdens tîrîðanas
lîdzekïus ar dezinficçjoðo iedarbîbu. Paralçli standarta metodçm svarîgi izmantot alternatîvu metodisko pieeju, modelçjot bioplçves
veidoðanos uz specifiskas virsmas ar pârbaudâmo organismu pielietoðanu, kuri izdalîti no konkrçtâs vides. Tâ kâ tîrîðanas lîdzekïu ar
augstâk aprakstîtâm îpaðîbâm lietoðana ir ïoti plaði sastopama, veidojas aktuâla vides piesâròoðanas problçma ar preparâtu íîmiskiem
komponentiem, kâ arî ar to blakus produktiem. Autori apkopo datus par atseviðíu komponentu ekotoksiskumu un biodegradâciju. Rakstâ
minçti zinâtniskie dati, kuri publicçti no 1977. lîdz 2015. gadam, vienlaicîgi ietverot autoru pçtîjumu rezultâtus.
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